
Hindley-Milner elaboration in applicative style

François Pottier

This pearl presents

a (shamefully) simple solution

to a problem that has (gently) troubled me for ten years

and whose story begins even longer ago.

This pearl presents

a (shamefully) simple solution

to a problem that has (gently) troubled me for ten years

and whose story begins even longer ago.

This pearl presents

a (shamefully) simple solution

to a problem that has (gently) troubled me for ten years

and whose story begins even longer ago.

This pearl presents

a (shamefully) simple solution

to a problem that has (gently) troubled me for ten years

and whose story begins even longer ago.

Part I

A STORY

The 1970s

Milner (1978) invents ML polymorphism and type inference.

The 1970s

Milner (1978) invents ML polymorphism and type inference.

Milner’s description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable E.

Both compose substitutions
produced by unification, and
create “new” variables as
needed.

Milner’s description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable E.

Both compose substitutions
produced by unification, and
create “new” variables as
needed.

Milner’s description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable E.

Both compose substitutions
produced by unification, and
create “new” variables as
needed.

Milner’s description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable E.

Both compose substitutions
produced by unification, and
create “new” variables as
needed.

Milner’s description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable E.

Both compose substitutions
produced by unification, and
create “new” variables as
needed.

Milner’s description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable E.

Both compose substitutions
produced by unification, and
create “new” variables as
needed.

The 1980s

Cardelli, Wand (1987) and others formulate type inference as a
two-stage process: generating and solving a conjunction of equations.

The 1980s

Cardelli, Wand (1987) and others formulate type inference as a
two-stage process: generating and solving a conjunction of equations.

Benefits

Higher-level thinking:

instead of substitutions and composition,

equations and conjunction.

Greater modularity:

constraints and constraint solving as a library,

constraint generation performed by the user.

Limitations

New variables still created via a global side effect.

Polymorphic type inference not supported.

Algorithm J must solve the constraints produced so far

(it looks up E) before it can produce more constraints.

The 1990s

Kirchner & Jouannaud (1990), Rémy (1992) and others explain “new”
variables as existential quantification and constraint solving as rewriting.

A necessary step on the road towards explaining polymorphic inference.

The 1990s

Kirchner & Jouannaud (1990), Rémy (1992) and others explain “new”
variables as existential quantification and constraint solving as rewriting.

A necessary step on the road towards explaining polymorphic inference.

The 2000s

Following Gustavsson and Svenningsson (2001), Didier Rémy and F.P.
(2005) explain polymorphic type inference using constraint abstractions.

The 2000s

Following Gustavsson and Svenningsson (2001), Didier Rémy and F.P.
(2005) explain polymorphic type inference using constraint abstractions.

Constraints

Constraints offer a syntax for describing type inference problems.

τ ::= α | τ → τ | . . .
C ::= false | true | C ∧ C | τ = τ | ∃α.C (unification)

| let x = λα.C in C (abstraction)
| x τ (application)

The meaning of let-constraints is given by the law:

let x = λα.C1 in C2

≡ ∃α.C1 ∧ [λα.C1/x]C2

Constraint generation

A pure function of a term t and a type τ to a constraint Jt : τK.

Jx : τK = x τ

Jλx.u : τK = ∃α1α2.

(
τ = α1 → α2 ∧
let x = λα.(α = α1) in Ju : α2K

)
Jt1 t2 : τK = ∃α.(Jt1 : α→ τK ∧ Jt2 : αK)

Jlet x = t1 in t2 : τK = let x = λα.Jt1 : αK in Jt2 : τK

Constraint solving

On paper, every constraint can be rewritten
step by step to either false or a solved form.

The imperative implementation, based on
Huet’s unification algorithm and Rémy’s
ranks, is efficient (McAllester, 2003).

Library (OCaml)

Abstract syntax for constraints:

type variable

val fresh: variable structure option -> variable

type rawco =

| CTrue

| CConj of rawco * rawco

| CEq of variable * variable

| CExist of variable * rawco

| ...

Combinators that build constraints:

val truth: rawco

val (^&) : rawco -> rawco -> rawco

val (--) : variable -> variable -> rawco

val exist: (variable -> rawco) -> rawco

...

User (OCaml)

The user defines constraint generation:

let rec hastype (t : ML.term) (w : variable) : rawco

= match t with

| ...

| ML.Abs (x, u) ->

exist (fun v1 ->

exist (fun v2 ->

w --- arrow v1 v2 ^&

def x v1 (hastype u v2)

)

)

| ...

let iswelltyped (t : ML.term) : rawco

= exist (fun w -> hastype t w)

Part II

A PROBLEM

A problem

Submitting a closed ML term
to the generator ...

yields a closed constraint ...

which the solver rewrites to ...

let b = if x = y then

... else ... in ...

∃α.(α = bool ∧ ∃βγ.(. . .))

either false, or true.

A problem

Submitting a closed ML term
to the generator ...

yields a closed constraint ...

which the solver rewrites to ...

let b = if x = y then

... else ... in ...

∃α.(α = bool ∧ ∃βγ.(. . .))

either false, or true.

A problem

Submitting a closed ML term
to the generator ...

yields a closed constraint ...

which the solver rewrites to ...

let b = if x = y then

... else ... in ...

∃α.(α = bool ∧ ∃βγ.(. . .))

either false, or true.

A problem

Submitting a closed ML term
to the generator ...

yields a closed constraint ...

which the solver rewrites to ...

let b = if x = y then

... else ... in ...

∃α.(α = bool ∧ ∃βγ.(. . .))

either false, or true.

A problem (OCaml)

The API offered by the library is too simple:

val solve: rawco -> bool

(Ignoring type error diagnostics.)

The user has defined:

val iswelltyped: ML.term -> rawco

There is no way of obtaining, say:

val elaborate: ML.term -> F.term

which would be the front-end of a type-directed compiler.

A problem (OCaml)

The API offered by the library is too simple:

val solve: rawco -> bool

(Ignoring type error diagnostics.) The user has defined:

val iswelltyped: ML.term -> rawco

There is no way of obtaining, say:

val elaborate: ML.term -> F.term

which would be the front-end of a type-directed compiler.

A problem (OCaml)

The API offered by the library is too simple:

val solve: rawco -> bool

(Ignoring type error diagnostics.) The user has defined:

val iswelltyped: ML.term -> rawco

There is no way of obtaining, say:

val elaborate: ML.term -> F.term

which would be the front-end of a type-directed compiler.

Question

Can one perform elaboration

without compromising the modularity and elegance

of the constraint-based approach?

Part III

A SOLUTION

A low-level solution

The generator could produce a pair of

a constraint and

a template for an elaborated term,

sharing mutable placeholders for evidence,

so that, after the constraint is solved,

the template can be “solidified” into an elaborated term.

Library, low-level (OCaml)

Constraints already contain mutable placeholders for evidence:

... | CExist of variable * rawco | ...

More placeholders (not shown) required to deal with polymorphism.

Let the library offer a type decoder, which can be invoked after solving:

type decoder = variable -> ty

val new_decoder: unit -> decoder

...

User (OCaml)

The user could write:

val hastype:

ML.term -> variable -> rawco * F.template

val solidify:

F.template -> F.term

where:

the constraint and the template share variables,

solidify uses a type decoder to replace these variables with types.

Why I not am happy with stopping here

This approach is in three stages: generation, solving, solidification.
Each user construct is dealt with twice, in stages 1 and 3.

This approach exposes evidence to the user.
Evidence is mutable and involves names and binders.

One needs an intermediate representation F.template,
or one must pollute F.term.

A wish

Even though stages 1 and 3 must be executed separately,

the user would prefer to describe them in a unified manner.

A dream

If the user could somehow (magically?)

construct the constraint, and “simultaneously”

query the solver for the final (decoded) witness for a variable

then she would be able to perform elaboration in one swoop:

val elaborate: ML.term -> F.term

and evidence would not need to be exposed.

The idea

Give the user the illusion that she can use the solver in this manner.

Give her a DSL to express computations that:

emit constraints and

read their solutions.

It turns out that this DSL is just

our good old constraints,

extended with a map combinator.

The idea

Give the user the illusion that she can use the solver in this manner.

Give her a DSL to express computations that:

emit constraints and

read their solutions.

It turns out that this DSL is just

our good old constraints,

extended with a map combinator.

Library, high-level (OCaml)

Solving/evaluating a constraint produces a result.

type ’a co

val solve: ’a co -> ’a

val pure: ’a -> ’a co

val (^&): ’a co -> ’b co -> (’a * ’b) co

val map: (’a -> ’b) -> ’a co -> ’b co

val (--): variable -> variable -> unit co

val exist: (variable -> ’a co) -> (ty * ’a) co

...

E.g., evaluating ∃α.C yields a pair of a decoded type
(the witness for α) and the value of C.

Library, high-level (OCaml)

This is implemented on top of the earlier, low-level library.

type env =

decoder

type ’a co =

rawco * (env -> ’a)

A constraint/computation is a pair of

I a raw constraint, which contains mutable evidence;

I a continuation, which reads this evidence after the solver has run.

Library, high-level (OCaml)

The implementation is quasi-trivial.

let exist f =

let v = fresh None in

let rc , k = f v in

CExist (v, rc),

fun env ->

let decode = env in

(decode v, k env)

User (OCaml)

The user defines inference/elaboration in one inductive function:

let rec hastype t w : F.term co

= match t with

| ...

| ML.Abs (x, u) ->

exist (fun v1 ->

exist (fun v2 ->

w --- arrow v1 v2 ^&

def x v1 (hastype u v2)

)

) <$$> fun (ty1, (ty2, ((), u’))) ->

F.Abs (x, ty1, u’)

| ...

The (final, decoded) type ty1 of x seems to be magically available.

Remarks

Elaboration from ML to System F in the paper (and online).

The type ’a co forms an applicative functor, not a monad.

Part IV

Conclusion

Conclusion

I a simple idea, really

I just icing on the cake

I modularity, elegance, performance

I usable in other settings? e.g. higher-order pattern unification?

Thank you

http://gallium.inria.fr/~fpottier/inferno/

No mutable state was exposed in the making of this library.

http://gallium.inria.fr/~fpottier/inferno/

	A STORY
	A PROBLEM
	A SOLUTION
	Conclusion

