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Part I

A STORY



The 1970s

Milner (1978) invents ML polymorphism and type inference.
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and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable E.

Both compose substitutions
produced by unification, and
create “new” variables as
needed.
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The 1980s

Cardelli, Wand (1987) and others formulate type inference as a
two-stage process: generating and solving a conjunction of equations.



The 1980s

Cardelli, Wand (1987) and others formulate type inference as a
two-stage process: generating and solving a conjunction of equations.



Benefits

Higher-level thinking:

instead of substitutions and composition,

equations and conjunction.

Greater modularity:

constraints and constraint solving as a library,

constraint generation performed by the user.



Limitations

New variables still created via a global side effect.

Polymorphic type inference not supported.

Algorithm J must solve the constraints produced so far

(it looks up E) before it can produce more constraints.



The 1990s

Kirchner & Jouannaud (1990), Rémy (1992) and others explain “new”
variables as existential quantification and constraint solving as rewriting.

A necessary step on the road towards explaining polymorphic inference.
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(2005) explain polymorphic type inference using constraint abstractions.
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Constraints

Constraints offer a syntax for describing type inference problems.

τ ::= α | τ → τ | . . .
C ::= false | true | C ∧ C | τ = τ | ∃α.C (unification)

| let x = λα.C in C (abstraction)
| x τ (application)

The meaning of let-constraints is given by the law:

let x = λα.C1 in C2

≡ ∃α.C1 ∧ [λα.C1/x]C2



Constraint generation

A pure function of a term t and a type τ to a constraint Jt : τK.

Jx : τK = x τ

Jλx.u : τK = ∃α1α2.

(
τ = α1 → α2 ∧
let x = λα.(α = α1) in Ju : α2K

)
Jt1 t2 : τK = ∃α.(Jt1 : α→ τK ∧ Jt2 : αK)

Jlet x = t1 in t2 : τK = let x = λα.Jt1 : αK in Jt2 : τK



Constraint solving

On paper, every constraint can be rewritten
step by step to either false or a solved form.

The imperative implementation, based on
Huet’s unification algorithm and Rémy’s
ranks, is efficient (McAllester, 2003).



Library (OCaml)

Abstract syntax for constraints:

type variable

val fresh: variable structure option -> variable

type rawco =

| CTrue

| CConj of rawco * rawco

| CEq of variable * variable

| CExist of variable * rawco

| ...

Combinators that build constraints:

val truth: rawco

val (^&) : rawco -> rawco -> rawco

val (--) : variable -> variable -> rawco

val exist: (variable -> rawco) -> rawco

...



User (OCaml)

The user defines constraint generation:

let rec hastype (t : ML.term) (w : variable) : rawco

= match t with

| ...

| ML.Abs (x, u) ->

exist (fun v1 ->

exist (fun v2 ->

w --- arrow v1 v2 ^&

def x v1 (hastype u v2)

)

)

| ...

let iswelltyped (t : ML.term) : rawco

= exist (fun w -> hastype t w)



Part II

A PROBLEM



A problem

Submitting a closed ML term
to the generator ...

yields a closed constraint ...

which the solver rewrites to ...

let b = if x = y then

... else ... in ...

∃α.(α = bool ∧ ∃βγ.(. . .))

either false, or true.
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A problem (OCaml)

The API offered by the library is too simple:

val solve: rawco -> bool

(Ignoring type error diagnostics.)

The user has defined:

val iswelltyped: ML.term -> rawco

There is no way of obtaining, say:

val elaborate: ML.term -> F.term

which would be the front-end of a type-directed compiler.
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Question

Can one perform elaboration

without compromising the modularity and elegance

of the constraint-based approach?



Part III

A SOLUTION



A low-level solution

The generator could produce a pair of

a constraint and

a template for an elaborated term,

sharing mutable placeholders for evidence,

so that, after the constraint is solved,

the template can be “solidified” into an elaborated term.



Library, low-level (OCaml)

Constraints already contain mutable placeholders for evidence:

... | CExist of variable * rawco | ...

More placeholders (not shown) required to deal with polymorphism.

Let the library offer a type decoder, which can be invoked after solving:

type decoder = variable -> ty

val new_decoder: unit -> decoder

...



User (OCaml)

The user could write:

val hastype:

ML.term -> variable -> rawco * F.template

val solidify:

F.template -> F.term

where:

the constraint and the template share variables,

solidify uses a type decoder to replace these variables with types.



Why I not am happy with stopping here

This approach is in three stages: generation, solving, solidification.
Each user construct is dealt with twice, in stages 1 and 3.

This approach exposes evidence to the user.
Evidence is mutable and involves names and binders.

One needs an intermediate representation F.template,
or one must pollute F.term.



A wish

Even though stages 1 and 3 must be executed separately,

the user would prefer to describe them in a unified manner.



A dream

If the user could somehow (magically?)

construct the constraint, and “simultaneously”

query the solver for the final (decoded) witness for a variable

then she would be able to perform elaboration in one swoop:

val elaborate: ML.term -> F.term

and evidence would not need to be exposed.



The idea

Give the user the illusion that she can use the solver in this manner.

Give her a DSL to express computations that:

emit constraints and

read their solutions.

It turns out that this DSL is just

our good old constraints,

extended with a map combinator.
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Library, high-level (OCaml)

Solving/evaluating a constraint produces a result.

type ’a co

val solve: ’a co -> ’a

val pure: ’a -> ’a co

val (^&): ’a co -> ’b co -> (’a * ’b) co

val map: (’a -> ’b) -> ’a co -> ’b co

val (--): variable -> variable -> unit co

val exist: (variable -> ’a co) -> (ty * ’a) co

...

E.g., evaluating ∃α.C yields a pair of a decoded type
(the witness for α) and the value of C.



Library, high-level (OCaml)

This is implemented on top of the earlier, low-level library.

type env =

decoder

type ’a co =

rawco * (env -> ’a)

A constraint/computation is a pair of

I a raw constraint, which contains mutable evidence;

I a continuation, which reads this evidence after the solver has run.



Library, high-level (OCaml)

The implementation is quasi-trivial.

let exist f =

let v = fresh None in

let rc , k = f v in

CExist (v, rc),

fun env ->

let decode = env in

(decode v, k env)



User (OCaml)

The user defines inference/elaboration in one inductive function:

let rec hastype t w : F.term co

= match t with

| ...

| ML.Abs (x, u) ->

exist (fun v1 ->

exist (fun v2 ->

w --- arrow v1 v2 ^&

def x v1 (hastype u v2)

)

) <$$> fun (ty1, (ty2, ((), u’))) ->

F.Abs (x, ty1, u’)

| ...

The (final, decoded) type ty1 of x seems to be magically available.



Remarks

Elaboration from ML to System F in the paper (and online).

The type ’a co forms an applicative functor, not a monad.



Part IV

Conclusion



Conclusion

I a simple idea, really

I just icing on the cake

I modularity, elegance, performance

I usable in other settings? e.g. higher-order pattern unification?



Thank you

http://gallium.inria.fr/~fpottier/inferno/

No mutable state was exposed in the making of this library.

http://gallium.inria.fr/~fpottier/inferno/
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