Hindley-Milner elaboration in applicative style

Francois Pottier

v d

: informatics gPmathematics

This pearl presents

This pearl presents

a (shamefully) simple solution

This pearl presents

a (shamefully) simple solution

to a problem that has (gently) troubled me for ten years

This pearl presents

a (shamefully) simple solution
to a problem that has (gently) troubled me for ten years

and whose story begins even longer ago.

Part |

A STORY

The 1970s

The 1970s

g A Theory of Type Polymorphism in Programming

e § \
” " ROBIN MILNER
k Computer Science Department, University of Edinburgh, Edinburgh, Scotland

Received October 10, 1977; revised April 19, 1978

Milner (1978) invents ML polymorphism and type inference.

Milner's description

Milner publishes a declarative
presentation, Algorithm W,

Milner's description

(i) If f is (de), then:
Milner publishes a declarative let (R,) = #(p, d), and (5, &) = W (R, e;
. . let U = %(Sp, o — B), B new;
presentation, Algorithm W, then T — USR, and f = U((S2)e)y).

Milner's description

(i) If f is (de), then:
Milner publishes a declarative let (R, 4,) = #'(p,), and (S, &) = W(Rp, e);
let U = %(Sp, o — B), B new;

presentation, Algorithm W, then T — USR, and f — U(((S2))s).

and an imperative one,
Algorithm J.

Milner's description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

(i) If f is (de), then:
let (R, d,) = #(p, d), and (S, &,) = W(RP, e);
let U = %(Sp, o — B), B new;
then T — USR, and 7 = U(((S2)2),).

(ii) If f is (de) then:

p = F(p,d)i o= F(pe);
UNIFY (p, o — f); (8 new)

Milner's description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable FE.

(i) If f is (de), then:
let (R, d,) = #(p, d), and (S, &,) = W(RP, e);
let U = %(Sp, o — B), B new;
then T — USR, and 7 = U(((S2)2),).

(ii) If f is (de) then:

p = F(p,d)i o= F(pe);
UNIFY (p, o — f); (8 new)

Milner's description

Milner publishes a declarative
presentation, Algorithm W,

and an imperative one,
Algorithm J.

Algorithm J maintains a
“current substitution” in a
global variable FE.

(i) If f is (de), then:
let (R, d,) = W(p, d), and (S, &) = W (Rp, e);
let U = %(Sp, o — B), B new;
then T = USR, and f = U(((S2)e)s).
(ii) If f is (de) then:
pi= F(pd)o:= F(pe);
UNIFY (p, o — f); (8 new)

Both compose substitutions
produced by unification, and

create “new” variables as
needed.

The 1980s

The 1980s

A Simple Algorithm and Proof for Type Inference
|
mz] Mitchell Wand*

' d College of Computer Science
P Northeastern University
Cardelli, Wand (1987) and others formulate type inference as a

two-stage process: generating and solving a conjunction of equations.

Case 3. (A, (Az.M),t). Let 71 and 7 be fresh type variables. Generate
the equation ¢ = 1 — 7 and the subgoal ((A[z + 71])a, M, 72).

Benefits

Higher-level thinking:

instead of substitutions and composition,

equations and conjunction.
Greater modularity:

constraints and constraint solving as a library,

constraint generation performed by the user.

Limitations

New variables still created via a global side effect.

Polymorphic type inference not supported.

Algorithm J must solve the constraints produced so far

(it looks up E) before it can produce more constraints.

The 1990s

CINEMA

The 1990s

flr o) = f(Br,... Bp) = e

a=cha=¢

]
CINEMA —~ (FUSE) -
a=c=¢ TI=PA T =By Af(Br,.. . Bp) =
flr....1) =glo1,...04) = e
if f#g, (FAIL)
1
(a—7)(e)

~ (GENERALIZE)

ifaeVie)\e\V(r)AT ¢V, Ja (ehazr)

Kirchner & Jouannaud (1990), Rémy (1992) and others explain “new”
variables as existential quantification and constraint solving as rewriting.

A necessary step on the road towards explaining polymorphic inference.

The 2000s

The 2000s

Constraint Abstractions

Jorgen Gustavsson and Josef Svenningsson

Chalmers University of Technology and Goteborg University
{gustavss,josefs}@cs.chalmers.se

Following Gustavsson and Svenningsson (2001), Didier Rémy and F.P.
(2005) explain polymorphic type inference using constraint abstractions.

Constraints

Constraints offer a syntax for describing type inference problems.

Tu=alT—oT|.

C :=false | true | CAC | 7=7]|3a.C (unification)
|let x = Aa.C in C (abstraction)
|z T (application)

The meaning of let-constraints is given by the law:

let z = Aav.C7 in Oy
= da.Ci A [)\aCl/x]Cg

Constraint generation

A pure function of a term ¢ and a type 7 to a constraint [t : 7].

[z
[Ar.u

[t to

[let © = tq in to

T)l=xT
: 7] :Elalozg.(

7] = Fa.([t1 : a = 7] A Jt2 = @)

T =01 = g N\
let z = Aa.(av = 1) in Ju : ag]

7] =letz = Aa.[ty 1 o] in [tz : 7]

)

Constraint solving

On paper, every constraint can be rewritten
step by step to either false or a solved form.

The imperative implementation, based on
Huet’s unification algorithm and Rémy's
ranks, is efficient (McAllester, 2003).

Library (OCaml)

Abstract syntax for constraints:

type variable
val fresh: variable structure option -> variable
type rawco =

| CTrue
CConj of rawco * rawco
CEq of variable * variable

CExist of variable * rawco

Combinators that build constraints:

val truth: rawco

val (&) : rawco -> rawco -> rawco

val (--) : variable -> variable -> rawco
val exist: (variable -> rawco) -> rawco

User (OCaml)

The user defines constraint generation:

let rec hastype (t : ML.term) (w : variable)
= match t with

| ...
| ML.Abs (x, u) ->
exist (fun v1i ->
exist (fun v2 ->
w —--- arrow vl v2 &

def x v1 (hastype u v2)
)

let iswelltyped (t : ML.term) : rawco

= exist (fun w -> hastype t w)

rawco

Part Il

A PROBLEM

A problem

Submitting a closed ML term let b = if x = y then
to the generator else ... in ...

A problem

Submitting a closed ML term let b = if x = y then
to the generator else ... in ...

yields a closed constraint ... Ja.(a = bool AFB7v.(...))

A problem

Submitting a closed ML term let b = if x = y then
to the generator else ... in ...
yields a closed constraint ... Ja.(a = bool AFB7v.(...))

which the solver rewrites to ...

A problem

Submitting a closed ML term let b = if x = y then
to the generator else ... in ...
yields a closed constraint ... Jdav.(a = bool A 357.(...))

which the solver rewrites to ... either false, or true.

A problem (OCaml)

The API offered by the library is too simple:

val solve: rawco -> bool

(Ignoring type error diagnostics.)

A problem (OCaml)

The API offered by the library is too simple:

val solve: rawco -> bool

(Ignoring type error diagnostics.) The user has defined:

val iswelltyped: ML.term -> rawco

A problem (OCaml)

The API offered by the library is too simple:

val solve: rawco -> bool

(Ignoring type error diagnostics.) The user has defined:

val iswelltyped: ML.term -> rawco

There is no way of obtaining, say:

val elaborate: ML.term -> F.term

which would be the front-end of a type-directed compiler.

Question

Can one perform elaboration
without compromising the modularity and elegance

of the constraint-based approach?

Part Il

A SOLUTION

A low-level solution

The generator could produce a pair of

a constraint and

a template for an elaborated term,
sharing mutable placeholders for evidence,
so that, after the constraint is solved,

the template can be “solidified” into an elaborated term.

Library, low-level (OCaml)

Constraints already contain mutable placeholders for evidence:

| CExist of variable * rawco |
More placeholders (not shown) required to deal with polymorphism.
Let the library offer a type decoder, which can be invoked after solving:

type decoder = variable -> ty
val new_decoder: unit -> decoder

User (OCaml)

The user could write:

val hastype:

ML.term -> variable -> rawco * F.template
val solidify:
F.template -> F.term

where:

the constraint and the template share variables,

solidify uses a type decoder to replace these variables with types.

Why | not am happy with stopping here

This approach is in three stages: generation, solving, solidification.
Each user construct is dealt with twice, in stages 1 and 3.

This approach exposes evidence to the user.
Evidence is mutable and involves names and binders.

One needs an intermediate representation F.template,
or one must pollute F.term.

A wish

Even though stages 1 and 3 must be executed separately,

the user would prefer to describe them in a unified manner.

A dream

If the user could somehow (magically?)

construct the constraint, and “simultaneously”

query the solver for the final (decoded) witness for a variable

then she would be able to perform elaboration in one swoop:

val elaborate: ML.term -> F.term

and evidence would not need to be exposed.

The idea

Give the user the illusion that she can use the solver in this manner.

Give her a DSL to express computations that:

emit constraints and

read their solutions.

The idea

Give the user the illusion that she can use the solver in this manner.

Give her a DSL to express computations that:

emit constraints and

read their solutions.
It turns out that this DSL is just

our good old constraints,

extended with a map combinator.

Library, high-level (OCaml)

Solving/evaluating a constraint produces a result.

type ’a co
val solve: ’a co -> ’a

val pure: ’a -> ’a co
val ("&): ’a co -> ’b co -> (’a * ’b) co
val map: (’a -> ’b) -> ’a co -> ’b co

val (--): variable -> variable -> unit co

val exist: (variable -> ’a co) -> (ty * ’a) co

E.g., evaluating Ja..C' yields a pair of a decoded type
(the witness for o) and the value of C.

Library, high-level (OCaml)

This is implemented on top of the earlier, low-level library.

type env =
decoder
type ’a co =
rawco * (env -> ’a)

A constraint/computation is a pair of

» a raw constraint, which contains mutable evidence;

» a continuation, which reads this evidence after the solver has run.

Library, high-level (OCaml)

The implementation is quasi-trivial.

let exist f =
let v = fresh None in
let rc, k = f v in
CExist (v, rc),
fun env ->
let decode = env in
(decode v, k env)

User (OCaml)

The user defines inference/elaboration in one inductive function:

let rec hastype t w : F.term co
= match t with
[...
| ML.Abs (x, u) ->
exist (fun v1 ->
exist (fun v2 ->
w —--- arrow vl v2 “&
def x v1 (hastype u v2)
)
) <$$> fun (tyl, (ty2, (O, u?))) ->
F.Abs (%, tyl, u’)
|

The (final, decoded) type tyl of x seems to be magically available.

Remarks

Elaboration from ML to System F in the paper (and online).

The type ’a co forms an applicative functor, not a monad.

Part IV

Conclusion

Conclusion

v

a simple idea, really

> just icing on the cake

v

modularity, elegance, performance

v

usable in other settings? e.g. higher-order pattern unification?

Thank you

http://gallium.inria.fr/~fpottier/inferno/

No mutable state was exposed in the making of this library.

http://gallium.inria.fr/~fpottier/inferno/

	A STORY
	A PROBLEM
	A SOLUTION
	Conclusion

