
The practice of Mezzo

François Pottier

INRIA

IHP, April 2014

1 / 83

Acknowledgements

Jonathan Protzenko, Thibaut Balabonski,
Henri Chataing, Armaël Guéneau, Cyprien Mangin.

2 / 83

Overview

Two lectures on Mezzo.

• April 29th, 2pm: motivation and examples.

• April 30th, 4pm: type soundness, data race freedom.

3 / 83

Outline

Introduction

Write-once references: usage

Mezzo: design principles

Mezzo: motivation

Write-once references: interface & implementation

Algebraic data structures

Sharing mutable data

Conclusion

4 / 83

Introduction

Write-once references: usage

5 / 83

Write-once references

A write-once reference:

• can be written at most once;

• can be read only after it has been written.

Let us look at a concrete example of use...

6 / 83

Usage

.

.writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)

val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)

val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)

val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)

val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)

..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Usage

..writable..

new

.

frozen

.

set

.

get

.

open woref

val r1 = new ()
(* r1 @ writable *)
val r2 = r1
(* r1 @ writable * r2 = r1 *)
val () = set (r1, 3);
(* r1 @ frozen int * r2 = r1 *)
val x2 = get r2
(* r1 @ frozen int * r2 = r1 * x2 @ int *)
val rs = (r1, r2)
(* r1 @ frozen int * r2 = r1 * x2 @ int
* rs @ (=r1, =r2) *)

(* rs @ (frozen int, frozen int) *)
..

Demo!

7 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Introduction

Mezzo: design principles

8 /83

Permissions

Like a program logic, the static discipline is flow-sensitive.

• A current (set of) permission(s) exists at each program point.

• Different permissions exist at different points.

Permissions do not exist at runtime.

9 / 83

Permissions

Thus, there is no such thing as the type of a variable x. Instead,

• at each program point in the scope of x,
• there may be zero, one, or more permissions to use x
in certain ways.

10 / 83

Layout and ownership

Permissions have layout and ownership readings.

• e.g., r @ writable

x @ t describes the shape and extent of a heap fragment,
rooted at x, and describes certain access rights for it.

“To know about x” is “to have access to x” is “to own x”.

11 / 83

Just two access modes

Every permission is either duplicable or affine.

At first,

• Immutable data is duplicable, i.e., shareable.

• Mutable data is affine, i.e., uniquely owned.

• Mutable data can become immutable; not the converse.

12 / 83

Aliasing

• Writing let x = y in ... gives rise to an equation x = y.
• It is a permission: x @ =y, where =y is a singleton type.

• In its presence, x @ t and y @ t are interconvertible.

• Thus, any name is as good as any other.

• The same idea applies to let x = xs.head in

13 / 83

Value ̸= permission

A value can be copied (always). No permission is required.

(* empty *)
let y = (x, x) in
(* y @ (=x, =x) *)

14 / 83

Value ̸= permission

A duplicable permission can be copied. This is implicit.

(* x @ int *)
let y = (x, x) in
(* x @ int * y @ (=x, =x) *)

(* x @ int * y @ (int, int) *)

15 / 83

Value ̸= permission

A duplicable permission can be copied. This is implicit.

(* x @ int *)
let y = (x, x) in
(* x @ int * y @ (=x, =x) *)
(* x @ int * y @ (int, int) *)

15 / 83

Value ̸= permission

An affine permission cannot be copied.

(* x @ ref int *)
let y = (x, x) in
(* x @ ref int * y @ (=x, =x) *)

assert y @ (ref int, ref int) (* WRONG! *)

In other words, mutable data cannot be shared.

16 / 83

Value ̸= permission

An affine permission cannot be copied.

(* x @ ref int *)
let y = (x, x) in
(* x @ ref int * y @ (=x, =x) *)
assert y @ (ref int, ref int) (* WRONG! *)

In other words, mutable data cannot be shared.

16 / 83

Examples of duplicable versus affine

• x @ list int is duplicable: read access can be shared.

• x = y is duplicable: equalities are forever.

• x @ mlist int and x @ list (ref int) are affine: they give
exclusive access to part of the heap.

17 / 83

Separation

x @ ref int * y @ ref int implies x and y are distinct.

Conjunction is separating at mutable data.

z @ (t, u)means z @ (=x, =y) * x @ t * y @ u, for x, y fresh.

Hence, product is separating.

18 / 83

Separation

The same principle applies to records.

Hence, list (ref int) denotes a list of distinct references.

Mutable data must be tree-structured.

• though x @ ref (=x) can be written and constructed.

19 / 83

Introduction

Mezzo: motivation

20 /83

Premise

The types of OCaml, Haskell, Java, C#, etc.:

• describe the structure of data,

• but do not distinguish trees and graphs,

• and do not control who has permission to read or write.

21 / 83

Question

Could a more ambitious static discipline:

• rule out more programming errors,

• and enable new programming idioms,

• while remaining reasonably simple and flexible?

22 / 83

The good

The uniqueness of read/write permissions:

• rules out, or helps rule out, several categories of errors:
• data races;
• representation exposure;
• violations of object protocols.

• allows the type of an object to vary with time, which enables:
• explicit memory re-use;
• gradual initialization;
• the description of object protocols.

23 / 83

The bad

This discipline is restrictive.

Fortunately,

• there is no restriction on the use of immutable data;
• there are several ways of sharing mutable data:

• (static) nesting & regions;
• (dynamic) adoption & abandon;
• (dynamic) locks.

24 / 83

The ugly

A few desirable idioms become clumsy or downright impossible.

• e.g., temporarily borrowing an affine element from a container
(an array; a region; a user-defined data structure; …).

Work-arounds: see previous slide.

25 / 83

Introduction

Write-once references: interface & implementation

26 / 83

Specification

A usage protocol can be described in a module signature:

• A state is a (user-defined) type.

• A transition is a (user-defined) function.

27 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

.

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

a state

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

another state

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

implicit transition from
frozen to frozen * frozen

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

explicit transition
into writable

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

set requires r (dynamic)
and r @ writable (static)

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

consumes keyword means
r @ writable NOT returned

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

duplicable a
is a permission

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

explicit transition from
writable to frozen

28 / 83

Specification of write-once refs

This protocol has two states and four transitions.

abstract writable ..

abstract frozen a ..

fact duplicable (frozen a) ..

val new: () -> writable ..

val set: [a] (consumes r: ..writable .., x: a | duplicable ..a)
-> (| r @ frozen a) ..

val get: [a] frozen a -> a ..

..

get r requires r @ frozen a

28 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

.

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

a field of type ()

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

a field of type a
where a must be duplicable

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

initially,
r @ writable

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

hence,
r @ Writable { contents: () }

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

after the assignment,
r @ Writable { contents: =x }

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

hence,
r @ Writable { contents: a }

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

after the tag update,
r @ Frozen { contents: a }

29 / 83

Implementation

data mutable writable =
Writable { contents: () ..}

data frozen a =
Frozen { contents: ..(a | duplicable a) }

val new () : writable =
Writable { contents = () }

val set [a] (consumes r: writable, x: a | duplicable a)
: (| r @ frozen a) =

..r.contents <- x; ..

tag of r <- Frozen ..(* this is a no-op *)
val get [a] (r: frozen a) : a =

r.contents

..

hence,
r @ frozen a

29 / 83

Outline

Introduction

Algebraic data structures

Principles

Computing the length of a list

Melding mutable lists

Concatenating immutable lists

Sharing mutable data

Conclusion

30 /83

Algebraic data structures

Principles

31 / 83

Immutable lists

The algebraic data type of immutable lists is defined as in ML:
data list a =

| Nil
| Cons { head: a; tail: list a }

32 / 83

Mutable lists

To define a type of mutable lists, one adds a keyword:
data mutable mlist a =

| MNil
| MCons { head: a; tail: mlist a }

33 / 83

Examples

For instance,

• x @ list int provides (read) access to an immutable list of
integers, rooted at x.

• x @ mlist int provides (exclusive, read/write) access to a
mutable list of integers at x.

• x @ list (ref int) offers read access to the spine and
read/write access to the elements, which are distinct cells.

34 / 83

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

.

35 / 83

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

a nominal permission:
xs @ mlist a

35 / 83

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

a structural permission:
xs @ MNil

35 / 83

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

another structural permission:
xs @ MCons { head: a; tail: mlist a }

35 / 83

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

automatically expanded to:
xs @ MCons { head: (=h); tail: (=t) }
* h @ a
* t @ mlist a

35 / 83

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

or (sugar):
xs @ MCons { head = h; tail = t }
* h @ a
* t @ mlist a

35 / 83

Permission refinement

Permission refinement takes place at case analysis.
..

match xs with
| MNil ->

..

...
| MCons ->

..

let x = xs.head in
..

...
end

In contrast, traditional separation logic has untagged union.

..

so, after the read access:
xs @ MCons { head = h; tail = t }
* h @ a
* t @ mlist a
* x = h

35 / 83

Principles

This illustrates two mechanisms:

• A nominal permission can be unfolded and refined,
yielding a structural permission.

• A structural permission can be decomposed,
yielding separate permissions for the block and its fields.

These reasoning steps are implicit and reversible.

36 / 83

Algebraic data structures

Computing the length of a list

37 / 83

Interface

Here is the type of the length function for mutable lists.

val length: [a] mlist a -> int

It should be understood as follows:

• length requires one argument xs,
along with the permission xs @ mlist a.

• length returns one result n,
along with the permission xs @ mlist a * n @ int.

38 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

.

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

initially:
xs @ mlist a

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon entry into the first branch:
xs @ MNil

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon exit of the first branch:
xs @ MNil

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon exit of the first branch:
xs @ mlist a

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

upon entry into the second branch:
xs @ MCons { head = h; tail = t }
h @ a
t @ mlist a

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

after the call, nothing has changed:
xs @ MCons { head = h; tail = t }
h @ a
t @ mlist a

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

thus, by recombining:
xs @ MCons { head: a; tail: mlist a }

39 / 83

Implementation

val rec length_aux [a] (accu: int, xs: mlist a) : int =
match xs with ..
| MNil -> ..

accu ..

| MCons -> ..
length_aux (accu + 1, xs.tail) ..

end

val length [a] (xs: mlist a) : int =
length_aux (0, xs)

..

thus, by folding:
xs @ mlist a

39 / 83

Tail recursion versus iteration

The analysis of this code is surprisingly simple.

• This is a tail-recursive function, i.e.,
a loop in disguise.

• As we go, there is a list ahead of us and
a list segment behind us.

• Ownership of the latter is implicit, i.e.,
framed out.

Recursive reasoning, iterative execution.

(Now skipping ahead...)

40 /83

Algebraic data structures

Melding mutable lists

41 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

.

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs is not consumed: at the end,
it is still a valid non-empty list

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

at the end, ys is accessible through xs,
hence must no longer be used directly

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ MNil
ys @ mlist a

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = ys }
t @ MNil
ys @ mlist a

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail: mlist a }
t @ MNil

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail: mlist a }

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ MCons { head: a; tail: mlist a }
ys @ mlist a

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ MCons { head: a; tail: mlist a }

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail = t }
t @ mlist a

42 / 83

Melding mutable lists (1/2)

val rec meld_aux [a]
(xs: ..MCons { head: a; tail: mlist a },
consumes ..ys: mlist a) : () =
match xs.tail with
| MNil -> ..

xs.tail <- ys ..

| MCons -> ..
meld_aux (xs.tail, ys) ..

end

..

xs @ MCons { head: a; tail: mlist a }

42 / 83

Melding mutable lists (2/2)

val meld [a] (consumes xs: mlist a,
consumes ys: mlist a) : mlist a =

match xs with
| MNil -> ys
| MCons -> meld_aux (xs, ys); xs
end

43 / 83

Algebraic data structures

Concatenating immutable lists

44 /83

Three states

..
MCons

.head.

tail

An MCons cell:

• mutable,

• uninitialized tail,
• type: MCons { head: a; tail: () }

..
Cons

.head.

tail

An isolated Cons cell:

• immutable,

• not the start of a well-formed list,

• type: Cons { head: a; tail = t }

..
Cons

.head.

tail

A list cell:

• immutable,

• the start of a well-formed list,

• type list a

45 / 83

The big picture

..
MCons

.head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
MCons

.head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
Cons

.head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
Cons

.head.

tail

.
MCons

. head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
MCons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

The big picture

..
Cons

.head.

tail

.
Cons

. head.

tail

.
Cons

. head.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

Cons

.

head

.

tail

.

xs

.

ys

46 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

.

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

all three inputs are consumed

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst is initially unfinished

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

xs and ys are initially valid

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

upon return, dst is valid

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst.tail is initialized

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst is frozen

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

xs @ Cons { head = h; tail = t }
dst @ Cons { head: a; tail = dst' }
dst' @ MCons { head: a; tail: () }
t @ list a
ys @ list a

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ Cons { head: a; tail = dst' }
dst' @ MCons { head: a; tail: () }
t @ list a
ys @ list a

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ Cons { head: a; tail = dst' }
dst' @ list a

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ Cons { head: a; tail: list a }

47 / 83

Concatenating immutable lists (1/2)

val rec append_aux [a] (consumes ..(
dst: MCons { head: a; tail: () }, ..
xs: list a, ys: list a ..

)) : (| dst @ list a) ..=
match xs with
| Cons ->

let dst' = MCons { head = xs.head; tail = () } in
dst.tail <- dst'; ..
tag of dst <- Cons; ..
append_aux (dst', xs.tail, ys) ..

| Nil ->
dst.tail <- ys;
tag of dst <- Cons

end

..

dst @ list a

47 / 83

Concatenating immutable lists (2/2)

val append [a] (consumes (xs: list a, ys: list a))
: list a =

match xs with
| Cons ->

let dst = MCons { head = xs.head; tail = () } in
append_aux (dst, xs.tail, ys);
dst

| Nil ->
ys

end

48 / 83

Remark

The type of append:

[a] (consumes (list a, list a)) -> list a

is a subtype of:

[a] (list a, list a | duplicable a) -> list a

The arguments are consumed only if not duplicable.

49 / 83

Outline

Introduction

Algebraic data structures

Sharing mutable data

Nesting and regions

Adoption and abandon

Locks

Conclusion

50 / 83

Sharing mutable data

Nesting and regions

51 / 83

Nesting

Nesting (Boyland, 2010) is a static mechanism for organizing
permissions into a hierarchy.

Conceptually, the hierarchy is constructed as the program runs.

Nesting is monotonic: the hierarchy grows with time.

52 / 83

Nesting

Nesting can be axiomatized in Mezzo.

This extension has not been proven sound. It could be (I think).

Details omitted.

Static regions can be defined on top of nesting.

53 / 83

Regions

An affine type of regions - internally defined as the unit type:

abstract region
val newregion: () -> region

A duplicable type of references that inhabit a region:

abstract rref (rho : value) a
fact duplicable (rref rho a)

These references can be shared without restriction.

54 / 83

Regions

val newrref: (consumes x: a | rho @ region) -> rref rho a
val get: (r: rref rho a | duplicable a | rho @ region) -> a
val set: (r: rref rho a, consumes x: a | rho @ region) -> ()

All three are polymorphic in rho and a. Quantifiers omitted.

The token rho @ region is required to use any reference in rho.
The references are collectively “owned by the region”.

This subsumes Haskell's ST monad.

55 / 83

Limitations

Nesting and regions have no runtime cost.

However,

• getmust be restricted to duplicable elements (prev. slide).
• Handling affine elements requires a more clumsy mechanism
for focusing on at most one element at a time.

• Focusing on two elements would entail a proof obligation: x ̸= y.

• Membership in a region cannot be revoked.

56 / 83

Sharing mutable data

Adoption and abandon

57 / 83

Towards runtime regions

What if something like regions existed at runtime?

Old idea, if one thinks of a region as a “memory allocation area”.

Here, however, there is a single garbage-collected heap.

We are thinking of a “region” as a “unit of ownership”.

58 / 83

Towards runtime regions

Imagine a “region” is a runtime object that maintains
a list of its “members”.

We prefer to speak of adopter and adoptees.

Conceptually,

• Adoption adds an adoptee to the list.
• Abandon takes an adoptee out of the list,

• after checking at runtime that it is there!

59 / 83

Adoption and abandon

This removes the difficulties with static regions.

• an adopter-adoptee relationship can be revoked.

• “focusing” amounts to taking an adoptee away from its
adopter, then giving it back.

• “focusing” on multiple elements is permitted.
• they must be distinct, or the program fails at runtime!

60 /83

Runtime model

Searching a linked list of adoptees would be too slow.

Instead, each adoptee points to its adopter (if it has one).

Every object has a special adopter field, which may be null.

• Adoption, give x to y, means:
x.adopter <- y

• Abandon, take x from y, means:
if x.adopter == y
then x.adopter <- null
else fail

61 / 83

Static discipline, in one slide

An adopter owns its adoptees.

Adoption and abandon are very much like inserting and extracting
an element out of a container:

• both require a permission for the adopter;

• adoption consumes a permission for the new adoptee;
abandon allows recovering it.

..

Demo!

62 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Static discipline, in one slide

An adopter owns its adoptees.

Adoption and abandon are very much like inserting and extracting
an element out of a container:

• both require a permission for the adopter;

• adoption consumes a permission for the new adoptee;
abandon allows recovering it.

..

Demo!

62 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Sharing mutable data

Locks

63 / 83

Towards hidden state

Regions and adoption-and-abandon serve a common purpose:

• move from one-token-per-object to one-token-per-group;

• introduce a duplicable type of pointer-into-the-group;

• thus permitting aliasing within a group.

64 / 83

Towards hidden state

A problem remains, though:

• every bit of mutable state is controlled by some unique token;

• i.e., every side effect must be advertised in a function's type;

• thus, multiple clients must coordinate and exchange a token.

There is a certain lack of modularity.

65 / 83

Example

Consider a “counter” abstraction, encapsulated as a function.

• it has abstract state: its type is {p : perm} ((| p) -> int | p).
• it cannot be shared by two threads,

• unless they synchronize and exchange p;
• without synchronization, there would be a data race!

A well-typed Mezzo program is data-race free.

..

Demo!

66 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Example

Consider a “counter” abstraction, encapsulated as a function.

• it has abstract state: its type is {p : perm} ((| p) -> int | p).
• it cannot be shared by two threads,

• unless they synchronize and exchange p;
• without synchronization, there would be a data race!

A well-typed Mezzo program is data-race free. ..

Demo!

66 / 83

http://gallium.inria.fr/~fpottier/20140429-ihp/code/

Locks and hidden state

Introducing a lock at the same time:

• removes the data race,

• allows the counter to have type () -> int.

The counter now has hidden state.

Let's see how this works...

67 / 83

Locks (1/2)

The axiomatization of locks begins with two abstract types:

abstract lock (p: perm)
fact duplicable (lock p)

abstract locked

The permission p is the lock invariant.

68 /83

Locks (2/2)

The basic operations are:
val new:

(| consumes p) -> lock p
val acquire:

(l: lock p) -> (| p * l @ locked)
val release:

(l: lock p | consumes (p * l @ locked)) -> ()
All three are polymorphic in p. Quantifiers omitted.

69 / 83

The key idea

While the lock is unlocked, one can think of p as owned by the lock.

The lock is shareable, since lock p is duplicable.

Hence, a lock allows sharing and hiding mutable state.

70 / 83

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide : [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) -> (a -> b)

71 / 83

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

.

72 / 83

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p

72 / 83

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p
because it is duplicable

72 / 83

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p
l @ locked
p

72 / 83

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p
l @ locked
p

72 / 83

Hiding as a design pattern

The pattern of hiding a function's internal state can be encoded
once and for all as a second-order function:
val hide [a, b, p : perm] (

f : (a | p) -> b
| consumes p
) : (a -> b) =

let l : lock p = new () in ..
fun (x : a) : b =
.. acquire l; ..
let y = f x in ..
release l; ..
y

..

l @ lock p

72 / 83

Rules of thumb

Regarding regions versus adoption and abandon,

• they serve the same purpose, namely one-token-per-group;

• use regions if possible, otherwise adoption and abandon.

Regarding locks,

• they serve a different purpose, namely no-token-at-all;
• they are typically used in conjunction with the above.

• a lock protects a token that controls a group of objects.

73 / 83

Outline

Introduction

Algebraic data structures

Sharing mutable data

Conclusion

74 / 83

Sources of inspiration

Mezzo draws inspiration from many sources. Most influential:

• Linear and affine types (Wadler, 1990) (Plasmeijer et al., 1992).
• not every value can be copied!

• Alias types (Smith, Walker & Morrisett, 2000),
L3 (Ahmed, Fluet & Morrisett 2007).

• copying a value is harmless,
• but not every capability can be copied!
• keep track of equations between values via singleton types.

• Regions and focusing in Vault (Fähndrich & DeLine, 2002);
• Separation logic (Reynolds, 2002) (O'Hearn, 2007).

• ownership is in the eye of the beholder.
• separation by default; local reasoning.
• a lock owns its invariant.

75 / 83

What distinguishes Mezzo?

A high-level underlying untyped programming language:

• algebraic data types preferred to records and null pointers;

• (tail) recursion preferred to iteration;

• garbage collection, first-class functions, etc.

76 / 83

What distinguishes Mezzo?

A conceptual framework that helps structure programs.

• should help design more reliable programs;

• could help carry out proofs of programs.

77 / 83

Food for thought

At the present time I think we are on the verge of
discovering at last what programming languages should
really be like. [...] My dream is that by 1984 we will see a
consensus developing for a really good programming
language [...]

Donald E. Knuth, 1974.

78 / 83

Food for thought

At the present time I think we are on the verge of
discovering at last what programming languages should
really be like. [...] My dream is that by 1984 we will see a
consensus developing for a really good programming
language [...]

Donald E. Knuth, 1974.

78 / 83

What distinguishes Mezzo?

Technically, some novel features of Mezzo are:

• the permission discipline replaces the type discipline;

• a new view of algebraic data types, with nominal and structural
permissions, and a new “tag update” instruction;

• a new, lightweight treatment of the distinction between
duplicable and affine data;

• adoption and abandon.

79 / 83

Who we are

The project was launched in late 2011 and has involved

• Jonathan Protzenko (Ph.D student, soon to graduate),

• Thibaut Balabonski (post-doc researcher),

• Henri Chataing, Armaël Guéneau, Cyprien Mangin (interns),

• and myself (INRIA researcher).

80 /83

Where we are

We currently have:

• a type soundness proof for a subset of Mezzo (next lecture!);

• a working type-checker;

• a “compiler” down to untyped OCaml.

81 / 83

What next?

Many questions!

• Can we improve type inference and type error reports?

• Is this a good mix between static and dynamic mechanisms?

• What about temporary read-only views of mutable objects?

• Can we express complex object protocols?

• What about specifications & proofs of programs?

82 / 83

Thank you

More information online:
http://gallium.inria.fr/~protzenk/mezzo-lang/

83 / 83

http://gallium.inria.fr/~protzenk/mezzo-lang/

	Introduction
	Write-once references: usage
	Mezzo: design principles
	Mezzo: motivation
	Write-once references: interface & implementation

	Algebraic data structures
	Principles
	Computing the length of a list
	Melding mutable lists
	Concatenating immutable lists

	Sharing mutable data
	Nesting and regions
	Adoption and abandon
	Locks

	Conclusion

