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The problem

In this talk, I am concerned with a simple question:

How to translate a typed calculus equipped with general
references down into a typed, pure λ-calculus?
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The problem

By “general references”, I mean: mutable memory cells that are
dynamically allocated and hold a value of (fixed) arbitrary type.

By “typed”, I mean: well-typed programs must not go wrong.
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Store-passing translations

I am looking for a store-passing translation.

The idea is that the store should become an argument and a result
of every computation.

“Commands can be considered as functions which transform
[the store].” – Strachey, 1967

This idea was initially developed, and is well-understood, in an untyped
setting.
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The state monad

Moggi (1991) proposed monads as a way of structuring (and
type-checking) imperative computations.

In particular, the state monad implements the store-passing
machinery.

Is the state monad a typed store-passing translation? Yes.

Does it solve my problem? No...
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The state monad

The state monad is a solution to a simpler problem, where the
type s of the store is fixed. There is just one global reference.

M α = s → (α, s)

return : ∀α.α → M α
= λx.λs.(x, s)

bind : ∀α.∀β.(M α, α → M β) → M β
= λ(f, g).λs.let (x, s) = f s in g x s

get : ∀α.M α
= λs.(s, s)

put : ∀α.α → M ()
= λx.λs.((), x)
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A monadic presentation of System F with references

The calculus that I care about extends (say) System F with types
for computations and for references:

T ::= α | () | T → T | (T, T ) | ∀α.T | M T | ref T

References are dynamically allocated, are first-class values, and can
hold values of any type.

return : ∀α.α → M α
bind : ∀α.∀β.(M α, α → M β) → M β

new : ∀α.α → M (ref α)
read : ∀α.ref α → M α
write : ∀α.(ref α, α) → M ()
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The problem

The problem again is to find a typed λ-calculus that supports an
encoding of System F with references, and to define this encoding.
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Is this really an open problem?

Is this an open problem?

• Yes – to the best of my knowledge, no type-preserving store-
passing translation for general references has appeared earlier.

Really?

• Well – because a denotational semantics is a store-passing
translation, many semanticists have confronted this problem
before; solutions are implicit in their work.

In particular, the work by Schwinghammer, Birkedal, Reus and
Yang [2009] has been a strong source of inspiration.
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Motivation

Why is it worth studying this problem?

• to explain in terms of syntax and types what semanticists have
done in terms of mathematical meta-language;

• (perhaps) to offer a more modular approach to the construction
of denotational semantic models;

• to discover, in the process, an extension of Fω with rich
type-level recursion.
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Evolution in width and depth

Dynamic memory allocation and higher-order store cause the type of
the store to change over time:

• because new cells appear, the store grows in width;

• because an older cell can hold a reference to a newer cell, the
type of each cell changes (gets more specific) with time: the
store evolves in depth.
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Towards worlds

In order to explain how the store evolves, we need open-ended
descriptions of the store, known as worlds.

We need worlds to be open-ended both in width and in depth. A
world should be a function of two parameters that produces a type.
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Towards worlds

We would like worlds to be ordered, so as to form a Kripke frame.
The property w1 ≤ w2 would then mean that w2 is a possible
evolution of w1.

We would like worlds to support a well-behaved form of composition,
so that the ordering can be defined simply via the axiom
w1 ≤ w1 ◦ w2.
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Fragments

We begin with fragments – store descriptions that are open-ended in
width.

Fragments can be defined in Fω as functions from types to types.
They admit an associative notion of concatenation.

kind fragment = * -> *

type @ : fragment -> fragment -> fragment =

\f1 f2 tail. f1 (f2 tail)
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Worlds – a tentative definition

Walking in the footsteps of semanticists, we would like worlds to be
functions of one parameter – itself a world – to fragments.

kind world = world -> fragment (* to be revisited *)

We would then like to define world composition as follows:

type o : world -> world -> world =

\w1 w2 x. w1 (w2 ‘o‘ x) ‘@‘ w2 x
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Kind- and type-level recursion

Wait, wait! We are no longer in Fω.

We just tried to define a recursive kind and a recursive type function!

It is not surprising that Fω does not fit our purposes – after all,
System F with references is not normalizing. But in which extension
of Fω do these recursive definitions make sense?
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Kind- and type-level recursion

Fω has simple (finite) kinds, so that types are strongly normalizing.

Extending it with arbitrary recursive kinds would lead to a calculus
where types can diverge and type equality is undecidable.
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Kind- and type-level recursion

Fortunately,

• we don’t need arbitrary non-terminating type-level computations,
only productive computations;

• we can use an off-the-shelf system, known as Nakano’s
system [2000], for determining which computations are
productive.
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Fork

I take Fork (Fω with Recursive Kinds) to be a version of Fω where
Nakano’s system replaces the simply-typed λ-calculus at the kind
level.

Thus, Nakano’s types and terms become my kinds and types.
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Nakano’s system

Kinds are co-inductively defined by:

κ ::= ? | κ → κ | • κ

with the proviso that every infinite path must infinitely often enter a
“later” (•) constructor.
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Subkinding

As per Nakano’s papers, subkinding is a pre-order and additionally
validates the following laws:

κ′1 ≤ κ1 κ2 ≤ κ′2
κ1 → κ2 ≤ κ′1 → κ′2

κ ≤ κ′

• κ ≤ • κ′
κ ≤ • κ • (κ1 → κ2) Q • κ1 → • κ2

All of the magic lies in here. Types are ordinary λ-terms, as in Fω,
and the kind assignment rules are standard.
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Fixed points in Nakano’s system

Nakano’s system allows deriving ` Y : (• κ → κ) → κ.

That is, only contractive functions have fixed points.
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Properties of Nakano’s system

Every well-kinded type admits a head normal form, hence (by repeated
application of this result) admits a maximal Böhm tree.

In other words, types are productive.

As a result, type equality is semi-decidable.
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Worlds – a correct definition

My earlier definition of worlds is illegal in Fork, but can be fixed:

kind world = later world -> fragment

There is an obvious connection between “later” and the 1
2 factor

used in metric space approaches.
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World composition

The definition of world composition is well-kinded because the recursive
occurrence of o is used at kind later (world -> world -> world):

type o : world -> world -> world =

\w1 w2 x. w1 (w2 ‘o‘ x) ‘@‘ w2 x

Associativity of composition, a type equality fact, is automatically
proved by the semi-algorithm in the Fork type-checker:

lemma compose_associative:

forall w1 w2 w3.

(w1 ‘o‘ w2) ‘o‘ w3 = w1 ‘o‘ (w2 ‘o‘ w3)
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Quantification over future worlds

Quantification over future worlds is expressed directly in terms of
composition, so bounded quantification is not required.

For instance, a value that has type a not only in world x, but also
in every possible future world, is denoted by the type box a x, where:

type box : stype -> stype =

\a. \x.

forall y. a (x ‘o‘ y)

Associativity of composition is required for this to work smoothly.
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And so on...

One can continue in this way and produce about 800 lines of
kind/type/term definitions, lemmas, and comments, culminating in the
definitions of the terms that correspond to return, bind, new, read,
and write.

They are checked by the Fork type-checker in 0.1 seconds.
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Conclusion

General references can be translated down into pure λ-calculus in a
type-preserving manner.

Although the encoding is somewhat complex, the target calculus is
“just about as simple” as one might hope, and quite expressive.

One take-home idea?

Recursive types in Fork are not just inert infinite syntax – they are
possibly non-terminating processes that produce type structure as
they go.
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