
A type-preserving store-passing translation
for general references

François Pottier

January 26, 2011

1 / 33

Contents

Introduction

Technical elements

Conclusion

Bibliography

2 / 33

The problem

In this talk, I am concerned with a simple question:

How to translate a typed calculus equipped with general
references down into a typed, pure λ-calculus?

3 / 33

The problem

By “general references”, I mean: mutable memory cells that are
dynamically allocated and hold a value of (fixed) arbitrary type.

By “typed”, I mean: well-typed programs must not go wrong.

4 / 33

Store-passing translations

I am looking for a store-passing translation.

The idea is that the store should become an argument and a result
of every computation.

“Commands can be considered as functions which transform
[the store].” – Strachey, 1967

This idea was initially developed, and is well-understood, in an untyped
setting.

5 / 33

The state monad

Moggi (1991) proposed monads as a way of structuring (and
type-checking) imperative computations.

In particular, the state monad implements the store-passing
machinery.

Is the state monad a typed store-passing translation? Yes.

Does it solve my problem? No...

6 / 33

The state monad

The state monad is a solution to a simpler problem, where the
type s of the store is fixed. There is just one global reference.

M α = s → (α, s)

return : ∀α.α → M α
= λx.λs.(x, s)

bind : ∀α.∀β.(M α, α → M β) → M β
= λ(f, g).λs.let (x, s) = f s in g x s

get : ∀α.M α
= λs.(s, s)

put : ∀α.α → M ()
= λx.λs.((), x)

7 / 33

A monadic presentation of System F with references

The calculus that I care about extends (say) System F with types
for computations and for references:

T ::= α | () | T → T | (T, T) | ∀α.T | M T | ref T

References are dynamically allocated, are first-class values, and can
hold values of any type.

return : ∀α.α → M α
bind : ∀α.∀β.(M α, α → M β) → M β

new : ∀α.α → M (ref α)
read : ∀α.ref α → M α
write : ∀α.(ref α, α) → M ()

8 / 33

The problem

The problem again is to find a typed λ-calculus that supports an
encoding of System F with references, and to define this encoding.

9 / 33

Is this really an open problem?

Is this an open problem?

• Yes – to the best of my knowledge, no type-preserving store-
passing translation for general references has appeared earlier.

Really?

• Well – because a denotational semantics is a store-passing
translation, many semanticists have confronted this problem
before; solutions are implicit in their work.

In particular, the work by Schwinghammer, Birkedal, Reus and
Yang [2009] has been a strong source of inspiration.

10 / 33

Motivation

Why is it worth studying this problem?

• to explain in terms of syntax and types what semanticists have
done in terms of mathematical meta-language;

• (perhaps) to offer a more modular approach to the construction
of denotational semantic models;

• to discover, in the process, an extension of Fω with rich
type-level recursion.

11 / 33

Contents

Introduction

Technical elements

Conclusion

Bibliography

12 / 33

Evolution in width and depth

Dynamic memory allocation and higher-order store cause the type of
the store to change over time:

• because new cells appear, the store grows in width;

• because an older cell can hold a reference to a newer cell, the
type of each cell changes (gets more specific) with time: the
store evolves in depth.

13 / 33

Towards worlds

In order to explain how the store evolves, we need open-ended
descriptions of the store, known as worlds.

We need worlds to be open-ended both in width and in depth. A
world should be a function of two parameters that produces a type.

14 / 33

Towards worlds

We would like worlds to be ordered, so as to form a Kripke frame.
The property w1 ≤ w2 would then mean that w2 is a possible
evolution of w1.

We would like worlds to support a well-behaved form of composition,
so that the ordering can be defined simply via the axiom
w1 ≤ w1 ◦ w2.

15 / 33

Fragments

We begin with fragments – store descriptions that are open-ended in
width.

Fragments can be defined in Fω as functions from types to types.
They admit an associative notion of concatenation.

kind fragment = * -> *

type @ : fragment -> fragment -> fragment =

\f1 f2 tail. f1 (f2 tail)

16 / 33

Worlds – a tentative definition

Walking in the footsteps of semanticists, we would like worlds to be
functions of one parameter – itself a world – to fragments.

kind world = world -> fragment (* to be revisited *)

We would then like to define world composition as follows:

type o : world -> world -> world =

\w1 w2 x. w1 (w2 ‘o‘ x) ‘@‘ w2 x

17 / 33

Kind- and type-level recursion

Wait, wait! We are no longer in Fω.

We just tried to define a recursive kind and a recursive type function!

It is not surprising that Fω does not fit our purposes – after all,
System F with references is not normalizing. But in which extension
of Fω do these recursive definitions make sense?

18 / 33

Kind- and type-level recursion

Fω has simple (finite) kinds, so that types are strongly normalizing.

Extending it with arbitrary recursive kinds would lead to a calculus
where types can diverge and type equality is undecidable.

19 / 33

Kind- and type-level recursion

Fortunately,

• we don’t need arbitrary non-terminating type-level computations,
only productive computations;

• we can use an off-the-shelf system, known as Nakano’s
system [2000], for determining which computations are
productive.

20 / 33

Fork

I take Fork (Fω with Recursive Kinds) to be a version of Fω where
Nakano’s system replaces the simply-typed λ-calculus at the kind
level.

Thus, Nakano’s types and terms become my kinds and types.

21 / 33

Nakano’s system

Kinds are co-inductively defined by:

κ ::= ? | κ → κ | • κ

with the proviso that every infinite path must infinitely often enter a
“later” (•) constructor.

22 / 33

Subkinding

As per Nakano’s papers, subkinding is a pre-order and additionally
validates the following laws:

κ′1 ≤ κ1 κ2 ≤ κ′2
κ1 → κ2 ≤ κ′1 → κ′2

κ ≤ κ′

• κ ≤ • κ′
κ ≤ • κ • (κ1 → κ2) Q • κ1 → • κ2

All of the magic lies in here. Types are ordinary λ-terms, as in Fω,
and the kind assignment rules are standard.

23 / 33

Fixed points in Nakano’s system

Nakano’s system allows deriving ` Y : (• κ → κ) → κ.

That is, only contractive functions have fixed points.

24 / 33

Properties of Nakano’s system

Every well-kinded type admits a head normal form, hence (by repeated
application of this result) admits a maximal Böhm tree.

In other words, types are productive.

As a result, type equality is semi-decidable.

25 / 33

Worlds – a correct definition

My earlier definition of worlds is illegal in Fork, but can be fixed:

kind world = later world -> fragment

There is an obvious connection between “later” and the 1
2 factor

used in metric space approaches.

26 / 33

World composition

The definition of world composition is well-kinded because the recursive
occurrence of o is used at kind later (world -> world -> world):

type o : world -> world -> world =

\w1 w2 x. w1 (w2 ‘o‘ x) ‘@‘ w2 x

Associativity of composition, a type equality fact, is automatically
proved by the semi-algorithm in the Fork type-checker:

lemma compose_associative:

forall w1 w2 w3.

(w1 ‘o‘ w2) ‘o‘ w3 = w1 ‘o‘ (w2 ‘o‘ w3)

27 / 33

Quantification over future worlds

Quantification over future worlds is expressed directly in terms of
composition, so bounded quantification is not required.

For instance, a value that has type a not only in world x, but also
in every possible future world, is denoted by the type box a x, where:

type box : stype -> stype =

\a. \x.

forall y. a (x ‘o‘ y)

Associativity of composition is required for this to work smoothly.

28 / 33

And so on...

One can continue in this way and produce about 800 lines of
kind/type/term definitions, lemmas, and comments, culminating in the
definitions of the terms that correspond to return, bind, new, read,
and write.

They are checked by the Fork type-checker in 0.1 seconds.

29 / 33

Contents

Introduction

Technical elements

Conclusion

Bibliography

30 / 33

Conclusion

General references can be translated down into pure λ-calculus in a
type-preserving manner.

Although the encoding is somewhat complex, the target calculus is
“just about as simple” as one might hope, and quite expressive.

One take-home idea?

Recursive types in Fork are not just inert infinite syntax – they are
possibly non-terminating processes that produce type structure as
they go.

31 / 33

Contents

Introduction

Technical elements

Conclusion

Bibliography

32 / 33

Bibliography I

(Most titles are clickable links to online versions.)

Nakano, H. 2000.
A modality for recursion.
In IEEE Symposium on Logic in Computer Science (LICS).
255–266.

Schwinghammer, J., Birkedal, L., Reus, B., and Yang, H. 2009.
Nested Hoare triples and frame rules for higher-order store.
In Computer Science Logic. Lecture Notes in Computer Science,
vol. 5771. Springer, 440–454.

33 / 33

http://www602.math.ryukoku.ac.jp/~nakano/papers/modality-lics00.ps.gz
http://www.itu.dk/~birkedal/papers/nested-triples-conf.pdf

	Introduction
	Technical elements
	Conclusion
	Bibliography

