Static name control for FreshML

Frangois Fottier

LICS
July 13th, 2007

B INRIA

@ Introduction

® What do we prove and how?
® A more advanced example

@ Conclusion

What is FreshML?

Here is an archetypical FreshML algebraic data type definition:

type term =
| Var of atom
| Abs of (atom)term
| App of term x term

In short, FreshML [Fitts and Gabbay, 2000] extends ML with
primitive expression- and type-level constructs for atoms and
abstractions.

What is the point?

This allows transformations to be defined in a natural style:

fun sub accepts a, t, s =
case 5 of
| Var (b) —
if a =b then t else Var (b)
| Abs (b, u) —
Abs (b, sub(a, t, u))
| App (u, v) >
App (sub (a, t, u), sub (a, t, v))
end

The dynamic semantice of FreshML dictates that, in the Abs case,
the atom b is automatically chosen fresh for both a and t. The
term u is renamed accordingly. As a result, no capture can occur.

Properties and non-properties of FreshML

Shinwell and Pitts [2005] have shown that abstractions cannot be
violated: that is, an abstraction effectively hides the identity of its
bound atom.

Unfortunately, not every FreshML function denotes a mathematical
function, because fresh name generation is a computational effect.

For instance, here is a flawed code shippet:

fun eta_reduce accepts t =
case t of
| Abs (x, App (e, Var (y))) —
if x=y then ¢ else ...
|

A slogan

Ideally, a FreshML compiler should check that every function is pure.
This requires ensuring that freshly generated atoms do not escape,
or, in other words, that they are eventually bound.

Paraphrasing an epigram by Perlis, the compiler should ensure that
there is (in the end) no such thing as a free atom!

This would not just make the language prettier — it would help catch
bugs.

Towards domain-specific program proof

Just like type-checking, the task is in principle easy, but overwhelming
for a human. It is a prime candidate for automation.

It is, however, slightly more ambitious than traditional type-checking.
We are looking at a kind of domain-specific program proof.

Manual specifications (preconditions, postconditions, etc.) will
sometimes be required, but all proofs will be fully automated.

Contribution

My contribution is to:

e introduce a simple logic for reasoning about values and sets of
atoms, equipped with a (slightly conservative) decision procedure;

e allow logical assertions to eerve as preconditions and
postconditions and to appear within algebraic data type
definitions;

e cxploit alphaCaml’s flexible language [Fottier, 2006] for defining
algebraic data types with binding structure.

@ Introduction

@ What do we prove and how?
® A more advanced example

@ Conclusion

Where proof obligations arise

Generating a fresh atom x for use in an expression e produces:

® a hypothesis that x is fresh for all pre-existing objects;

e a proof obligation that x ie fresh for the result of e.

(Two objects o4 and oo are fresh for one another when they have
disjoint support, that is, disjoint sete of free atoms. This is written
o4 #02.)

A aimple example

Here is an excerpt of the capture-avoiding substitution function:

fun sub accepts a, t, s =
case 5 of
| Abs (b, u) —
Abs (b, sub(a, t, u))
|

Matching against Abs yields the hypothesis b# a,t,5 and the proof
obligation b # Abs(b,sub(a, t,u)) — a tautology, since b is never in the
support of Abs(b,...).

A more subtle example

Here is an excerpt of a “Po-reduction” function for A-terms:

fun reduce accepts t =
case t of
| App (Abs (x, u), Var (y)) —
reduce (sub (x, Var (y), u))
|

Proving that x is not in the support of the value produced by the
right-hand side requires some knowledge about the semantics of
capture-avoiding substitution.

Providing a postcondition

This knowledge is provided via an explicit postcondition:

fun sub accepts a, t, s
produces u where free(u) C free(t) U (free(s) \ free(a)) =

This produces a new hypothesis within reduce and new proof
obligations within sub.

Benefits inside reduce

First, the benefit:

fun reduce accepts t =
case t of
| App (Abs (x,), Var (y)) —
reduce (sub (x, Var (y), u))
|

The postcondition for sub, together with the hypothesis that x is
fresh for y, tells us that x is fresh for sub(x,Var(y),u).

Furthermore, by (recursive) assumption, reduce is pure and has empty
support, so x is fresh for the entire right-hand side, as desired.

Obligations inside sub

Then, the obligations:

fun sub accepts a, t, s
produces u where free(u) C free(t) U (free(s) \ free(a)) =
case s of
| Var (b) —
if a =b then t else Var (b)
|

The postcondition is propagated down into each branch of the case
and if constructs and instantiated where a value is returned. For
instance, inside the Var/else branch, one must prove

free(Var(b)) C free(t) U free(s) \ free(a)

At the same time, branches give rise to new hypotheses. Inside the
Var/else branch, we have s =Var(b) and a # b.

The decision procedure

How do we check that

s = Var(b)
a#b

Well, s = Var(b) implies free(s) = free(Var(b)) by congruence, and
free(Var(b)) is free(b) by definition.

} imply free(Var(b)) C free(t) U free(s) \ free(a) 2

Furthermore, since a and b have type atom, a # b is equivalent to
free(a) # free(b).

The decision procedure

There remains to check that

free(s) = free(b)

free(a)#free(b)} imply free(b) C free(t) Ufrea(s) \ free(a)

No knowledge of the semantics of free is required to prove this, so
let us replace free(a) with A, free(b) with B, and so on..

(A, B, S, T denote finite sets of atoms.)

The decision procedure

There remains to check that

S=B ,
A#B} imply BCTUS\A

This is initially an assertion about finite sets of atoms, but one can
prove that its truth value is unaffected if we interpret it in a
2-point Boolean algebra:

(ﬁSVBMSng} imply —BVTV(SA-A)

So, the decision problem reduces to SAT.

(The reduction is incomplete. See the paper for the fine printl)

@ Introduction

® What do we prove and how?
® A more advanced example

@ Conclusion

Normalization by evaluation

As a slightly more advanced example, here are excerpts of a version
of normalization by evaluation of untyped A-terms.

The algorithm is essentially a closure-based interpreter for possibly
open terms, combined with a decompiler.

Source terms

Source terms are just A-terms.

type term =
| TVar of atom
| TLam of (atom x inner term)
| TApp of term x term

Nothing new, except | now use alphaCaml syntax: in TLam(x, t), the
atom x is bound within the term t.

Semantic values and environments

Semantic values are very much like source terms, except
A-abstractions carry an explicit environment.

type value =
| War of atom
| VClosure of (env x atom x inner term)
| VApp of value x value

type env binds =
| ENil
| ECons of env x atom x outer value

In VClosure(env, x, t), the atoms in the domain of env, written
bound(env), as well as the atom x, are bound within the term t.

Evaluation 1

Evaluation of a term t under an environment env produces a value v,
whose support is predicted by an explicit postcondition.

fun evaluate accepts env, t produces v
where free(v) C outer(env) U (free(t) \ bound(env))

(Code omitted.)

Decompilation

Decompilation (reification) translates a semantic value back to a
source term.

fun decompile accepts v produces t
= case v of
| War (x) —
TVar (x)
| VClosure (cenv, x, t) —
TLam (x, decompile (evaluate (cenv, t)))
| VApp (v1, v2) —
TApp (decompile (v1), decompile (vZ2))
end

In the closure case, the body is evaluated, without introducing an
explicit binding for x, so that x remains a symbolic name. evaluate’s
postcondition guarantees that the atoms in the domain of cenv do
not escape.

Normalization

Last, normalization is the composition of evaluation and decompilation.
fun normalize accepts t produces u

= decompile (evaluate (ENil, t))

The system accepts these definitions, which guarantees that
normalize denotes a mathematical function of terms to (L or) terms.

@ Introduction

® What do we prove and how?
® A more advanced example

@ Conclusion

Summary

During this talk, | have argued in favor of semi-automated, static
name control for FreshML.

A toy implementation exists and has been used to prove the
correctness of a few standard code manipulation algorithms, involving
flat environments, nested contexts, nested patterns, etc.

See the paper (and ite extended version) for details, examples, and a
comparison with related work.

Future work

In the future, | would like to:

e cxtend the current toy implementation with first-class functions,
mutable state, exceptions, extra primitive operations, etc.;

e combine the decision procedure with a general-purpose
automated first-order theorem prover.

| would like to see a version of (Fresh)ML where programs are
decorated with assertions expressed in a general-purpose logic, so as
to guarantee not only that atoms are properly bound, but also that
programs are correct.

References

@ Pitts, A. M. and Gabbay, M. J. 2000.
A metalanguage for programming with bound names modulo
renaming.
In International Conference on Mathematics of Frogram
Construction (MFC). Lecture Notes in Computer Science, vol.
1637. Springer Verlag, 230—-255.

@ Pottier, F. 2006.
An overview of Caml.
In ACM Workshop on ML. Electronic Notes in Theoretical Computer
Science, vol. 148, 27-52.

@ Shinwell, M. R. and Pitts, A. M. 2005.
On a monadic semantics for freshness.
Theoretical Computer Science 342, 286-55.

http://www.cl.cam.ac.uk/~amp12/papers/metpbn/metpbn.pdf
http://www.cl.cam.ac.uk/~amp12/papers/metpbn/metpbn.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-alphacaml.pdf
http://www.cl.cam.ac.uk/users/amp12/papers/monsf/monsf-jv.pdf

	Introduction
	What do we prove and how?
	A more advanced example
	Conclusion

