
Wandering through linear types, capabilities, and
regions

François Pottier

May 24th, 2007

Abstract

Here is a pointer. Which memory blocks can it possibly point to?
If I write through it, who will observe this effect? In fact, am I
allowed to write through it? Does it point to a valid piece of
memory? Who owns this piece of memory?

This talk is not about original work of mine. It is an attempt to
present a fraction of the many type systems that answer the
above questions via notions of linearity, capabilities, or regions.

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

Our starting point: linearity

A long time ago, researchers in the programming languages
community realised that linearity could help:

• model the physical world (input/output, ...),

• control when memory can be freed or re-used,

• reason about imperative programs.

For instance, Reynolds’ “syntactic control of interference” [1978] was
an affine λ-calculus [O’Hearn, 2003]. Wadler’s linear type
system [1990] was inspired by Girard’s linear logic [1987].

But exactly how does one design a type system that helps reap
these benefits? The historic path is tortuous...

A (very partial) history

linear types
(Wadler)

uniqueness types
(Clean)

monads
(Peyton Jones & Wadler)

regions
(Baker)

regions
(Tofte & Talpin)

calculus of capabilities
(Crary et al.)

FX
(Gifford & Lucassen)

alias types
(Smith, Walker, Morrise")

adoption and focus
(Fähndrich & DeLine)

Cyclone
(Morrise" et al.)

linear regions are all you need
(Fluet, Ahmed, Morrise")

monadic regions
(Fluet & Morrise")

1987

1990

1993

1999

2000

2002

2004

2006Sing#
(Fähndrich et al.)

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

Uses of linearity

Wadler [1990] noted that linearity seems to mean:

• no duplication: there exists at most one pointer to a linear
value, so destructive update is safe;

• no discarding: every linear value has a use, which represents an
explicit deallocation site, so garbage collection is not required;

• the real world (e.g., the state of the file system) could be
modeled as a linear value.

Linear versus nonlinear types

Wadler’s type system introduces a segregation between linear and
nonlinear types, based on their head constructor:

τ ::= K | τ → τ nonlinear
¡K | τ (τ linear

A restriction

The base types K and ¡K are algebraic data types:

K = C τ . . . τ + . . . + C τ . . . τ nonlinear
¡K = ¡C τ . . . τ + . . . + ¡C τ . . . τ linear

In the linear case, the component types τ may be any types, while in
the nonlinear case they must be nonlinear: a nonlinear data structure
must not contain any linear components.

A restriction

It is worth pondering the meaning of Wadler’s restriction: at any
point in time, the heap consists of a linear upper structure (a
forest), whose leaves form the boundary with a nonlinear lower
structure (an arbitrary graph).

This restriction may seem natural, but is very limiting in practice.
Time will elapse before it is lifted [Fähndrich and DeLine, 2002]...

forward

Highlights

In Wadler’s system, a variable is well-typed only in a singleton
environment:

x : τ ` x : τ

Highlights

Function application (and other binary constructs) split the
environment:

Γ1 ` t1 : . . . Γ2 ` t2 : . . .

Γ1, Γ2 ` t1 t2 : . . .

The environment is not split at a case construct, though, since only
one branch is actually executed.

Highlights

Weakening and contraction are available at nonlinear types only:

Γ ` . . . τ is nonlinear

Γ, x : τ ` . . .

Γ, x : τ, x : τ ` . . . τ is nonlinear

Γ, x : τ ` . . .

Highlights

A nonlinear closure cannot capture a linear value:

Γ, x : τ ` u : τ′ Γ is nonlinear

Γ ` λx.u : τ → τ′

This is in keeping with the principle that a nonlinear value cannot
contain a pointer to a linear value.

Limitations

Wadler noted that the type system is extremely restrictive.

For instance, reading one element out of a linear array constitutes a
use of the array, which forbids any further use of the array!

A workaround is to have the “get” operation return a (linear) pair of
the value that was read and the (unchanged) array. This leads to a
programming style where linear values are explicitly threaded. This
style is heavy and over-sequentialised.

Temporary aliasing with “let!”

Wadler noted that it is fine to temporarily view a linear value at a
nonlinear type, which means that pointers to it can be duplicated,
provided only one pointer remains in existence when the value recovers
its original linear type.

For instance, a read/write, linear array can be temporarily turned
into a nonlinear, read-only array; and, once the reading is over and
only one pointer to the array remains, it can be turned back into a
read/write, linear array.

The details of Wadler’s “let!” construct are extremely ad hoc, but
the idea is essential: we will come back to it.

A quiproquo over linearity

Is a linear value...

• a value that is used exactly once?

• a value to which there exists exactly one pointer?

A quiproquo over linearity

The two interpretations differ: for instance, one is compatible with a
subtyping relation that turns a nonlinear type into its linear
equivalent, while the other isn’t.

• if a value can be used as many times as desired, then certainly
it is fine to use it exactly once;

• but, if there exist multiple pointers to a value, then it is not
sound to pretend that there exists a unique pointer to it.

There has been some confusion about this issue in the literature,
which I haven’t quite sorted out. O’Hearn [2003] sheds some light.

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

A glimpse of uniqueness types

Clean’s uniqueness types [Barendsen and Smetsers, 1995] seem
pretty close to Wadler’s linear types.

Every type constructor carries a mode, which can be “unique”,
“non-unique”, or a variable – avoiding duplication and paving the way
to mode polymorphism and type inference.

As in Wadler’s system, a nonlinear container cannot have linear
components. This is expressed via constraints on modes.

A glimpse of uniqueness types

A value that might be accessed more than once must have
non-unique mode. (Unfortunately, the details of this constraint were
apparently never published.)

There used to be an ordering relation on modes, so a unique value
can be considered non-unique. This feature seems somewhat
anecdotal, and has been recently dropped [de Vries et al., 2007].

Clean’s world

A Clean user is given access to a unique value, the “world”, which
represents the state of the entire operating system
[Achten and Plasmeijer, 1995].

The world must be explicitly threaded by the user throughout the
code, so a typical function has type world• × τ1 → world• × τ2.

The world is a linear tuple of various state components (input/output
channels, user interface elements, ...), so it can also be explicitly
decomposed and rebuilt by the user.

The user can compose computations that operate on part of the
world only, thus sometimes avoiding over-sequentialisation.

Clean’s arrays

An update to a unique array can be performed in place by the Clean
compiler.

Still, some hard limitations remain: for instance, an array of unique
objects is essentially unusable, because reading an element duplicates
it!

There is a painful workaround, based on an exchange, i.e., a swap
operation. The same trick is exploited in Cyclone! forward

A word of monads

Only state has to be linear: a state transformer, on the other hand,
can safely be nonlinear.

Monads [Peyton Jones and Wadler, 1993] are a language design in
which state is implicit and only state transformers are first-class
values.

Monads in Haskell allow encapsulating interaction with the operating
system, and allow in-place update of certain data structures, much
like Clean’s uniqueness types. They appear simpler, in terms of both
syntax and types.

In principle, one could typecheck a monad’s implementation using a
linear type system, and typecheck its clients using a standard type
system [Chen and Hudak, 1997]. Fluet et al. [2006] implement an
indexed state monad in terms of linear types and regions.

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

Why regions?

Linearity is meant to enforce the absence of aliasing. Regions are
intended to control aliasing: roughly speaking, they can be thought of
as equivalence classes for a static, approximate “may alias” relation.

Baker’s insight

Baker [1990] noted that Hindley & Milner’s type inference system
provides free aliasing information. For instance, list concatenation:

(@) : ∀α.list α → list α → list α

has an inferred type whose memory representation could be written:

∀αβ1β2[β1 = list α, β2 = list α].β1 → β2 → β2

Baker concludes: the result of (@) cannot contain cells from its first
argument (that is, unless the two arguments were already sharing,
due to external constraints – we foresee the issue of region aliasing).

Baker’s insight

In order to make this aliasing information more explicit, Baker notes
that one could annotate the list constructor with region variables.
That would lead to:

(@) : ∀αρ1ρ2.list ρ1 α → list ρ2 α → list ρ2 α

Applications

Baker foresees at least two potential applications of regions, which
he describes informally:

• if a function allocates intermediate data that does not alias
with its result, then this data can be collected before the
function returns;

• if a function allocates an array that does not alias with
anything else, then this array can be updated in place.

A precise definition of when deallocation, or update in place, is safe,
will be provided by later calculi, such as the calculus of capabilities
and the calculus of alias types.

Tofte and Talpin’s regions

Baker did not clearly explain how to control or infer the lifetime of a
region.

Drawing on ideas present in FX-87 and FX-91 [Gifford et al., 1992],
Tofte and Talpin [1994] show how to infer region lifetimes that
coincide with a lexical scope.

Roughly speaking, their analysis inserts statements of the form

letregion ρ in e

and determines, at each memory allocation or memory access site,
which region is involved.

Two interpretations of regions

One operational interpretation of the construct “letregion ρ in e” is
to allocate a fresh region, bind it to the name ρ, evaluate e, and
finally discard the region ρ, whose contents are lost.

In this interpretation, regions exist at runtime. Since their lifetimes
coincide with lexical scopes, regions form a stack. No garbage
collector is needed. This interpretation has been implemented and
fine-tuned in the ML Kit.

In a slightly different interpretation, regions have no existence at
runtime. A garbage collector is required. Regions are only a static
mechanism for establishing non-aliasing facts. This interpretation is
also useful; it is, in fact, more basic.

From regions to effects

Since a region disappears when the scope of “letregion” is exited, one
must ensure that no pointer into this region is ever accessed after
this point. (This is an escape analysis.)

Tofte and Talpin’s system uses region-annotated types, and requires
ρ to not occur in the environment or in the return type of
“letregion ρ in e”.

But that is not enough: if the result of “letregion ρ in e” is a
function, a pointer into ρ could be stored within its closure, yet
would be invisible in its type.

From regions to effects

Tofte and Talpin suggest annotating every function type with an
effect, a set of regions that might be accessed when the function is
invoked.

τ ::= τ
ε→ τ | . . .

This ensures that Tofte and Talpin’s use of “letregion” is sound.

In order to compute this information, a typing judgement must
associate with an expression not only a type, but also an effect.
This yields a (by now standard) type and effect system.

Strengths and weaknesses of Tofte and Talpin’s work

Tofte and Talpin’s system has region polymorphism, which,
operationally, means that a function can be parameterized over one
or several regions.

It also has polymorphic recursion in the region annotations (versus
monomorphic recursion in the underlying type structure), for enhanced
flexibility – each instance of a recursive function can create its own
fresh, local region.

These features, and later improvements [Aiken et al., 1995], make
the region inference system quite impressive.

A weakness is in the formalisation, which mixes concerns of inference
and soundness, so that, for instance, a sound typing rule for
“letregion” is never explicitly isolated.

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

Motivation

The calculus of capabilities [Crary et al., 1999] is a low-level type
and effect system. It allows reasoning about the soundness of a
piece of code that explicitly allocates and deallocates regions,
without any concern of inference.

It can serve as the target of a translation for Tofte and Talpin’s
system, and is in fact significantly more expressive, because it does
not impose lexical region lifetimes.

Basic operations on regions

The calculus has static region identifiers ρ as well as dynamic region
handles. (Again, the latter are really optional.)

The basic operations are:

newrgn ρ, x allocates a fresh region
freergn v destroys a region
x = h at v allocates an object within a region

Types

There is a (singleton) type of region handles: “rgnhandle ρ” is the
type of a handle for a region whose static name is ρ.

There is a type of tuples: “〈τ, . . . , τ〉 at ρ” is the type of a pointer
to a tuple allocated within region ρ.

There is a type of functions: “∀∆[C]τ → 0 at ρ” is the type of a
closure allocated within region ρ. The function is polymorphic with
respect to the type/region/capability variables in ∆, requires a
capability C and an argument of type τ, and does not return (the
calculus is in CPS style).

Capabilities

Possession of a pointer of type 〈τ, . . . , τ〉 at ρ does not imply
permission to dereference that pointer. Indeed, since regions can be
deallocated, there is no guarantee that dereferencing is safe.

Permission to access ρ is represented by a capability, written {ρ}. A
function f can access ρ only if it holds the capability {ρ} – for
instance, if ρ was freshly created by f itself, or if {ρ} was explicitly
passed to f .

Capabilities and effects are two sides of the same coin. Capabilities
are prescriptive, while effects are descriptive, but that is only a
matter of presentation. (I do find the capability view somewhat more
inspiring.)

Capabilities

To a first approximation, capabilities are as follows:

C ::= ε | ∅ | {ρ} | C, C

The “comma” operator is associative and commutative, but not
idempotent: the equality {ρ} = {ρ}, {ρ} does not hold. There is no
weakening or contraction of capabilities.

In other words, capabilities are linear: they cannot be duplicated. This
is essential for soundness: duplicating {ρ} would allow one to
destroy the region ρ and still hold a capability to it.

Linear capabilities, nonlinear values

While capabilities are linear, values are nonlinear and can be
duplicated at will.

In other words, it is fine to have multiple pointers to an object
within a region, or multiple copies of a region handle, as long the
right to access (and to destroy) the region remains unique.

This key idea leads to much greater flexibility than afforded by linear
type systems, such as Wadler’s, where “pointer” and “permission to
dereference” are not distinguished.

Linear capabilities, nonlinear values

Because the calculus of capabilities is in CPS style, it does not have
a sequencing construct.

If it was a source-level calculus, the typing rule for sequencing would
perhaps look like this:

Γ; C1 ` t1 a τ1; C2 (Γ, x : τ1); C2 ` t2 a τ2; C3

Γ; C1 ` let x = t1 in t2 a τ2; C3

Capabilities are threaded, while environments are shared.

Region allocation and deallocation

Region allocation binds ρ and produces a capability:

Γ; C ` newrgn ρ, x a (Γ, ρ, x : rgnhandle ρ); C, {ρ}

Conversely, region deallocation consumes a capability:

Γ ` v : rgnhandle ρ

Γ; C, {ρ} ` freergn v a Γ; C

The name ρ still exists; dangling pointers into the region can still
exist; but they can no longer be dereferenced.

Functions

The only capability available to a function’s body is the capability
transmitted by the caller. That is, a (nonlinear) closure cannot
capture a (linear) capability.

A function call consumes the capability that is transmitted to the
callee.

What about region aliasing?

A function can be parameterized over multiple regions:

f = Λρ1, ρ2. . . .

Imagine f deallocates ρ1 and subsequently writes into ρ2. Could I
break type soundness by applying f twice to a single region ρ?

What about region aliasing?

The answer is no: in order to deallocate ρ1 and subsequently write
into ρ2, f needs two capabilities, {ρ1} and {ρ2}. Because
capabilities are linear, if ρ1 and ρ2 were instantiated with the same
region, it would be impossible to provide the two capabilities that f
requires. So, in such a case, region aliasing is impossible.

If, on the other hand, f does not require both {ρ1} and {ρ2}, then
it is be possible for ρ1 and ρ2 to be aliases. In that case, region
aliasing is possible, and useful (see next)...

What about region aliasing?

Let f be parameterized over two pointers in two possibly distinct
regions:

f = Λρ1, ρ2.λ(x1 : 〈τ1〉 at ρ1, x2 : 〈τ2〉 at ρ2) . . .

Imagine f wishes to dereference both pointers. This seems to require
the capabilities {ρ1} and {ρ2}, which, as we have seen, means that
f cannot be applied twice to a single region ρ – yet, in this case,
such an application would be safe.

Nonexclusive capabilities

Allocating, reading, or writing an object within a region requires the
region to exist, but does not require exclusive ownership of the region.
Only deallocation of a region requires exclusive ownership.

We introduce a weaker capability that reflects existence, but not
ownership, of a region:

C ::= . . . | {ρ+}

We set up the typing rules for memory allocation and memory access
so as to require such a nonexclusive capability.

Nonlinear capabilities

The fact these capabilities are nonexclusive is technically reflected by
making them nonlinear:

{ρ+} = {ρ+}, {ρ+}
{ρ+} ≤ ∅

This allows our earlier function f to access two regions without
needing to care whether the two regions are aliases:

f = Λρ1, ρ2.λ({ρ+1}, {ρ
+
2}, x1 : 〈τ1〉 at ρ1, x2 : 〈τ2〉 at ρ2) . . .

Linear or affine?

Our original, exclusive capabilities could be made affine instead of
linear:

{ρ} ≤ ∅

This would be sound, but would allow memory leaks (i.e., forgetting to
call “freergn”), so it really makes sense only if regions have no
dynamic interpretation.

From linear to nonlinear capabilities...

An (exclusive) capability to access and destroy ρ can be weakened
and turned into a (nonexclusive) capability to access ρ:

{ρ} ≤ {ρ+}

In doing so, one renounces some power, and, in exchange, one gains
some flexibility.

...and back (how)?

When {ρ} is turned into {ρ+}, the capability to free ρ is lost (for
good).

Doesn’t that render this axiom useless in practice?

What we would really like is a way of temporarily turning an exclusive
capability into a nonexclusive one, and subsequently recovering the
original capability.

...and back (option 1)

In a source-level, non-CPS-style calculus, one could introduce a
construct that weakens an exclusive capability within a lexical scope
and reinstates it upon exit:

Γ; (C, {ρ+}) ` e a Γ; C′ ρ # C′

Γ; (C, {ρ}) ` rgnalias ρ in e a Γ; (C′, {ρ})

This would be safe: {ρ+} cannot possibly escape, because capabilities
cannot be stored, a crucial point, to which I return later on. forward

Note the connection to Wadler’s “let!”: a linear “thing” is temporarily
turned into a nonlinear “thing”. Here, the thing is a capability, as
opposed to a value. This simplifies matters significantly.

...and back (option 2)

In CPS style, this effect can be achieved by combining the weakening
axiom {ρ} ≤ {ρ+} with bounded quantification over capabilities – a
really nice trick.

The idea is to turn the expression e of the previous slide into a
function of type

∀ε[ε ≤ {ρ+}].(ε, . . . , k : (ε, . . .) → 0) → 0

and to instantiate the capability variable ε with {ρ} at the call site.
The callee then holds {ρ}, under the name ε, and can transmit it to
its continuation k. However, because ε is abstract, the callee can
effectively only exploit {ρ+}.

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

From regions to single objects

The calculus of capabilities groups objects within regions, and keeps
track of region ownership, and region aliasing, via capabilities.

Alias types [Smith et al., 2000, Walker and Morrisett, 2000], which
is directly inspired by the calculus of capabilities, has no regions at
all, and keeps track of object ownership, and object aliasing, via
capabilities.

Object allocation (resp. deallocation) will produce (resp. consume) a
linear capability for a single object, whereas reading or writing an
object will require a weaker, nonlinear capability.

Incorporating types within capabilities

In the calculus of capabilities, a capability {ρ} or {ρ+} mentions
only a region’s name. The type of a pointer into the region, e.g.
〈τ〉 at ρ, provides the type of the object that is pointed to.

With alias types, ρ is a static name for a single location. A
capability mentions both a location and the type of its content, while
a pointer type mentions a location only:

C ::= ∅ | {ρ 7� τ} | {ρ 7� τ}+ | C, C
τ ::= . . . | ptr ρ

Why is it useful to move the type of the location into the capability?

Strong update

Because the type is in the capability, a linear capability can be
viewed as permission not only to deallocate the object, but also to
change its type.

An operation that modifies an object’s type is known as a strong
update.

Weak versus strong update

There are two typing rules for writing to a memory block:

Weak Update

Γ ` v1 : ptr ρ Γ ` v2 : τ C ≤ {ρ 7� τ}+

Γ; C ` v1 := v2 a Γ; C

Strong Update

Γ ` v1 : ptr ρ Γ ` v2 : τ2

Γ; {ρ 7� τ1} ` v1 := v2 a Γ; {ρ 7� τ2}

Strong update modifies a (linear) capability. There can be multiple
values of type ptr ρ around. Their type remains ptr ρ, but the
meaning of that type changes.

Again, with linear capabilities and nonlinear values, there is no direct
restriction on the use or copying of pointers.

Applications of strong update

Strong update allows:

• non-atomic initialization of memory blocks;

• delayed initialization; destination-passing style [Minamide, 1998];

• recycling memory blocks [Sobel and Friedman, 1998];

• perhaps most important: changing one’s view of memory, without
actually writing to a block (developed in several of the
forthcoming slides).

Changing one’s view of memory

Here are typing rules for sums that exploit strong update
[Walker and Morrisett, 2000]:

{ρ 7� τ1} ≤ {ρ 7� τ1 ∪ τ2}

Γ ` v : ptr ρ
Γ; C, {ρ 7� 〈int 1, τ1〉} ` i1
Γ; C, {ρ 7� 〈int 2, τ2〉} ` i2

Γ; C, {ρ 7� 〈int 1, τ1〉 ∪ 〈int 2, τ2〉} ` case v of i1 | i2

One can similarly introduce or eliminate a recursive type, an
existential type, or a pair of a capability and a type (what are
those!? read on).

Again, a key point is that one capability is modified, but all values of
type ptr ρ are (indirectly) affected.

Towards storing capabilities

So far, capabilities can be manipulated only in limited ways. There is
a notion of a current set of capabilities, which is transformed by
primitive operations such as allocation, deallocation, reading and
writing, and transmitted from caller to callee, and back, at function
invocation sites.

But (in the absence of regions) a finite set of capabilities can only
describe a finite portion of the store!

How do we describe, say, a linked list, or a binary tree?

Towards storing capabilities

How about something along these lines?

list α = 〈int 1〉 ∪ ∃ρ.[{ρ 7� list α}]〈int 2, α, ptr ρ〉

tree α = 〈int 1〉 ∪ ∃ρ1, ρ2.[{ρ1 7� tree α}, {ρ2 7� tree α}]
〈int 2, α, ptr ρ1, ptr ρ2〉

The type list α describes a linked list cell. The type ptr ρ, together
with the capability {ρ 7� list α}, describes a pointer to such a cell.

Every list cell contains a full capability to the next cell. In other
words, perhaps more intuitive, each cell owns its successor cell.

These definitions require recursive types, existential types, and pairs
of a capability and a type.

Towards storing capabilities

So far, I have insisted on the flexibility offered by the distinction
between capabilities, which can be linear or nonlinear, and values,
which are nonlinear.

Sometimes, though, it is useful to package a capability and a value
together, and possibly to store such a package within a memory cell.

Towards storing capabilities

In addition to the encodings of lists and trees (already shown), this
allows recovering standard linear types (à la Wadler, for instance), via
the following encoding:

τ1 ⊗ τ2 = ∃ρ.[{ρ 7� 〈τ1, τ2〉}]ptr ρ

A standard “linear pair” is a pointer to a memory block that holds a
pair, packaged together with a unique capability to access that block.

Storing capabilities

How do I construct or destruct a pair of a capability and a value?
One beautiful axiom is enough:

{ρ 7� τ}, C = {ρ 7� [C]τ}

Such a capability rearrangement has no operational significance. It is
a memory view change: we are switching between “I own capability C”
and “capability C is owned by block ρ”.

This requires τ ::= . . . | [C]τ. Simple, right? (Hmm...)

Storing regions

How do I hide or reveal a region name? Again, just one axiom:

∃ρ′.{ρ 7� τ} = {ρ 7� ∃ρ′.τ}

This can be informally understood as switching between “I know about
a memory block, which I call ρ′” and “block ρ knows about a memory
block, which it (privately) calls ρ′”. Again, this is a memory view
change.

This requires C ::= . . . | ∃ρ.C. Simple, right? (Yes. Really.)

Exploiting a linear value: borrowing

Imagine r is a pointer to a ref cell, allocated in region ρ, containing
a pointer to a linear pair, encoded as before:

type environment capability
ρ; r : ptr ρ {ρ 7� ∃ρ′.[{ρ′ 7� 〈τ1, τ2〉}]ptr ρ′}

(unpack) ρ; r : ptr ρ; ρ′ {ρ 7� [{ρ′ 7� 〈τ1, τ2〉}]ptr ρ′}
(fetch) ρ; r : ptr ρ; ρ′ {ρ 7� ptr ρ′}, {ρ′ 7� 〈τ1, τ2〉}

At this point, !r has type ptr ρ′, a nonlinear pointer type: the
address of the linear pair can be read and copied at will.

This offers a mechanism for turning a linear value into a nonlinear
one, and back, since the axioms are reversible. This serves the same
purpose as Wadler’s “let!” back

When the linear pair is re-packaged, the capability {ρ′ 7� 〈τ1, τ2〉}
disappears, so any remaining aliases become unusable.

Storing capabilities: linearity caveat 1

It is essential that C is moved into, or out of, a linear capability.
The following variant of the axiom is unsound (why?):

{ρ 7� τ}+, C = {ρ 7� [C]τ}+

Storing capabilities: linearity caveat 2

Furthermore, and less obviously, it is necessary to add a side
condition (not previously shown) that C itself is linear. The following
scenario is unsound:

• allocate an object, producing {ρ 7� τ};
• temporarily weaken this capability to {ρ 7� τ}+;
• store the weakened capability into memory;

• exit the temporary weakening and reinstate {ρ 7� τ};
• deallocate the object, consuming {ρ 7� τ};
• fetch the previously stored, weakened capability and attempt to
exploit it.

This risk was mentioned earlier. back

Storing capabilities: linearity caveat 3

If C is a linear capability, then [C]τ should be considered a linear
type.

That is, the following rules (among others) are unsound when τ is the
type of a capability-value package:

Var

x : τ ` x : τ

Read
Γ ` v : ptr ρ C ≤ {ρ 7� τ}+

Γ; C ` x = !v a Γ, x : τ; C

Linear versus nonlinear types

A solution is to draw a distinction between nonlinear types τ and
possibly linear types σ :

C ::= ∅ | {ρ 7� σ} | {ρ 7� σ}+ | C, C | ∃ρ.C
τ ::= > | ptr ρ | σ → σ
σ ::= 〈τ, . . . , τ〉 | [C]σ | ∃ρ.σ

Values have nonlinear types: a type environment maps x’s to τ’s.
Memory blocks have possibly linear types: a capability can be of the
form {ρ 7� σ}. Reading and writing to memory is restricted to
nonlinear types. Switching between {ρ 7� σ} and {ρ 7� 〈τ, . . . , τ〉} is
made possible by the axioms already studied: back

{ρ 7� σ}, C = {ρ 7� [C]σ}
∃ρ′.{ρ 7� σ} = {ρ 7� ∃ρ′.σ}

(Phew! If you survived this far, you should be good from now on.)

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

What now?

The calculus of alias types, especially in its more advanced variant
[Walker and Morrisett, 2000], is quite complex and powerful. Is there
anything it cannot do?

Missing feature 1

Fähndrich and DeLine [2002] noted two problems, the first of which
is:

• paradoxically, aliasing is disallowed, that is, two pointers to two
distinct memory blocks cannot possibly have the same type! In
other words, ptr ρ is a singleton type.

As a solution, Fähndrich and DeLine propose adoption.

Why is aliasing disallowed?

When an object is allocated, a fresh location ρ, as well as a fresh
capability, are produced:

malloc : () → ∃ρ.[{ρ 7� 〈>〉}]ptr ρ

(This is allocation without initialization: > is the type of junk.)

Allocating two objects, and performing the unpacking administration,
yields two capabilities {ρ1 7� 〈>〉} and {ρ2 7� 〈>〉} and two
pointers of distinct types ptr ρ1 and ptr ρ2.

There is no way of coercing these pointers to a common (nonlinear)
type!

Adoption at birth

If one is willing to perform allocation and initialization atomically,
then one can interpret ρ’s as regions, instead of locations, and
allocate new objects within an existing region:

ref : ∀ρ.[{ρ ω7� σ}]σ → [{ρ ω7� σ}]ptr ρ

This is saying, roughly: “show me a live region ρ where every block
contains and owns a (possibly linear) content of type σ ; give me a
capability-value package of type σ ; then I will allocate a new block
within that region, initialize it, and return a pointer to it”.

Shifting from locations to regions

Introducing this primitive operation into the calculus of alias types
means that two distinct pointers can have a common type: ptr is no
longer a singleton type, and aliasing becomes permitted.

Shifting from locations to regions

This change also means that ρ now denotes a region, rather than a
single location. This is reflected by adapting the language of
capabilities:

{ρ 7� σ} exclusive access to a single location (linear)

{ρ ω7� σ} exclusive access to a region (linear)

{ρ ω7� σ}+ shared access to a region (nonlinear)

In the first case, ρ is both a location and a region: a singleton
region. In the second and third cases, ρ is a region that possibly
holds multiple objects.

The form {ρ 7� σ}+ would offer the same privileges as {ρ ω7� σ}+.

Privileges

One can explain these new capabilities in terms of the privileges that
they represent:

{ρ 7� σ} allocate, read, (strongly) write, deallocate object

{ρ ω7� σ} allocate, read, (weakly) write objects, deallocate region

{ρ ω7� σ}+ allocate, read, (weakly) write objects

This connection between formal capabilities and actual privileges is
wired in the typing rules.

Other interpretations are possible, depending on one’s exact purpose.

Adoption after birth

Fähndrich and DeLine offer a finer-grained mechanism, in which
objects are born unique and uninitialized and are later adopted by a
region, which presumably was created empty:

malloc : () → ∃ρ.[{ρ 7� 〈>〉}]ptr ρ

adopt : ∀ρ1, ρ2.[{ρ1
ω7� σ}, {ρ2 7� σ}]ptr ρ2 → [{ρ1

ω7� σ}]ptr ρ1
newrgn : () → ∃ρ.[{ρ ω7� σ}]()

Adoption consumes a singleton region. Its semantics is the identity.

Adoption is forever. Once an object is adopted, it can become
aliased, so one abandons the ability to deallocate it – only the
region can be deallocated as a whole.

Missing feature 2

The second problem that we now face, as noted by Fähndrich and
DeLine [2002], is:

• a capability to a region of objects, each of which packs a linear

capability, such as {ρ ω7� σ}, is syntactically allowed, but
unusable.

Indeed, an axiom of the form

{ρ ω7� σ}, C = {ρ ω7� [C]σ}

would make no sense at all (why?).

The problem

Suppose we hold the capability {ρ ω7� σ} as well as a pointer
x : ptr ρ.

Then, the object x owns a piece of memory, described by σ , and we
would like to gain access to it, that is, to somehow “extract σ out
of x”.

However, we cannot modify the capability, because it also describes
objects other than x (ρ denotes a region, not a single location).

So, how do we prevent extracting σ twice out of x?

Focus

Fähndrich and DeLine note that, although we cannot modify the
capability {ρ ω7� σ}, we can temporarily revoke it while we are working
with x and reinstate it afterwards.

Meanwhile, a capability for exclusive access to x, under a fresh name
ρ′, can be temporarily provided.

This is known as focusing on x:

focus : ∀ρ. [{ρ ω7� σ}] ptr ρ →
∃ρ′. [{ρ′ 7� σ}, ({ρ′ 7� σ}) (({ρ ω7� σ})] ptr ρ′

The capability {ρ′ 7� σ} allows all forms of strong update at x,
including grabbing the memory described by σ . However, the region ρ
remains inaccessible until {ρ′ 7� σ} is restored and surrendered.

Focus & restrict

Focus allows temporarily turning a nonlinear (shared) object into a
linear object, at the cost of abandoning the right to access any of
its potential aliases.

This seems rather closely related to the restrict keyword in C99 – a
promise that an object’s aliases, if they exist, will not be accessed
[Foster and Aiken, 2001].

A step back

Thanks to focus, capabilities of the form {ρ ω7� σ} become usable –
that is, a shared object can point to a linear object, yet the system
remains sound and expressive.

This eliminates one of the most fundamental restrictions of standard
linear type systems! back

For instance, the capability {ρ ω7� node} and the definition:

node = ∃ρ′.[{ρ′ 7� σ}]〈list (ptr ρ), ptr ρ′〉

mean that the region ρ contains a set of nodes, each of which holds
a list of (successor) nodes and a pointer to a per-node private block.

What about type inference?

It might seem that, at this point, any hopes of type inference should
be long abandoned.

In fact, Vault and Cyclone achieve a reasonable level of succinctness
using syntactic defaults and local type inference.

CQual [Foster et al., 2002] performs an impressive amount of type
and qualifier inference using advanced algorithmic techniques.

Is there an application?

Have a look at Singularity OS, an experimental operating system
written in Sing# [Fähndrich et al., 2006], an extension of C# with
capabilities, alias types, focus, etc. (much of it under the hood).

The type system keeps track of:

• memory ownership, allowing components to safely interact via
shared memory, without hardware protection;

• simple, finite-state protocols, preventing (for instance) a thread
from attempting twice to acquire a single lock.

Quite exciting!

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

What is Cyclone?

The programming language Cyclone [Swamy et al., 2006] provides
programmers with fine-grained control over memory allocation (where
are objects allocated?) and deallocation (when are objects
deallocated?), without sacrificing safety. It is a safe C.

Regions in Cyclone

As far as Cyclone’s static type system is concerned, a region is a
logical container for objects.

At runtime, a region is a physical container, implemented by:

• a garbage-collected heap,

• a stack frame,

• a LIFO arena, i.e., a dynamically-sized region with lexical lifetime;

• a dynamic arena, i.e., a dynamically-sized region with unbounded
lifetime.

The calculi behind Cyclone

Cyclone is a complex programming language. Simplified calculi
[Fluet and Morrisett, 2006, Fluet et al., 2006] describe its
foundations and discuss interesting connections between linearity,
regions, and monads.

A difference in perspective

The “alias types” line of work considers static, linear capabilities and
dynamic, non-linear values as primitive, and, if desired, defines
dynamic, linear values through an encoding back .

Cyclone adopts a different, more classic approach, somewhat
analogous to Clean’s uniqueness types. In this approach, dynamic,
linear values are considered primitive as well.

IMHO, the former approach seems more economical and elegant.

Unique pointers

As in Clean, every pointer type carries a qualifier, which can be
“unique”, “aliasable”, or a variable.

An analysis checks that a unique pointer is consumed at most once:

• copying or deallocating a pointer consumes it;

• reading or writing through a pointer does not consume it.

The analysis is automated within each procedure, and relies on user
annotations (or defaults) at procedure boundaries.

Borrowing a unique pointer

Because copying a pointer consumes it, local aliases of a unique
pointer are not permitted.

In order to work around this limitation, a unique pointer can be
temporarily borrowed, i.e., made non-unique.

Technically, this is done by temporarily consuming the unique pointer
and introducing a fresh region variable and capability. There is a
strong connection with “borrowing as unpacking”. back

For convenience, borrowing can be inferred at function calls.

Dynamic regions

A handle to a dynamic region is encoded as a unique pointer. A
dedicated “open” construct temporarily consumes the handle and
introduces a fresh capability, making the region accessible.

“borrow” and “open” are clearly related – in fact, both correspond to
unpacking in the “alias types” approach.

A poor man’s focus

Contrary to standard linear type systems, back Cyclone allows
storing a unique pointer within a shared data structure.

Soundness is guaranteed via a quite horrible restriction: such a
pointer can be read or written only via a swap operation, so no
duplication occurs.

There is no analogue of focus! back

Affinity

For a number of reasons, the consumption analysis is affine, as
opposed to linear, which means that it sometimes allows memory
leaks.

Even unique pointers can belong to regions, which can serve as safety
nets with respect to leaks: if, either intentionally or by mistake, a
unique object is not individually freed, it is reclaimed when the region
is deallocated.

Regions that support a choice between individual and massive
deallocation are known as reaps.

Reference counting

In addition to unique and aliasable objects, Cyclone supports
reference counted objects.

Copying or dropping a reference counted pointer is only permitted via
explicit operations, which increment or decrement the counter.

The idea that linearity can enforce correct use of these operations
is classic [Walker, 2005]. In Cyclone, unfortunately, the memory leak
issue means that incorrect use is in fact possible!

A reference counted pointer can be “borrowed” too. This enables
deferred reference counting, i.e., creating temporary aliases without
updating the counters.

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

An impressive type-theoretic toolbox

The literature offers a variety of elegant type-theoretic tools for
reasoning about aliasing, sharing, and ownership of memory, and,
more generally, for reasoning about imperative programs.

This was only a very partial overview!

What about separation logic?

There is a strong analogy between a capability and a separation logic
formula [Reynolds, 2002].

A singleton capability {ρ 7� σ} is very much like a singleton heap
formula. Capability conjunction is very much like separating
conjunction. A function that accepts or produces a capability is very
much like a function that carries a precondition or postcondition
expressed in separation logic.

What about separation logic?

Perhaps the choice is between:

• distinguishing a capability-based type system, possibly equipped
with a form of type inference, on the one hand, and a standard
logic for proving programs, possibly equipped with an
off-the-shelf theorem prover, on the other hand;

• unifying the two, via separation logic, and equipping the logic
either with a dedicated theorem prover or with an encoding
towards a standard logic.

Closing

Thank you for your focused attention!

You may now separate.

Outline

1 Introduction

2 A tour

Wadler’s linear types

Uniqueness types

Basic insights about regions

The calculus of capabilities

Alias types

Adoption and focus

Cyclone

3 Closing

4 References

References I

(Most titles are clickable links to online versions.)

Achten, P. and Plasmeijer, M. J. 1995.
The ins and outs of Clean I/O.
Journal of Functional Programming 5, 1, 81–110.

Aiken, A., Fähndrich, M., and Levien, R. 1995.
Better static memory management: improving region-based
analysis of higher-order languages.
ACM SIGPLAN Notices 30, 6 (June), 174–185.

Baker, H. G. 1990.
Unify and conquer (garbage, updating, aliasing, ...) in functional
languages.
In ACM Symposium on Lisp and Functional Programming (LFP).
218–226.

ftp://ftp.cs.kun.nl/pub/Clean/papers/1995/achp95-InsOuts.ps.gz
http://www.cs.berkeley.edu/~aiken/ftp/region.ps
http://www.cs.berkeley.edu/~aiken/ftp/region.ps
http://home.pipeline.com/~hbaker1/Share-Unify.ps.gz
http://home.pipeline.com/~hbaker1/Share-Unify.ps.gz

References II

Barendsen, E. and Smetsers, S. 1995.
Uniqueness type inference.
In Programming Languages: Implementations, Logics, and Programs
(PLILP). Lecture Notes in Computer Science, vol. 982. Springer
Verlag, 189–206.

Chen, C.-P. and Hudak, P. 1997.
Rolling your own mutable ADT—a connection between linear types
and monads.
In ACM Symposium on Principles of Programming Languages
(POPL). 54–66.

Crary, K., Walker, D., and Morrisett, G. 1999.
Typed memory management in a calculus of capabilities.
In ACM Symposium on Principles of Programming Languages
(POPL). 262–275.

http://dx.doi.org/10.1007/BFb0026821
http://www.cs.yale.edu/homes/hudak-paul/hudak-dir/popl97.ps
http://www.cs.yale.edu/homes/hudak-paul/hudak-dir/popl97.ps
http://www.cs.cornell.edu/talc/papers/capabilities.pdf

References III

de Vries, E., Plasmeijer, R., and Abrahamson, D. 2007.
Equality based uniqueness typing.
In Trends in Functional Programming (TFP).

Fluet, M. and Morrisett, G. 2006.
Monadic regions.
Journal of Functional Programming 16, 4–5, 485–545.

Fluet, M., Morrisett, G., and Ahmed, A. 2006.
Linear regions are all you need.
In European Symposium on Programming (ESOP). Lecture Notes in
Computer Science, vol. 3924. Springer Verlag, 7–21.

Foster, J. S. and Aiken, A. 2001.
Checking programmer-specified non-aliasing.
Tech. Rep. UCB//CSD-01-1160, University of California, Berkeley.
Oct.

https://www.cs.tcd.ie/~devriese/pub/tfp07-paper.pdf
http://ttic.uchicago.edu/~fluet/research/rgn-monad/JFP06/jfp06.pdf
http://ttic.uchicago.edu/~fluet/research/substruct-regions/ESOP06/esop06.pdf
http://www.cs.umd.edu/~jfoster/papers/tr01-restrict.pdf

References IV

Foster, J. S., Terauchi, T., and Aiken, A. 2002.
Flow-sensitive type qualifiers.
In ACM Conference on Programming Language Design and
Implementation (PLDI). 1–12.

Fähndrich, M., Aiken, M., Hawblitzel, C., Hodson, O., Hunt, G.,
Larus, J. R., and Levi, S. 2006.
Language support for fast and reliable message-based
communication in Singularity OS.
In EuroSys. 177–190.

Fähndrich, M. and DeLine, R. 2002.
Adoption and focus: practical linear types for imperative
programming.
In ACM Conference on Programming Language Design and
Implementation (PLDI). 13–24.

http://www.cs.umd.edu/~jfoster/papers/pldi02.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://www.cs.kuleuven.ac.be/conference/EuroSys2006/papers/p177-fahndrich.pdf
http://research.microsoft.com/~maf/Papers/pldi02.pdf
http://research.microsoft.com/~maf/Papers/pldi02.pdf

References V

Gifford, D. K., Jouvelot, P., Sheldon, M. A., and O’Toole, J. W.
1992.
Report on the FX-91 programming language.
Tech. Rep. MIT/LCS/TR-531, Massachusetts Institute of
Technology. Feb.

Girard, J.-Y. 1987.
Linear logic.
Theoretical Computer Science 50, 1, 1–102.

Minamide, Y. 1998.
A functional representation of data structures with a hole.
In ACM Symposium on Principles of Programming Languages
(POPL). 75–84.

O’Hearn, P. 2003.
On bunched typing.
Journal of Functional Programming 13, 4, 747–796.

http://www.psrg.lcs.mit.edu/history/publications.html#fxps
http://iml.univ-mrs.fr/~girard/linear.pdf
http://www.score.is.tsukuba.ac.jp/~minamide/papers/hole.popl98.pdf
http://www.dcs.qmw.ac.uk/~ohearn/papers/BunchedTyping.pdf

References VI

Peyton Jones, S. L. and Wadler, P. 1993.
Imperative functional programming.
In ACM Symposium on Principles of Programming Languages
(POPL). 71–84.

Reynolds, J. C. 1978.
Syntactic control of interference.
In ACM Symposium on Principles of Programming Languages
(POPL). 39–46.

Reynolds, J. C. 2002.
Separation logic: A logic for shared mutable data structures.
In IEEE Symposium on Logic in Computer Science (LICS). 55–74.

Smith, F., Walker, D., and Morrisett, G. 2000.
Alias types.
In European Symposium on Programming (ESOP). Lecture Notes in
Computer Science, vol. 1782. Springer Verlag, 366–381.

http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps.gz
http://doi.acm.org/10.1145/512760.512766
ftp://ftp.cs.cmu.edu/user/jcr/seplogic.ps.gz
http://www.cs.cornell.edu/talc/papers/alias.pdf

References VII

Sobel, J. and Friedman, D. P. 1998.
Recycling continuations.
In ACM International Conference on Functional Programming (ICFP).
251–260.

Swamy, N., Hicks, M., Morrisett, G., Grossman, D., and Jim, T.
2006.
Safe manual memory management in Cyclone.
Science of Computer Programming 62, 2 (Oct.), 122–144.

Tofte, M. and Talpin, J.-P. 1994.
Implementation of the typed call-by-value λ-calculus using a
stack of regions.
In ACM Symposium on Principles of Programming Languages
(POPL). 188–201.

http://www.cs.indiana.edu/hyplan/dfried/rc.ps
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://www.irisa.fr/prive/talpin/papers/popl94.pdf
http://www.irisa.fr/prive/talpin/papers/popl94.pdf

References VIII

Wadler, P. 1990.
Linear types can change the world!
In Programming Concepts and Methods, M. Broy and C. Jones,
Eds. North Holland.

Walker, D. 2005.
Substructural type systems.
In Advanced Topics in Types and Programming Languages, B. C.
Pierce, Ed. MIT Press, Chapter 1, 3–43.

Walker, D. and Morrisett, G. 2000.
Alias types for recursive data structures.
In Workshop on Types in Compilation (TIC). Lecture Notes in
Computer Science, vol. 2071. Springer Verlag, 177–206.

http://homepages.inf.ed.ac.uk/wadler/papers/linear/linear.ps
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf

	Introduction
	A tour
	Wadler's linear types
	Uniqueness types
	Basic insights about regions
	The calculus of capabilities
	Alias types
	Adoption and focus
	Cyclone

	Closing
	References

