
Polymorphic Typed

Defunctionalization and Concretization

François Pottier and Nadji Gauthier
INRIA, BP 105, F-78153 Le Chesnay Cedex, France.

Abstract. Defunctionalization is a program transformation that eliminates func-
tions as first-class values. We show that defunctionalization can be viewed as a
type-preserving transformation of an extension of System F with guarded algebraic
data types into itself. We also suggest that defunctionalization is an instance of con-
cretization, a more general technique that allows eliminating constructs other than
functions. We illustrate this point by presenting two new type-preserving transfor-
mations that can be viewed as instances of concretization. One eliminates Rémy-style
polymorphic records; the other eliminates the dictionary records introduced by the
standard compilation scheme for Haskell’s type classes.

Keywords: Defunctionalization, closure conversion, polymorphism, type-preserving
compilation, concretization, polymorphic records, dictionary records, type classes.

1. Introduction

Defunctionalization is a program transformation that aims to turn
a higher-order functional program into a first-order one, that is, to
eliminate the use of functions as first-class values. It was discovered in
1972 by Reynolds [34, 35] and, in the realm of logic programming, later
rediscovered by Warren [41].

Here is an informal and low-level description of defunctionalization.
Under the assumption that the entire source program is available, a dis-
tinct tag is associated with every λ-abstraction in the source program,
or, in other words, with every code block in the compiled program.
Then, a function value is represented by a closure composed of the
tag associated with its code and of a value environment. The generic
code in charge of function application, which we refer to as apply in
the following, examines the tag via case analysis and performs a direct
jump to the appropriate code block, making the contents of the value
environment available to it. Defunctionalization is a close cousin of
closure conversion, where closures are composed of a code pointer and
a value environment. In fact, to a certain extent, closure conversion
may be viewed as a particular implementation of defunctionalization,
where tags happen to be code pointers, and case analysis of a tag is

This is a revised and extended version of an earlier conference paper [30].

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

2

replaced with a single indirect jump. One reported advantage of defunc-
tionalization over closure conversion is that, due to the idiosyncrasies
of branch prediction on modern processors, the cost of an indirect jump
may exceed that of a simple case analysis followed by a direct jump.
Furthermore, the use of direct jumps opens up numerous opportunities
for inlining [4, 45]. One disadvantage of defunctionalization is that it
is a whole program transformation, because defining apply requires
knowing about all of the functions that exist in the program. We come
back to this issue in §10.

Closure conversion versus defunctionalization in a typed setting Even
though defunctionalization and closure conversion appear conceptu-
ally very close, they differ when viewed as transformations over typed
programs. Minamide, Morrisett, and Harper [23] have shown how to
view closure conversion as a type-preserving transformation. There, the
type of a closure is a pair of a first-order function type (for the code
pointer) and of a record type (for the value environment), wrapped
together within an existential quantifier, so that closures whose value
environments have different structure may still receive identical types.
Minamide et al. deal with both a simply-typed and a type-passing poly-
morphic λ-calculi. The case of a type-erasure polymorphic λ-calculus
has been addressed by Morrisett et al. [25].

Defunctionalization, on the other hand, has been studied mainly
in a simply-typed setting [26, 1]. There, closures receive sum types:
closure construction is encoded as injection, that is, the introduction
of a sum, while function application is encoded as case analysis, that
is, the elimination of a sum. Furthermore, this approach requires some
form of recursive types. One may use either structural sum types and
equirecursive types, that is, the standard type constructors + and µ,
or algebraic data types, which are nominal, isorecursive sum types.

When the source language features Hindley-Milner-style polymor-
phism [22, 9], the source program is typically turned into a simply-
typed program by applying monomorphization prior to defunctionaliza-
tion [38, 39, 7]. However, monomorphization involves code duplication,
whose cost may be difficult to control. Bell, Bellegarde, and Hook [2]
propose a combined algorithm that performs on-demand monomor-
phization during defunctionalization. This may limit the amount of du-
plication required, but performs identically in the worst case. In source
languages with stronger forms of polymorphism, however, monomor-
phization becomes impossible, because an infinite amount of code du-
plication might be required. This is the case of ML with polymorphic
recursion and of System F [15, 33]. In that case, no type-preserving def-
inition of defunctionalization was known prior to this work. Hanus [18,

3

19] did design a type system that supports polymorphism and allows
typechecking defunctionalized programs; we discuss it after outlining
our approach.

The difficulty with polymorphism Why is it difficult to define defunc-
tionalization for a typed, polymorphic λ-calculus? The problem lies in
the definition of apply , the central function that remains in the defunc-
tionalized program, whose task is to perform dispatch based on tags.
Its parameters are a closure f and a value arg ; its task is to simulate
the application of the source function encoded by f to the source value
encoded by arg , and to return its result. In other words, if JeK denotes
the image of the source expression e through defunctionalization, we
intend to define Je1 e2K as apply Je1K Je2K. Now, assume that defunc-
tionalization is type-preserving, and that JτK denotes the image of the
source type τ through defunctionalization. Then, if e1 has type τ1 → τ2

and e2 has type τ1, we find that, for apply Je1K Je2K to be well-typed,
apply must have type Jτ1 → τ2K → Jτ1K → Jτ2K. Furthermore, because
e1 may be arbitrary, this should hold for all types τ1 and τ2. The most
natural way to satisfy this requirement is to arrange for apply to have
type ∀α1α2.Jα1 → α2K → α1 → α2 and to ensure that J·K commutes
with substitution of types for type variables.

Now, what is the code for apply? It should be of the form

Λα1.Λα2.λf : Jα1 → α2K.λarg : α1.case f of c̄

where c̄ contains one clause for every tag, that is, for every λ-abstraction
that appears in the source program. The right-hand side of every such
clause is the body of the associated λ-abstraction, renamed so that its
formal parameter is arg. For the sake of illustration, let us assume that
the source program contains the λ-abstractions λx.x + 1 and λx.not x,
whose types are int → int and bool → bool , and whose tags are succ
and not, respectively. (These are closed functions, so the corresponding
closures have an empty value environment. This does not affect our
argument.) Then, c̄ should contain the following clauses:

succ 7→ arg + 1
not 7→ not arg

However, within System F , these clauses are incompatible: they make
different assumptions about the type of arg , and produce values of
different types. In fact, for apply to be well-typed, every λ-abstraction
in the source program must produce a value of type α2, under the
assumption that its argument is of type α1. In the absence of any
further hypotheses about α1 and α2, this amounts to requiring every λ-
abstraction in the source program to have type ∀α1α2.α1 → α2, which

4

cannot hold in general! This explains why it does not seem possible to
define a type-preserving notion of defunctionalization for System F .

The standard, limited workaround The workaround that is commonly
adopted in the simply-typed case [2, 38, 39, 7, 26, 1] consists in spe-
cializing apply . Instead of defining a single, polymorphic function, one
introduces a family of monomorphic functions, of type Jτ1 → τ2K →
Jτ1K → Jτ2K, where τ1 and τ2 range over ground types. The point
is that the definition of applyτ1→τ2

can now list only the tags whose
associated λ-abstractions have type τ1 → τ2. Continuing our example,
the definition of apply int→int should contain a case for succ, but none
for not. Conversely, the definition of applybool→bool deals with not, but
not with succ. It is now easy to check that all clauses in the definition
of applyτ1→τ2

are type compatible, so that the function is well-typed.
Then, exploiting the fact that e1 must have a ground type of the form
τ1 → τ2, one defines Je1 e2K as applyτ1→τ2

Je1K Je2K. Thus, defunctional-
ization in a simply-typed setting is not only type-preserving, but also
type-directed. We note that J·K does not commute with substitution of
types for type variables. Indeed, every distinct arrow type in the source
program maps to a distinct algebraic data type in the target program.
As a result, there is no natural way of translating non-ground arrow
types. These remarks explain why this approach fails in the presence
of polymorphism.

Our solution In this paper, we suggest another way out of this prob-
lem. We keep a single apply function, whose type is ∀α1α2.Jα1 → α2K →
α1 → α2, as initially suggested above. We also insist that the trans-
lation of types should commute with type substitutions, so Jτ1 → τ2K
must be Arrow Jτ1K Jτ2K, for some distinguished, binary algebraic data
type constructor Arrow . There remains to find a suitable extension
of System F where the definition of apply is well-typed, that is, where
every clause does produce a value of type α2, under the assumption that
arg is of type α1. The key insight is that, in order to make this possible,
we must acquire further hypotheses about α1 and α2. For instance, in
the case of the succ branch, we might reason as follows. If this branch is
taken, then f is succ, so succ has type Arrow α1 α2. However, we know
that the λ-abstraction associated with the tag succ, namely λx.x + 1,
has type int → int , so it is natural to assign type Arrow int int to the
data constructor succ. Combining these two facts, we find that, if the
branch is taken, then we must have Arrow α1 α2 = Arrow int int , that
is, α1 = int and α2 = int . Under these extra typing hypotheses, it is
possible to prove that, if arg has type α1, then arg + 1 has type α2.

5

Then, by dealing with every clause in an analogous manner, one may
establish that apply is well-typed.

The ingredients that make this solution possible are simple. First,
we need the data constructors succ and not, which are associated
with the algebraic data type Arrow , to be assigned the specific types
Arrow int int and Arrow bool bool , respectively. Note that, if Arrow was
an ordinary algebraic data type, then the nullary data constructors succ
and not would necessarily have type ∀α1α2.Arrow α1 α2. Second, when
performing case analysis over a value of type Arrow α1 α2, we need the
branch associated with succ (resp. not) to be typechecked under the
extra assumption Arrow α1 α2 = Arrow int int (resp. Arrow α1 α2 =
Arrow bool bool). Such a mechanism is quite natural: it is reminiscent of
the inductive types found in the calculus of inductive constructions [28],
and is known in a programming-language setting under a variety of
names, among which guarded recursive data types [44], first-class phan-
tom types [8, 20], and equality-qualified types [36]. We refer to it as
guarded algebraic data types. The term guarded stems from Xi, Chen,
and Chen’s observation that this feature may be encoded in terms of
recursive types, sum types, and constrained (guarded) existential types.

Hanus’ approach Hanus’ [18, 19] typed logic programming language
allows “functions” (data constructors, in our terminology) to be as-
signed arbitrary Hindley-Milner type schemes. This yields expressive-
ness comparable, at first sight, to that of guarded algebraic data types.
In fact, Hanus exploits this expressive power to typecheck defunction-
alized programs in the style of Warren [41]. However, Hanus’ type
system does not deal with pattern matching in a special way: that is, it
does not exploit the fact that a successful match provides extra static
type information. Hanus compensates for this weakness by performing
dynamic type tests and backtracking when they fail. A programming
language equipped with true guarded algebraic data types, on the other
hand, statically checks that programs are safe, and requires no dynamic
type tests. As a result, Hanus’ approach accepts more programs, but
offers fewer static guarantees and is more costly at run time.

Contributions The main contribution of this paper is a proof that
defunctionalization may be viewed as a type-preserving transformation
from System F , extended with guarded algebraic data types, into itself.
We also observe, but do not explicitly prove, that the same prop-
erty holds of Hindley and Milner’s type system when extended with
polymorphic recursion and guarded algebraic data types.

It is interesting to note that, because our version of defunctional-
ization employs a single, polymorphic apply function, it is not type-

6

directed. In other words, although type information in the source pro-
gram is (of course) used to construct a type derivation for the target
program, it does not influence the target program’s erasure. Put an-
other way, it is possible to prove that our version of defunctionalization
coincides with an untyped version of defunctionalization, up to erasure
of all type annotations. This makes it possible to prove that the trans-
formation is meaning-preserving in an untyped setting and to lift this
result to a typed setting. These (easy) proofs form the paper’s second
contribution. They appear to be new: indeed, previous proofs [26, 1]
were carried out in a simply-typed setting.

Our last contribution is to suggest that defunctionalization is an
instance of a more general technique, which we refer to as concretiza-
tion, and which allows eliminating constructs other than functions. To
illustrate this point, we define two new type-preserving transformations
that can be viewed as instances of concretization. One eliminates poly-
morphic records in the style of Rémy [32] by translating them down
to guarded algebraic data types. The other eliminates the dictionary
records introduced by the standard compilation scheme for Haskell’s
type classes [40, 17]. This yields a new type-preserving compilation
scheme for type classes, whose target type system is an extension
of Hindley and Milner’s discipline with polymorphic recursion and
guarded algebraic data types.

Road map The paper is laid out as follows. First, we define an ex-
tension of System F with guarded algebraic data types (§2), and de-
fine defunctionalization of well-typed programs (§3). Then, we prove
that defunctionalization preserves well-typedness (§4). Next, we de-
fine defunctionalization of untyped programs, prove that it preserves
their meaning, and prove that this result carries over to typed pro-
grams (§5). Miscellaneous remarks about these results appear in §6.
Last, we isolate the principle of concretization and exploit it to define
other type-preserving program transformations (§7–§9).

2. The type system

We now define an extension of System F with guarded algebraic data
types, which serves both as the source and target language for our
version of defunctionalization.

Our presentation of the type system is identical to Xi, Chen, and
Chen’s [44], with a few superficial differences. First, we replace pat-
tern matching with a simple case construct, which is sufficient for
our purposes. Second, we adopt an implicit introduction style for type

7

variables, so that type variables are not explicitly listed in typing en-
vironments, and types or typing environments do not have a notion
of well-formedness. Last, we allow data constructors to have arbitrary
arity, and we attach labels to their arguments. This allows us not to
introduce records as a separate construct.

A type signature T consists of an arbitrary set of algebraic data
type constructors T , each of which carries a nonnegative arity. The
definitions that follow are relative to a type signature. We let α range
over a denumerable set of type variables. The syntax of types is as
follows:

τ ::= α | τ → τ | ∀α.τ | T τ̄

Types include type variables, arrow types, universal types, and alge-
braic data types. In the universal type ∀α.τ , the type variable α is
bound within τ . In the algebraic data type T τ̄ , the length of the vector
τ̄ must match the arity of T .

A constraint C or D is a conjunction of type equations of the form
τ = τ . An assignment is a total mapping of type variables to ground
types. An assignment satisfies an equation if and only if it maps both
of its members to the same ground type; an assignment satisfies a
conjunction of equations if and only if it satisfies all of its members.
A constraint C entails a constraint D (which we write C
 D) if and
only if every assignment that satisfies C satisfies D. Two constraints
are equivalent if and only if they entail each other. Constraints serve
as hypotheses within typing judgements; entailment allows exploiting
them. Entailment is decidable [44].

A data signature D consists of an arbitrary set of data constructors
K, each of which carries a closed type scheme of the form

∀ᾱ[D].{ℓ̄ : τ̄} → T τ̄1.

In such a type scheme, the type variables ᾱ are bound within D, τ̄ ,
and τ̄1. The metavariable ℓ ranges over an arbitrary set of record labels.
We write ℓ̄ for a vector of distinct record labels and τ̄ for a vector of
types. The notation ℓ̄ : τ̄ , defined when ℓ̄ and τ̄ have the same length,
stands for the vector of bindings obtained by associating elements of
ℓ̄, in order, to elements of τ̄ . Vectors of bindings are identified up to
reordering. (In the following, we employ similar notation for vectors of
bindings of the form x̄ : τ̄ , ē : τ̄ , c̄ : τ̄ , and for conjunctions of equations
τ̄1 = τ̄2.)

The definitions that follow are relative to (a type signature and) a
data signature.

Let x and y range over a denumerable set of term variables. The
syntax of expressions e, also known as terms, and of clauses c is as

8

follows:

e ::= — Expressions
x | λx : τ.e | e e Pure λ-calculus

| Λα.e | e τ Type abstraction and application
| let x = e in e Local definitions
| letrec x̄ : τ̄ = ē in e
| K τ̄ {ℓ̄ = ē} Data structures
| case e of [τ] c̄

c ::= K ᾱ {ℓ̄ = x̄} 7→ e — Clauses

The language is an extension of the polymorphic λ-calculus [29] with
recursive definitions and with constructs for building and inspecting
algebraic data structures. (In §5, where we present an operational se-
mantics for this programming language, type abstractions and recursive
definitions are restricted to values; for the moment, however, this is
irrelevant.) In case constructs, the clauses’ result type τ is explicitly
given, so as to preserve the property that every expression has at most
one type, up to equivalence, with respect to a given typing environment.
(We do not, however, make use of that property.) We assume that,
for some algebraic data type constructor T , every data constructor K
associated with T is selected by one and only one clause in c̄. In a
clause K ᾱ {ℓ̄ = x̄} 7→ e, the type variables ᾱ and the term variables x̄
are bound within e. The notation {ℓ̄ = x̄} should be understood as a
record pattern.

A typing environment Γ is a mapping of term variables to types,
typically written as a sequence of bindings of the form x : τ . A typing
judgement is of the form C,Γ ⊢ e : τ . We identify typing judgements
up to constraint equivalence. A typing judgement is valid if and only
if it admits a derivation using the rules of Figure 1.

In TAbs, the notation α # C, Γ requires the type variable α not to
appear free within C or Γ. In TApp, [α 7→ τ1]τ stands for the capture-
avoiding substitution of τ1 for α within τ . All rules but Abs, Data,
Clause, Conv, and Weaken are standard (System F) rules. The let

construct is introduced only for convenience. It is equivalent to a β-
redex, except no type annotation is needed. In particular, it does not
involve generalization, as it would in ML.

Abs is standard, except for its second premise, which controls the do-
main of the typing environment Γ. Thanks to the presence of Weaken,
this does not cause any loss of expressiveness. This nonstandard presen-
tation makes it possible to define defunctionalization in a concise and
elegant way (see Abs in Figure 2) while ensuring that defunctionaliza-
tion is not type-directed, a fact which we establish and exploit later on
(Lemma 5.7). Still, this is only a minor presentation issue.

9

Var

C, Γ ⊢ x : Γ(x)

Abs

C,Γ;x : τ1 ⊢ e : τ2

dom(Γ) = fv(λx : τ1.e)

C, Γ ⊢ λx : τ1.e : τ1 → τ2

App

C,Γ ⊢ e1 : τ1 → τ2

C, Γ ⊢ e2 : τ1

C,Γ ⊢ e1 e2 : τ2

TAbs

C, Γ ⊢ e : τ α # C,Γ

C,Γ ⊢ Λα.e : ∀α.τ

TApp

C, Γ ⊢ e : ∀α.τ

C,Γ ⊢ e τ1 : [α 7→ τ1]τ

Let

C,Γ ⊢ e1 : τ1

C, Γ; x : τ1 ⊢ e2 : τ2

C,Γ ⊢ let x = e1 in e2 : τ2

LetRec

C,Γ; x̄ : τ̄ ⊢ ē : τ̄
C,Γ; x̄ : τ̄ ⊢ e : τ

C,Γ ⊢ letrec x̄ : τ̄ = ē in e : τ

Data

K :: ∀ᾱ[D].{ℓ̄ : τ̄} → T τ̄1

C
 [ᾱ 7→ τ̄2]D C,Γ ⊢ ē : [ᾱ 7→ τ̄2]τ̄

C,Γ ⊢ K τ̄2 {ℓ̄ = ē} : T [ᾱ 7→ τ̄2]τ̄1

Case

C,Γ ⊢ e : τ1

C, Γ ⊢ c̄ : τ1 → τ2

C,Γ ⊢ case e of [τ2] c̄ : τ2

Clause

K :: ∀ᾱ[D].{ℓ̄ : τ̄} → T τ̄1 ᾱ # C,Γ, τ̄2, τ
C ∧ D ∧ τ̄1 = τ̄2,Γ; x̄ : τ̄ ⊢ e : τ

C, Γ ⊢ K ᾱ {ℓ̄ = x̄} 7→ e : T τ̄2 → τ

Conv

C, Γ ⊢ e : τ1 C
 τ1 = τ2

C,Γ ⊢ e : τ2

Weaken

C,Γ1; Γ2 ⊢ e : τ x # e

C,Γ1; x : τ1; Γ2 ⊢ e : τ

Figure 1. The type system

Data’s first premise looks up the type scheme associated with the
data constructor K in the current data signature. Its second and third
premises check that the constraint D is satisfied and that the arguments
ē have type τ̄ , as required by the type scheme. Both of these checks are
relative to an instance of the type scheme where the type arguments τ̄2

are substituted for the quantifiers ᾱ and to the current hypothesis C.
Case’s second premise means that each of the clauses in c̄ should

have type τ1 → τ2.
Clause’s first premise looks up the type scheme associated with K

and implicitly α-converts it so that its universal quantifiers coincide
with the type variables ᾱ introduced by the clause at hand. Its second
premise requires these type variables to be fresh, so that they behave as

10

abstract types within the clause’s right-hand side e, and do not escape
their scope. Its third premise typechecks e under the extra hypothesis
D∧ τ̄1 = τ̄2, which is obtained from the knowledge that the value being
examined, which by assumption has type T τ̄2, is an application of
K. This extra hypothesis may provide partial or complete information
about the type variables ᾱ, making them semi-abstract or concrete.

Conv allows replacing the type τ1 with the type τ2, provided they
are provably equal under the assumption C. It is analogous to the
subtyping rule in a constraint-based type system.

The type system is sound [44]. Although this property is of course
essential, it is not explicitly exploited in the present paper. We only
make use of the following lemma, which allows weakening a judgement’s
constraint and replacing its typing environment with an equivalent one.
When Γ and Γ′ have the same domain, we view Γ′ = Γ as a conjunction
of type equations.

Lemma 2.1 C,Γ ⊢ e : τ and C ′
 C ∧ Γ′ = Γ imply C ′,Γ′ ⊢ e : τ .

3. Defunctionalization

Defunctionalization is a global program transformation: it is necessary
that all functions that appear in the source program be known and
labeled in a unique manner. Thus, in the following, we consider a fixed
term p, which we refer to as the source program. We require every λ-
abstraction that appears within p to carry a distinct label m; we write
λmx : τ.e for such a labeled abstraction. We require p to be well-typed
under the empty constraint true and the empty environment ∅, and
consider a fixed derivation of the judgement true, ∅ ⊢ p : τp. We let T
and D stand for the type and data signatures under which p is defined.

The transformed program is defined under an extended type signa-
ture T ′, which contains T as well as a fresh binary algebraic data type
constructor Arrow . The effect of the translation on types is particularly
simple: the native arrow type constructor is translated to Arrow , while
all other type formers are preserved.

JαK = α
Jτ1 → τ2K = Arrow Jτ1K Jτ2K

J∀α.τ K = ∀α.JτK
JT τ̄ K = T Jτ̄K

This translation function is extended in a compositional manner to
vectors of types, typing environments, constraints, type schemes, and
data signatures.

11

The transformed program is defined under a transformed and ex-
tended data signature D′, which is set up as follows. First, D′ contains
JDK. Second, for every λ-abstraction that appears within p and whose
typing subderivation ends with

C, Γ ⊢ λmx : τ1.e : τ1 → τ2,

D′ contains a unary data constructor

m :: ∀ᾱ[JCK].{JΓK} → Arrow Jτ1K Jτ2K ,

where ᾱ stands for the free type variables of the above judgement, that
is, ftv(C, Γ, τ1, τ2), ordered in a fixed, arbitrary manner. We point out
that JΓK is a typing environment, that is, a mapping of term variables
to types; we assume that term variables form a subset of record labels,
which allows us to view JΓK as a mapping of record labels to types. We
assume that all variables in the source program p have received fixed
(although not necessarily distinct) names, so that turning them into
record labels is not a problematic operation.

We may now define a compositional term translation as follows. In
the following, let apply be a fresh term variable. The translation is
defined by a new judgement, of the form C,Γ ⊢ e : τ e′, whose
derivation rules are given in Figure 2. It is clear that C,Γ ⊢ e : τ e′

implies C,Γ ⊢ e : τ . Conversely, given a derivation of C,Γ ⊢ e : τ , there
exists a unique expression e′ such that the judgement C,Γ ⊢ e : τ e′

is the conclusion of a derivation of the same shape. We refer to e′ as
the image of e through defunctionalization. In the following, we refer
to the image of p through defunctionalization as p′. It is obtained from
the derivation of true, ∅ ⊢ p : τp that was fixed above.

The only two interesting rules in the definition of the translation are
Abs and App. Indeed, all other rules preserve the structure of the ex-
pression at hand, using the type translation defined above to deal with
type annotations. Abs translates every λ-abstraction to an injection,
making closure allocation explicit. The data constructor (or, in other
words, the closure’s tag) is m, the unique label that was assigned to
this λ-abstraction. Its type arguments, ᾱ, are all of the type variables
that appear free in the typing judgement. (By convention, these must
be ordered in the same way as in the type scheme associated with the
data constructor m in the data signature D′.) Its value arguments form
a record that stores the values currently associated with all of the term
variables that are bound by the environment Γ. We write {Γ} as a
short-hand for {y = y}y∈dom(Γ), where the left-hand y is interpreted as
a record label, while the right-hand y is a term variable. This is the
closure’s value environment. Abs’s second premise requires dom(Γ) to

12

Var

C,Γ ⊢ x : Γ(x) x

Abs

C,Γ; x : τ1 ⊢ e : τ2 e′

dom(Γ) = fv(λx : τ1.e)
ᾱ = ftv(C, Γ, τ1, τ2)

C,Γ ⊢ λmx : τ1.e : τ1 → τ2
m ᾱ {Γ}

App

C, Γ ⊢ e1 : τ1 → τ2 e′1
C,Γ ⊢ e2 : τ1 e′2
C,Γ ⊢ e1 e2 : τ2
apply Jτ1K Jτ2K e′1 e′2

TAbs

C,Γ ⊢ e : τ e′ α # C,Γ

C,Γ ⊢ Λα.e : ∀α.τ Λα.e′

TApp

C, Γ ⊢ e : ∀α.τ e′

C,Γ ⊢ e τ1 : [α 7→ τ1]τ e′ Jτ1K

Let

C, Γ ⊢ e1 : τ1 e′1
C,Γ;x : τ1 ⊢ e2 : τ2 e′2

C,Γ ⊢ let x = e1 in e2 : τ2
let x = e′1 in e′2

LetRec

C,Γ; x̄ : τ̄ ⊢ ē : τ̄ ē′

C,Γ; x̄ : τ̄ ⊢ e : τ e′

C, Γ ⊢ letrec x̄ : τ̄ = ē in e : τ
letrec x̄ : Jτ̄K = ē′ in e′

Data

K :: ∀ᾱ[D].{ℓ̄ : τ̄} → T τ̄1 C
 [ᾱ 7→ τ̄2]D
C,Γ ⊢ ē : [ᾱ 7→ τ̄2]τ̄ ē′

C,Γ ⊢ K τ̄2 {ℓ̄ = ē} : T [ᾱ 7→ τ̄2]τ̄1 K Jτ̄2K {ℓ̄ = ē′}

Case

C,Γ ⊢ e : τ1 e′ C, Γ ⊢ c̄ : τ1 → τ2 c̄′

C,Γ ⊢ case e of [τ2] c̄ : τ2 case e′ of [Jτ2K] c̄
′

Clause

K :: ∀ᾱ[D].{ℓ̄ : τ̄} → T τ̄1 ᾱ # C,Γ, τ̄2, τ
C ∧ D ∧ τ̄1 = τ̄2, Γ; x̄ : τ̄ ⊢ e : τ e′

C,Γ ⊢ K ᾱ {ℓ̄ = x̄} 7→ e : T τ̄2 → τ K ᾱ {ℓ̄ = x̄} 7→ e′

Conv

C,Γ ⊢ e : τ1 e′ C
 τ1 = τ2

C,Γ ⊢ e : τ2 e′

Weaken

C,Γ1; Γ2 ⊢ e : τ e′ x # e

C, Γ1;x : τ1; Γ2 ⊢ e : τ e′

Figure 2. Term translation

13

coincide with fv(λx : τ1.e), so the variables whose values are saved in
the closure are exactly the function’s free variables. As announced in
the introduction, App translates function applications into invocations
of apply .

To complete the definition of the program transformation, there
remains to wrap the term p′ within an appropriate definition of apply .
Let τapply stand for

∀α1.∀α2.Arrow α1 α2 → α1 → α2.

Let f and arg be fresh term variables. Let α1 and α2 be fresh type
variables. Then, the translation of the source program p, which we
write JpK, is the target program

letrec apply : τapply =
Λα1.Λα2.

λf : Arrow α1 α2.
λarg : α1.

case f of [α2] c̄p

in p′,

where, for every λ-abstraction that appears within p and whose trans-
lation subderivation ends with

Abs

C, Γ;x : τ1 ⊢ e : τ2 e′

dom(Γ) = fv(λx : τ1.e) ᾱ = ftv(C,Γ, τ1, τ2)

C,Γ ⊢ λmx : τ1.e : τ1 → τ2 m ᾱ {Γ}
,

the vector c̄p contains the clause

m ᾱ {Γ} 7→ let x = arg in e′.

As announced in the introduction, apply examines the closure’s tag in
order to determine which code to execute. The clause associated with
the tag m reintroduces the type and term variables, namely ᾱ, Γ, and
x, that must be in scope for the function’s code, namely e′, to make
sense. Again, the type variables ᾱ must be ordered in the same way as
in the type scheme associated with m, and we write {Γ} as a short-hand
for {y = y}y∈dom(Γ).

Our definition of defunctionalization is now complete. Although, for
the sake of simplicity, we have identified the source and target lan-
guages, it is easy to check that every defunctionalized program is first-
order, as desired. Indeed, all function applications in such a program
are double applications of apply , a letrec-bound, binary function.

14

let empty = Λα.λm1x : α.false in

let insert = Λα.λm2x : α.λm3s : α → bool .
λm4y : α.(= α x y) || (s y) in

insert int 1 (empty int) 2

Figure 3. A sample code fragment

m1 :: ∀α[true].{} → set α
m2 :: ∀α[true].{} → Arrow α (Arrow (set α) (set α))
m3 :: ∀α[true].{x : α} → Arrow (set α) (set α)
m4 :: ∀α[true].{x : α; s : set α} → set α

letrec apply : ∀α1.∀α2.Arrow α1 α2 → α1 → α2 =
Λα1.Λα2.

λf : Arrow α1 α2.
λarg : α1.

case f of [α2]
| m1 α {} 7→ let x = arg in false

| m2 α {} 7→ let x = arg inm3 α {x}
| m3 α {x} 7→ let s = arg inm4 α {x; s}
| m4 α {x; s} 7→ let y = arg in

(= αx y) || (apply α bool s y)
in

let empty = Λα.m1 α {} in

let insert = Λα.m2 α {} in

apply (apply (apply (insert int) 1) (empty int)) 2

Figure 4. The defunctionalized code fragment

Example Figure 3 contains a sample program, whose defunctionalized
version appears in Figure 4. For the sake of simplicity, this program does
not make use of guarded algebraic data types: it is a System F program.
We believe that choosing a sample program that does make use of
guarded algebraic data types would provide no additional insights.

The program, inspired by Banerjee et al. [1], defines a very simple
implementation of sets as characteristic functions, then builds the sin-
gleton set {1} and tests whether 2 is a member of it. It makes use of a
polymorphic equality function = of type ∀α.α → α → bool and of the
Boolean “or” combinator || of type bool → bool → bool . Applications
of these two primitive operations are not affected by the translation.

The empty set empty has type ∀α.α → bool . The insertion function
insert has type ∀α.α → (α → bool) → (α → bool). The complete
program has type bool . Its defunctionalized counterpart is defined under

15

the data signature that appears at the top of Figure 4, where set α
stands for Arrow α bool .

The type scheme associated with mi specifies the structure of the
value environment found in every closure tagged mi, as well as the
type of the function that every such closure encodes. Closures formed
using m1 or m2 carry an empty value environment, because they encode
closed functions. On the other hand, closures formed using m3 or m4

carry a nonempty value environment, because the corresponding λ-
abstractions have free term variables. The type schemes associated with
m1 and m4 are similar to those usually assigned to the data constructors
nil and cons, which makes apparent the fact that sets built using empty
and insert become lists after defunctionalization.

The defunctionalized program forms the remainder of Figure 4. As
before, we use punning, that is, we write {x} for {x = x} and {x; s}
for {x = x; s = s}. For the sake of brevity, we omit the type arguments
to apply in the last line. Most of the code is straightforward, but it is
perhaps worth explaining why every clause in the definition of apply
is well-typed. Let us consider, for instance, the clause associated with
m4. Because the type scheme associated with m4 is

∀α[true].{x : α; s : set α} → Arrow α bool ,

the clause’s right-hand side is typechecked under the extra hypothesis
α = α1∧bool = α2 and under a typing environment that ends with arg :
α1; x : α; s : set α. After binding y to arg , the typing environment ends
with x : α; s : set α; y : α1. Thus, y has type α1, which by hypothesis
equals α. Hence, by Conv, y has type α. It is then straightforward to
check that the expression (= αx y) || (apply α bool s y) has type bool .
Furthermore, by hypothesis, bool equals α2, so the clause’s right-hand
side has the expected type α2. All other clauses may be successfully
typechecked in a similar manner: although not all of them have type
bool , all have type α2. Lemma 4.2 carries out the proof in the general
case.

4. Type preservation

We now prove that defunctionalization, as defined in §3, preserves
types. As illustrated by the above example, the proof is not difficult.

In the following statements, for the sake of brevity, we write apply ,
f , and arg for the bindings apply : τapply , f : Arrow α1 α2, and arg :
α1, respectively. We use this notation in λ-abstractions and in typing
environments.

16

Our first lemma states that if an expression e is well-typed, then
its image through defunctionalization e′ must be well-typed as well,
under a constraint, a typing environment, and a type given by the type
translation. Of course, the typing environment must be extended with
a binding for apply , which is used in the translation of applications.

Lemma 4.1 C,Γ ⊢ e : τ e′ implies JCK, apply ; JΓK ⊢ e′ : JτK.

Proof. By structural induction on the derivation of C,Γ ⊢ e : τ e′. In
each case, we use the notations of Figure 2. We explicitly deal with value
abstraction and application only; all other cases are straightforward.

◦ Case Abs. The rule’s conclusion is

C,Γ ⊢ λmx : τ1.e : τ1 → τ2 m ᾱ {Γ} (1)

Its last premise is
ᾱ = ftv(C, Γ, τ1, τ2) (2)

By (1), (2), and by definition of the data signature D′, we have

m :: ∀ᾱ[JCK].{JΓK} → Arrow Jτ1K Jτ2K (3)

By reflexivity of entailment, we have

JCK
 JCK (4)

By Var, for every y ∈ dom(Γ), we have

JCK, apply ; JΓK ⊢ y : JΓK(y) (5)

Applying Data to (3), (4), and (5), and exploiting the fact that the
types Arrow Jτ1K Jτ2K and Jτ1 → τ2K coincide, we find

JCK, apply ; JΓK ⊢ m ᾱ {Γ} : Jτ1 → τ2K.

◦ Case App. The rule’s conclusion is

C,Γ ⊢ e1 e2 : τ2 apply Jτ1K Jτ2K e′1 e′2.

Its first premise is
C,Γ ⊢ e1 : τ1 → τ2 e′1 (1)

Its second premise is
C,Γ ⊢ e2 : τ1 e′2 (2)

Applying the induction hypothesis to (1) yields

JCK, apply ; JΓK ⊢ e′1 : Jτ1 → τ2K (3)

17

Applying it to (2) yields

JCK, apply ; JΓK ⊢ e′2 : Jτ1K (4)

Furthermore, by Var, by definition of τapply , by TApp, and by exploit-
ing the fact that Arrow Jτ1K Jτ2K equals Jτ1 → τ2K, we find

JCK, apply ; JΓK ⊢ apply Jτ1K Jτ2K : Jτ1 → τ2K → Jτ1K → Jτ2K (5)

App, (5), (3), (4) imply JCK, apply ; JΓK ⊢ apply Jτ1K Jτ2K e′1 e′2 : Jτ2K. �

The second lemma states that apply itself is well-typed and has type
τapply , as desired. Because apply is recursive, this assertion holds under
the binding apply : τapply .

Lemma 4.2 true, apply ⊢ Λα1α2.λf .λarg .case f of [α2] c̄p : τapply .

Proof. We must prove that every clause in c̄p is well-typed. Thus, let us
consider a λ-abstraction that appears within p and whose translation
subderivation ends with

Abs

C, Γ;x : τ1 ⊢ e : τ2 e′

dom(Γ) = fv(λx : τ1.e) ᾱ = ftv(C,Γ, τ1, τ2)

C,Γ ⊢ λmx : τ1.e : τ1 → τ2 m ᾱ {Γ}
.

Applying Lemma 4.1 to the first premise yields

JCK, apply ; JΓK;x : Jτ1K ⊢ e′ : Jτ2K,

which, by Lemma 2.1, Conv, and Weaken, implies

JCK ∧ Jτ1K = α1 ∧ Jτ2K = α2, apply ; arg; JΓK;x : α1 ⊢ e′ : α2.

Using Let, this leads to

JCK ∧ Jτ1K = α1 ∧ Jτ2K = α2, apply ; arg ; JΓK ⊢ let x = arg in e′ : α2 (1)

By definition of the data signature D′, we have

m :: ∀ᾱ[JCK].{JΓK} → Arrow Jτ1K Jτ2K (2)

By construction, we have
ᾱ # α1α2 (3)

Applying Clause to (1), (2), and (3) yields

true, apply ; arg ⊢ m ᾱ {Γ} 7→ let x = arg in e′ : Arrow α1 α2 → α2.

Now, because this holds for every λ-abstraction that appears within p,
and by definition of c̄p, we have established

true, apply ; arg ⊢ c̄p : Arrow α1 α2 → α2.

The result follows by Weaken, Case, Abs, and TAbs. �

18

It is now easy to conclude that the image of the source program p
under defunctionalization is well-typed.

Theorem 4.3 true, ∅ ⊢ JpK : JτpK.

Proof. Applying Lemma 4.1 to the judgement true, ∅ ⊢ p : τp p′

yields true, apply ⊢ p′ : JτpK. The result follows from this and from
Lemma 4.2 by LetRec. �

5. Meaning preservation

We now prove that defunctionalization preserves the meaning of pro-
grams, as defined by a call-by-value operational semantics. In order to
define such a semantics, we will require the right-hand sides of letrec

definitions to be values. Furthermore, to ensure that type abstractions
and applications do not influence reduction, we will require the bodies
of type abstractions to be values. The language is otherwise identical
to the one studied in §2–4.

We believe that it would be straightforward to carry out a similar
proof in a call-by-name or call-by-need setting, but have not attempted
to do so.

Because our notion of defunctionalization is not type-directed, we
are able to proceed in two steps, as follows. First, we define defunction-
alization of untyped programs, and prove that it preserves meaning.
Second, exploiting the fact that the two notions of defunctionalization
coincide modulo type erasure, we easily lift this result back to a typed
setting.

This approach appears more general than those found in previous
works, which assumed a simply-typed calculus and carried out proofs
based on logical relations [26, 1]. Proofs based on logical relations
proceed by induction on typing derivations. We believe that, because
defunctionalization can be defined in an untyped setting, its semantic
correctness should also be proved in such a setting. Indeed, an un-
typed correctness statement is much more general, and needs not be
proved again if, for some reason, the type system evolves. Also, its
proof is somewhat more concise, since terms are not cluttered with
type annotations.

19

e ::= r
| x
| λx.e
| e e
| let x = e in e
| letrec x̄ = v̄ in e
| K {ℓ̄ = ē}
| case e of c̄

c ::= K {ℓ̄ = x̄} 7→ e

v ::= λx.e
| K {ℓ̄ = w̄}

w ::= r
| x

S ::= r̄ = v̄
E ::= � e

| r�
| let x = � in e
| K {ℓ = �; ℓ̄ = ē}
| case� of c̄

Figure 5. Syntax of the untyped calculus

5.1. Untyped defunctionalization

Syntax The syntax of the untyped calculus appears in Figure 5. It is
the type-free counterpart of the typed language presented in §2, with a
few amendments that help define a call-by-value operational semantics.

We introduce a new syntactic class of references, ranged over by r.
References never appear in source programs, but arise during reduction.
They represent memory addresses, and help model recursive definitions,
which can allocate cyclic data structures in memory. References are
immutable: once a memory location has been allocated and initialized,
its contents cannot be modified.

We also introduce a new syntactic class of values, ranged over by v.
Values include functions and data constructor applications. We require
the right-hand sides of letrec definitions to be values: this restriction is
standard in a call-by-value setting.

A store S is a partial mapping of references to closed values. A
configuration S / e is a pair of a store S and a closed expression e. As
usual, the references in the domain of the store S are considered bound
in the configuration S / e.

In order to simplify the semantics and to make it more faithful to
an actual implementation, we require values to be flat : that is, for a
data constructor application to be a value, its arguments must be of
the form w, where w ranges over references and variables. This does
not restrict the expressive power of the letrec construct, because more
complex values can be expressed as collections of flat values.

Semantics The operational semantics, a rewriting system on closed
configurations, is defined in Figure 6.

20

S / v → S; r = v / r
if r # S

S / r r′ → S / [x 7→ r′]e
if S(r) = λx.e

S / let x = r in e → S / [x 7→ r]e

S / case r of (K {ℓ̄ = x̄} 7→ e) | c̄ → S / [x̄ 7→ r̄]e
if S(r) = K {ℓ̄ = r̄}

S / letrec x̄ = v̄ in e → S; r̄ = [x̄ 7→ r̄]v̄ / [x̄ 7→ r̄]e
if r̄ # S

S / E[e] → S′ / E[e′]
if S / e → S′ / e′

Figure 6. Semantics of the untyped calculus

The first reduction rule models memory allocation: a value v reduces
to a fresh reference r, together with a new binding of r to v in the
store. (We write r # S when r appears neither in the domain or in
the image of S.) Thus, in this semantics, only references are meant
to be irreducible. An irreducible configuration S / e, where e is not a
reference, represents a runtime error.

The next three rules are standard reduction rules for β-redexes, let-
redexes, and case analysis. A common pattern is for the left-hand side
to mention a reference r, which is interpreted by looking up its value
S(r) in the store.

The next rule deals with letrec constructs simply by allocating new
store bindings, where the bound variables x̄ are replaced with fresh
references r̄.

The last rule allows reduction under an evaluation context E.

Defunctionalization We may now define untyped defunctionalization.
As in the typed case, we consider a fixed closed program p, in which
every λ-abstraction carries a unique tag. We require that no refer-
ence appears in p. We do not, however, require p to be well-typed.
The translation of expressions is defined, in an inductive manner, in
Figure 7. All cases are trivial, except Abs, which translates every λ-
abstraction to a closure allocation, and App, which translates every
function application to an invocation of apply . Note that the relation
 is in fact a function, defined for all subexpressions of p. We write
p′ for the image of p through it. Then, the complete defunctionalized

21

Ref

r r
Var

x x
Abs

λmx.e m {fv(λx.e)}

App

e1 e′1 e2 e′2
e1 e2 apply e′1 e′2

Let

e1 e′1 e2 e′2
let x = e1 in e2

 let x = e′1 in e′2

LetRec

v̄ v̄′ e e′

letrec x̄ = v̄ in e
 letrec x̄ = v̄′ in e′

Data

ē ē′

K {ℓ̄ = ē} K {ℓ̄ = ē′}

Case

e e′ c̄ c̄′

case e of c̄ case e′ of c̄′

Clause

e e′

K {ℓ̄ = x̄} 7→ e K {ℓ̄ = x̄} 7→ e′

Figure 7. Untyped term translation

program JpK is

letrec apply = λf .λarg .case f of c̄p in p′,

where, for every abstraction of the form λmx.e that appears within p,
c̄p contains the clause

m {fv(λx.e)} 7→ let x = arg in e′,

with e′ defined by e e′.

5.2. Untyped meaning preservation

To establish that untyped defunctionalization preserves meaning, we
exhibit a simulation between closed source configurations and their
defunctionalized versions. The translation relation cannot play this
role, because it is not stable under substitution. For instance, the
translation of the function λmx.y x, which has a free variable y, is the
one-field closure m {y = y}, whereas the translation of the function
λmx.r x, which is obtained by substituting r for y, would be the zero-
field closure m {}. Instead, we must define a simulation relation % that
relates λmx.r x with m {y = r}, so as to be stable under substitution
of references for program variables.

In the following, let rapply denote a fixed, distinguished reference.
For the sake of brevity, we will also write rapply for the store binding
rapply = λf .λarg .case f of [apply 7→ rapply]c̄p.

22

SimAbs

λmx.e m {x̄} ȳ ⊆ x̄

λx.[ȳ 7→ r̄]e % m {[ȳ 7→ r̄]x̄}

SimApp

e1 % e′1 e2 % e′2
e1 e2 % rapply e′1 e′2

SimStore

rapply # r̄ # r̄1 v̄ % v̄′

r̄ = v̄ % rapply ; r̄ = v̄′; r̄1 = v̄1

SimConfig

S % S′ e % e′

S / e % S′ / e′

Figure 8. Extra rules for the simulation relation

We define % by the same rules that specify (that is, by the rules
of Figure 7, where every occurrence of is replaced with %), except
Abs and App are replaced with SimAbs and SimApp (Figure 8). In
SimAbs, we write {[ȳ 7→ r̄]x̄} for {x̄ = [ȳ 7→ r̄]x̄}. The relation % is
extended to stores and closed configurations by SimStore and Sim-

Config, also in Figure 8. Note that the right-hand store may contain
garbage bindings (written r̄1 = v̄1) introduced by the reduction of the
transformed program.

It is immediate to check that % extends in the following sense.

Lemma 5.1 e e′ implies e % [apply 7→ rapply]e′.

Furthermore, % is closed under substitution, as desired.

Lemma 5.2 e % e′ implies [x 7→ r]e % [x 7→ r]e′.

Last, % preserves values.

Lemma 5.3 If v % e′ holds, then e′ is a value.

We are now ready to prove that % is a simulation.

Lemma 5.4 (Simulation) The following diagram commutes:

S1 / e1
//

%

��

S2 / e2

%

��

S′
1 / e′1

+
// S′

2 / e′2

Proof. By induction on the derivation of S1 / e1 → S2 / e2. We give
only the case of β-reduction, which is the most interesting one, and
the case of reference allocation, which is straightforward but involves a
minor α-conversion argument.

23

◦ Case (β-reduction). In this case, e1 is r r′, S1(r) is λx.e, and e2 is
[x 7→ r′]e. By SimConfig, SimApp and Ref, the hypothesis S1 / r r′ %
S′

1 / e′1 implies that e′1 must be

rapply r r′.

By SimConfig, SimStore, and SimAbs, this hypothesis also implies
that S′

1 contains the binding rapply and that S′
1(r) is of the form

m {[ȳ 7→ r̄]x̄},

where, for some expression em, we have

x̄ = fv(λx.em) (1)

ȳ ⊆ x̄ (2)

e = [ȳ 7→ r̄]em (3)

Because we are dealing with closed configurations, e2 is closed, which
implies that e has no free variables other than x. By (3), this implies
that the free variables of em form a subset of ȳ ∪ {x}. By (1), this
yields x̄ ⊆ ȳ. By (2), this means that x̄ and ȳ coincide, so we may write
{[ȳ 7→ r̄]x̄} as {x̄ = r̄}.

Now, by definition, c̄p contains the clause m {x̄} 7→ let x = arg in e′m,
where e′m is defined by em e′m. This allows us to build the following
reduction sequence:

S′
1 / e′1

= S′
1 / rapply r r′

→ S′
1 / (λarg.case r of c̄p) r′

→ S′
1; r

′′ = (λarg .case r of c̄p) / r′′ r′

with r′′ # S′
1

→ S′′
1 / case r of (m {x̄} 7→ let x = r′ in [apply 7→ rapply]e

′
m) | . . .

with S′′
1 = S′

1; r
′′ = (λarg .case r of c̄p)

→ S′′
1 / let x = r′ in [x̄ 7→ r̄][apply 7→ rapply]e

′
m

because S′
1(r) is m {x̄ = r̄} and, by (1), x 6∈ x̄ holds

→ S′′
1 / [x 7→ r′][x̄ 7→ r̄][apply 7→ rapply]e′m

There remains to verify that the simulation holds. By Lemma 5.1, we
have em % [apply 7→ rapply]e′m. By Lemma 5.2, this implies

[x 7→ r′][x̄ 7→ r̄]em % [x 7→ r′][x̄ 7→ r̄][apply 7→ rapply]e
′
m,

which, by (3) and by equality of ȳ and x̄, may be written

e2 % [x 7→ r′][x̄ 7→ r̄][apply 7→ rapply]e
′
m.

24

The result follows by SimConfig.

◦ Case (reference allocation). In this case, e1 is a value v1, S2 is
(S1; r1 = v1), and e2 is r1, with r1 # S1. Since configurations are
considered equal modulo consistent renamings of references, we can
require, without loss of generality, r1 # S′

1. Furthermore, the hypothesis
S1 / v1 % S′

1 / e′1 implies that e′1 is a value v′1. We can then close the
diagram as follows:

S1 / v1
//

%

��

S1; r1 = v1 / r1

%

��

S′
1 / v′1

// S′
1; r1 = v′1 / r1 �

Given a closed expression e, let us write e⇑ if and only if the con-
figuration ∅ / e admits an infinite reduction sequence; let us write e⇓ if
and only if ∅ / e reduces to a configuration whose right-hand component
is a value. Then, the fact that defunctionalization preserves meaning,
in an untyped setting, is stated by the next theorem.

Theorem 5.5 p⇑ implies JpK⇑. p⇓ implies JpK⇓.

Proof. To begin, let us recall that, by definition, JpK is

letrec apply = λf .λarg .case f of c̄p in p′.

Thus, the configuration ∅ / JpK reduces, in one step, to

rapply / [apply 7→ rapply]p
′.

Furthermore, by Lemma 5.1, SimStore, and SimConfig, we have

∅ / p % rapply / [apply 7→ rapply]p
′.

Now, assume p diverges. Then, ∅ / p admits an infinite reduction
sequence. By Lemma 5.4, so does rapply / [apply 7→ rapply]p′, hence so
does ∅ / JpK, which proves that JpK diverges.

Last, assume p converges to a configuration of the form S / v. By the
same argument as above, ∅ / JpK must then reduce to a configuration
that simulates S / v. By Lemma 5.3, the right-hand component of that
configuration must be a value, hence JpK converges. �

The theorem states that defunctionalization preserves the termina-
tion behavior of the program. It does not apply to programs that go
wrong; however, they are of little interest, since, in a realistic setting,

25

they should be ruled out by some sound type system. Of course, if de-
sired, it would be easy to prove that defunctionalization also preserves
the property of going wrong.

5.3. Typed meaning preservation

We now sketch how the meaning preservation result may be lifted, if
desired, to a typed setting. (The task is simple enough that it does
not, in our opinion, warrant a detailed development.) Naturally, we
consider the type system presented in §2; however, any other type
system would do just as well, provided it is powerful enough to encode
typed defunctionalization and has a type erasure semantics.

We begin by restricting the typed language defined in §2 so as to
reflect the restrictions imposed on the untyped language at the be-
ginning of §5. That is, we restrict letrec definitions to values, where
values now include λ-abstractions, Λ-abstractions, and data constructor
applications. Furthermore, we restrict type abstraction to values, that
is, we replace the construct Λα.e with Λα.v. Indeed, we do not wish
Λ-abstractions to suspend computation, because they are erased when
going down to the untyped language.

Next, we define a typed operational semantics for the language,
which is identical to the untyped semantics of §5, except that type
information is kept track of.

The two semantics are related by a simple type erasure property,
stated as follows. Given a typed expression e, let ⌊e⌋ be its untyped
counterpart, obtained by erasing all type information. Then, we have:

Lemma 5.6 Let true, ∅ ⊢ p : τp. Then, p⇑ is equivalent to ⌊p⌋ ⇑, and
p⇓ is equivalent to ⌊p⌋ ⇓.

Last, we have insisted earlier that our version of defunctionalization is
not type-directed. In other words, it commutes with type erasure. This
is stated by the following lemma, whose proof is straightforward:

Lemma 5.7 Let true, ∅ ⊢ p : τp. Then, J⌊p⌋K is ⌊JpK⌋.

Using Theorem 5.5 as well as the previous two Lemmas, it is now
straightforward to establish that typed defunctionalization also pre-
serves convergence and divergence. To conclude, types do not help
establish the correctness of defunctionalization; on the contrary, we
believe it is pleasant to get them out of the way, because an untyped
correctness statement is stronger. Of course, our detour through an
untyped semantics is not mandatory; if desired, one could carry out
our simulation proof directly in a typed setting.

26

6. Remarks

Recursion It is worth noting that recursive or mutually recursive func-
tions in the source program do not cause any difficulty. Indeed, a set of
mutually recursive bindings whose right-hand sides are λ-abstractions is
mapped to a set of mutually recursive bindings whose right-hand sides
are closures, that is, applications of data constructors to variables—
in other words, values. Even under a call-by-value evaluation regime,
mutually recursive definitions of values make perfect sense: see the
semantics given in §5.1. Our treatment of mutually recursive func-
tion definitions corresponds to Morrisett and Harper’s fixpack-based
extension to closure conversion [24].

Optimizations The reader may notice that the simply-typed version
of defunctionalization described in the introduction is more efficient
than the one we have presented, because specializing apply with re-
spect to the ground types τ1 and τ2 means dispatching among fewer
cases. If dispatch is implemented by a tree of binary comparisons, as
in SmallEiffel [45], this leads to faster code. In fact, specialization is a
simple way of exploiting the flow information provided for the source
program by the type system. Our version of defunctionalization is näıve,
and includes no such optimization. It is straightforward, however, to
perform specialization in a similar way. Indeed, if τ1 and τ2 are arbi-
trary (not necessarily ground) types, whose free type variables are ᾱ,
then one may define a specialized function apply∃ᾱ.τ1→τ2

, whose type
is ∀ᾱ.Jτ1 → τ2K → Jτ1K → Jτ2K, and whose code is identical to that of
apply , except it contains branches only for the tags corresponding to
source functions whose type is an instance of τ1 → τ2. Branches for all
other tags can be omitted, or, equivalently, can have right-hand sides
that consist of a special expression dead , which is well-typed only under
the false constraint. The resulting program is still well-typed, because,
in each of these branches, inconsistent typing hypotheses are available,
allowing false to be proved. More details about this mechanism are
given by Xi [42], who points out that a type system equipped with
guarded algebraic data types supports identification and elimination
of dead branches. Thus, whereas, in the simply-typed case, type-based
specialization was mandatory in order to achieve type preservation, it
is now optional, but still possible.

Another source of inefficiency in our presentation of defunctional-
ization is our näıve treatment of multiple-argument functions. Indeed,
we have adopted the view that all functions are unary. As a result, ap-
plying a (curried) function to multiple arguments causes the allocation
of several intermediate closures, which immediately become garbage.

27

In practice, it is possible to address this issue by defining yet more
versions of apply , specialized for 2, 3, . . . arguments, and to use these
specialized versions at every call site where multiple arguments are
available at once.

The specialization techniques described in the previous two para-
graphs may be combined, without compromising our type preservation
result. This yields defunctionalized programs containing many highly
specialized versions of apply , each of which typically has few branches.
Thus, this approach may allow producing reasonably small dispatch
tables, by exploiting type information only, instead of relying on a
separate closure analysis.

In a realistic implementation, one should also give special treatment
to calls to known (let-bound) functions. There is no point in going
through apply for such calls.

Defunctionalization as a programming idiom Defunctionalization may
be viewed not only as a compilation technique, but also as a tool that
helps programmers transform programs and reason about them. Danvy
and Nielsen [11] have pointed out that it is an inverse of Church’s
encoding, which means that it allows reasoning in terms of data struc-
tures instead of higher-order functions. This is nicely illustrated by
the case of the sprintf function, whose type is notoriously difficult
to express in Hindley and Milner’s type system, because the value
of its first argument dictates the number and types of its remaining
arguments. Danvy [10] suggested a clever way of expressing sprintf in
a Hindley-Milner setting by encoding format specifiers as first-class
functions. More recently, Xi, Chen, and Chen [44] showed that sprintf
may be expressed in a more direct style, where format specifiers are
data structures, using guarded algebraic data types. We point out
that the latter code is but a defunctionalized version of the former: it
could, in principle, have been derived from it in a systematic manner.
Thus, type-preserving defunctionalization turns clever continuation-
based programs that work around the limitations of Hindley and Mil-
ner’s type system back into first-order programs. Put another way,
extending Hindley and Milner’s type system with polymorphic recur-
sion and guarded algebraic data types makes it possible to write more
programs in direct style.

7. Concretization

So far, we have concentrated on getting rid of first-class functions, by
translating λ-abstraction into injection (sum introduction) and func-

28

tion application into case analysis (sum elimination). Thus, an abstract
object—a function—is given a concrete representation—a tag, applied
to a number of parameters.

However, no specific property of functions is exploited by this sche-
me. In fact, the same transformation could be applied to virtually any
source language construct, by translating its introduction form(s) into
injection and its elimination form(s) into case analysis. Regardless of
the intended meaning of the objects introduced by this construct, they
can be represented using tags, which are interpreted at elimination
sites.

This simple and general idea can be, and has been, exploited in
many ways. It does not seem to have a name of its own yet: we refer
to it as concretization. Our contribution is the (informal) remark that,
using guarded algebraic data types, any program transformation that
is an instance of concretization can be made type-preserving.

In the following, we illustrate this point by studying two such in-
stances. One (§8) eliminates Rémy-style polymorphic records by trans-
lating them down to guarded algebraic data types. The other (§9) is
a new compilation scheme for Haskell’s type classes. Neither of the
underlying untyped encodings is new: indeed, Zendra et al.’s [45] com-
pilation scheme for SmallEiffel is similar to our encoding of polymorphic
records, while Furuse’s [13] compilation scheme for G’Caml is similar
to our encoding of type classes. The type-preserving versions that we
present appear to be novel.

Like defunctionalization, instances of concretization appear, at first
sight, to be whole program transformations. We come back to this issue
in §10.

8. A new compilation scheme for polymorphic records

A typed programming language is said to have polymorphic records,
or, equivalently, records with polymorphic access, if it allows defining
a function that is applicable to every record value containing a field
named ℓ, regardless of which other fields are also present, and returns
the value of that field.

As a counter-example, a type system equipped with simple struc-
tural record types of the form {ℓ̄ : τ̄} does not have polymorphic
records. Indeed, in such a system, a function that projects field ℓ out
of its record argument must be written λx : {ℓ : τ ; ℓ̄ : τ̄}.(x.ℓ), where
ℓ̄ is a fixed, arbitrary set of field labels. Thus, it can be applied only to
records that contain exactly the fields ℓ and ℓ̄. It is not applicable to
all records containing at least field ℓ.

29

Record

C,Γ ⊢ ē : τ̄

C, Γ ⊢ {{ℓ̄ = ē}} : {{ℓ̄ : Pre τ̄ ; ∂Abs}}

Proj

C,Γ ⊢ e : {{ℓ : Pre τ ; ρ}}

C, Γ ⊢ e#ℓ : τ

Figure 9. Typing rules for polymorphic records

8.1. A type system with polymorphic records

There are several ways of adding support for polymorphic records to
a type system. One approach consists in introducing subtyping [6], so
that every record value containing at least field ℓ has type {ℓ : τ} for
some type τ . Another consists in introducing rows [32, 31], so that every
record value containing at least field ℓ has type {ℓ : Pre τ ; ρ} for some
type τ and some row ρ. Here, we follow the second approach, so as
to avoid studying the combination of subtyping and guarded algebraic
data types, which is more involved [43, 37].

Thus, we now extend the programming language of §2 with poly-
morphic records. We provide new syntax for creating and accessing
polymorphic records:

e ::= . . . | {{ℓ̄ = ē}} | e#ℓ

The grammar of types found in §2 is extended with a new type con-
structor for polymorphic records and with syntax for rows:

τ ::= . . . | {{ρ}}
ρ ::= α | (ℓ : θ; ρ) | ∂θ
θ ::= Pre τ | Abs

In fact, this grammar is slightly too permissive, and must be restricted
using kinds. We omit this aspect; for details, the reader is referred
to previous treatments of rows [32, 31]. If ρ is a row, then {{ρ}} is a
polymorphic record type. Although rows are finite terms, they denote
total functions from field labels to types. The row (ℓ : θ; ρ) denotes the
function that maps the label ℓ to the field type θ and that coincides with
the row ρ at other labels. The row ∂θ denotes the function that maps
every label to the type θ. To support this intuition, rows are identified
modulo the equations (ℓ1 : θ1; (ℓ2 : θ2; ρ)) = (ℓ2 : θ2; (ℓ1 : θ1; ρ)) and
(ℓ : θ; ∂θ) = ∂θ. Since rows denote total functions, the domain of a
row does not tell which fields of a record are defined or undefined. The
unary field type constructor Pre and the nullary field type constructor
Abs are introduced for this purpose; they stand for present and absent,
respectively.

30

Next, new rules for typechecking polymorphic records are introduced
(Figure 9). Record states that a record whose fields are ℓ1, . . . , ℓn must
have a type of the form {{ℓ1 : Pre τ1; . . . ; ℓn : Pre τn; ∂Abs}}. This type
involves a row that maps every ℓi to Pre τi and that maps every other
field label to Abs. (In the rule’s conclusion, we abuse notation and
apply the unary type constructor Pre, pointwise, to a vector of types,
yielding another vector of types.) Proj states that projecting field ℓ
out of the record e is permitted if the row that describes e maps ℓ to a
type of the form Pre τ (as opposed to Abs). The remainder of the row,
known as ρ, is irrelevant: the rule doesn’t care which other fields are
present.

The modified type system offers polymorphic record access: indeed,
the polymorphic function Λα.Λβ.λx : {{ℓ : Pre α; β}}.(x#ℓ) is applica-
ble, after suitable type applications, to every record value that contains
a field named ℓ, regardless of which other fields are also present.

8.2. Compiling polymorphic records

Compiling standard records is easy. Let field labels be ordered in some
arbitrary, fixed manner. Every standard record type {ℓ̄ : τ̄} may be
written, in a canonical way, under the form {ℓ0 : τ0; . . . ; ℓn−1 : τn−1},
where ℓ0 < . . . < ℓn−1. A value of such a type can then be represented
in memory as a block of n words, with the contents of field ℓi located at
offset i in the block. This compilation scheme only assumes that every
value fits in one memory word, regardless of its type.

Compiling polymorphic records is more difficult. The above poly-
morphic access function must be able to extract the field ℓ out of
a record value that must indeed contain a field named ℓ, but whose
structure is otherwise unknown. Thus, it is impossible to arrange for
the field to be found at a statically determined offset.

One solution, followed by Ohori [27] and by Gaster and Jones [14],
consists in parameterizing every function with extra arguments, repre-
senting the offsets of the fields that the function needs to access.

Another approach consists in letting every record value carry infor-
mation that allows mapping field labels to integer offsets. This approach
has been widely investigated in the related setting of dynamic dispatch
for object-oriented languages. The information carried by every record
or object can be a complex data structure [46] or an atomic tag. The
SmallEiffel compiler [45], for instance, attaches a tag to every object,
and implements dynamic dispatch via case analysis over tags. This
compilation scheme is an instance of concretization, applied to objects.
In the following, we describe a type-preserving version of this encoding,
applied to polymorphic records.

31

One should point out that, even though our transformation elim-
inates polymorphic records, it does not eliminate rows: typechecking
translated programs still requires rows. This is unsurprising: it is well-
known that type-preserving compilation requires target languages with
rich type systems. Indeed, because compiling down to a low-level lan-
guage obscures some of a program’s structure, proving that a translated
program is still type-correct often requires the type system of the target
language to be at least as elaborate as that of the source language, and
sometimes even more [25].

8.3. Concretizing polymorphic records

We now sketch how polymorphic records may be compiled away via con-
cretization. We do not prove that the encoding is semantics-preserving,
but do prove that it is type-preserving. As evidenced by its use in the
SmallEiffel compiler [45], the untyped version of this encoding is not
new. To the best of our knowledge, the recognition that this transforma-
tion is an instance of concretization, and can be made type-preserving,
is novel.

We require every polymorphic record creation expression that ap-
pears in the source program to carry a distinct label m; we write
{{ℓ̄ = ē}}m for such an expression.

The transformed program is defined under a type signature extended
with a fresh unary algebraic data type constructor Record . The type
translation is simple: the native polymorphic record type constructor
{{·}} is translated to Record , while all other type formers are preserved.

J{{ρ}}K = Record JρK

The type constructor Record is parameterized by a row.
The transformed program is defined under a transformed and ex-

tended data signature. As in §3, the new data signature D′ contains
the translated original data signature JDK. Furthermore, for every poly-
morphic record creation expression that appears in the source program
and whose typing subderivation ends with

C, Γ ⊢ {{ℓ̄ = ē}}m : {{ℓ̄ : Pre τ̄ ; ∂Abs}},

the new data signature D′ contains a unary data constructor

m :: ∀ᾱ[JCK].{ℓ̄ : Jτ̄K} → Record (ℓ̄ : Pre Jτ̄K; ∂Abs) ,

where ᾱ stands for ftv(C, τ̄), ordered in a fixed, arbitrary manner. In
other words, the data constructor m maps a tuple of values, whose
types are Jτ̄K, to (the encoding of) a polymorphic record, whose type is

32

J{{ℓ̄ : Pre τ̄ ; ∂Abs}}K. That is, a polymorphic record is represented as a
tuple, carrying a tag that identifies its layout. To access such a value,
one must first examine its tag, which reveals how the tuple is laid out;
it is then possible to access each of its components at a statically known
offset.

To precisely define this process, we introduce, for every field label ℓ,
a set of clauses c̄ℓ, which reflects the analysis required to access field ℓ.
This set consists of two distinct families of clauses.

First, c̄ℓ contains all clauses of the form

m ᾱ {ℓ̄ = x̄} 7→ x,

where m, ᾱ, and ℓ̄ are as above, ℓ is a member of ℓ̄, and x is the variable
associated with ℓ in the vector of bindings ℓ̄ = x̄. Note that field ℓ is
stored at a statically known offset in a tuple of the form {ℓ̄ = ·}.

Second, c̄ℓ contains all clauses of the form

m ᾱ {ℓ̄ = x̄} 7→ dead ,

where m, ᾱ, and ℓ̄ are as above, ℓ is not a member of ℓ̄, and the special
expression dead is well-typed only under the false constraint. As we
shall see, these clauses are provably dead, which means that, in the
final compiled code, they will be omitted. We include them because
our type system requires case analyses to be exhaustive (§2).

The clauses c̄ℓ are intended to encode exactly the polymorphic record
access operation: that is, they map the encoding of a polymorphic
record to the contents of its ℓ field. Thus, for the encoding to be type-
preserving, we need to prove that these clauses, when applied to an
argument of type J{{ℓ : Pre τ ; ρ}}K, yield a result of type JτK (see Proj

in Figure 9). This must hold for arbitrary τ and ρ. This fact is stated
by the following lemma.

Lemma 8.1 true, ∅ ⊢ c̄ℓ : Record (ℓ : Pre JτK; JρK) → JτK.

Proof. We must prove that every clause of the form m ᾱ {ℓ̄ = x̄} 7→ x̄.ℓ
has type Record (ℓ : Pre JτK; JρK) → JτK, where τ and ρ are arbitrary.
(We let x̄.ℓ stand for x if ℓ = x is a member of the vector of bindings
ℓ̄ = x̄ and for dead otherwise.) By definition of D′ and by Clause, this
reduces to proving

JCK ∧ (ℓ̄ : Pre Jτ̄K; ∂Abs) = (ℓ : Pre JτK; JρK), x̄ : Jτ̄K ⊢ x̄.ℓ : JτK,

where C and τ̄ are given by the existence of the typing judgement
C,Γ ⊢ {{ℓ̄ = ē}}m : {{ℓ̄ : Pre τ̄ ; ∂Abs}} in the typing derivation of the
source program. We now distinguish two cases: either the constraint
JCK ∧ (ℓ̄ : Pre Jτ̄K; ∂Abs) = (ℓ : Pre JτK; JρK) is satisfiable, or it is not.

33

Record

C,Γ ⊢ ē : τ̄ ē′ ᾱ = ftv(C, τ̄)

C, Γ ⊢ {{ℓ̄ = ē}}m : {{ℓ̄ : Pre τ̄ ; ∂Abs}} m ᾱ {ℓ̄ = ē′}

Proj

C,Γ ⊢ e : {{ℓ : Pre τ ; ρ}} e′

C,Γ ⊢ e#ℓ : τ case e′ of [JτK] c̄ℓ

Figure 10. Translation rules for polymorphic records

◦ It is satisfiable. Then, ℓ ∈ ℓ̄ must hold, because this constraint
would otherwise entail the unsatisfiable type equation Abs = Pre JτK.
Thus, x̄.ℓ stands for x, with ℓ = x a member of the vector of bindings
ℓ̄ = x̄. By Var, x has type Jτ̄ .ℓK, where τ̄ .ℓ stands for the type found at
index ℓ in the vector τ̄ . Furthermore, because ℓ is a member of ℓ̄, the
constraint (ℓ̄ : Pre Jτ̄K; ∂Abs) = (ℓ : Pre JτK; JρK) entails the equation
Jτ̄ .ℓK = JτK. Thus, by Conv, x has type JτK.

◦ It is unsatisfiable. (The situations where this constraint is unsat-
isfiable are discussed in §8.4.) Then, x̄.ℓ stands for dead , which admits
any type under a false constraint. �

We can now complete the definition of the compilation scheme. A
compositional term translation is defined by a judgement of the form
C,Γ ⊢ e : τ e′, whose most important two derivation rules appear in
Figure 10. Record translates a polymorphic record {{ℓ̄ = ē}}m to an
application of the tag m to a tuple {ℓ̄ = ē′}. Proj translates an access
to field ℓ of a polymorphic record into an analysis of the tag, followed
by an access to the underlying tuple, as expressed by the clauses c̄ℓ. All
other rules (omitted) preserve the structure of the expression at hand,
using the type translation defined above to deal with type annotations.
The present translation is somewhat simpler than the one studied in
§3, because there is no need for a recursive apply-like function.

It is straightforward to check that the translation is type-preserving:

Theorem 8.2 C,Γ ⊢ e : τ e′ implies JCK, JΓK ⊢ e′ : JτK.

Proof. By structural induction on the derivation of C, Γ ⊢ e : τ e′.
In each case, we use the notations of Figure 10.

◦ Case Record. Applying the induction hypothesis to the first
premise yields JCK, JΓK ⊢ ē′ : Jτ̄K. By definition of the data signature
D′ and by Data, this implies

JCK, JΓK ⊢ m ᾱ {ℓ̄ = ē′} : Record (ℓ̄ : Pre Jτ̄K; ∂Abs).

34

let create = Λα.λx : α.{{pos = x}}m1 in

let bump = Λβ.λp : {{pos : Pre int ; β}}.
let x = p#pos in

create int (x + 1) in

let pair = Λγ1.Λγ2.λx1 : γ1.λx2 : γ2.{{left = x1; right = x2}}m2 in

pair
{{pos : Pre int ; ∂Abs}}
{{pos : Pre bool ; ∂Abs}}
(bump (color : Pre int ; ∂Abs) {{color = 1; pos = 0}}m3)
(create bool true)

Figure 11. A sample code fragment

◦ Case Proj. Applying the induction hypothesis to the premise yields

JCK, JΓK ⊢ e′ : Record (ℓ : Pre JτK; JρK).

Furthermore, Lemma 8.1, Lemma 2.1, and Weaken yield

JCK, JΓK ⊢ c̄ℓ : Record (ℓ : Pre JτK; JρK) → JτK.

By Case, these imply JCK, JΓK ⊢ case e′ of [JτK] c̄ℓ : JτK. �

Example The code fragment in Figure 11 is meant to illustrate the
main features of the compilation scheme. The function create allocates
a polymorphic record that holds a single field, named pos, whose value
is the parameter x. Interestingly, the type of x, namely α, is abstract at
this point, and this flexibility is exploited in the remainder of the code
fragment, where create is applied to int and to bool at two distinct
call sites. The function bump expects a polymorphic record p that
contains at least one field named pos. It extracts the value of that field,
increments it, and creates a new record. The function pair allocates
a pair, represented as a polymorphic record with fields left and right .
The body of the program consists of a pair of applications of bump and
create.

The translation of this code fragment is shown in Figure 12. Every
polymorphic record creation expression has been replaced with an ap-
plication of a tag (m1, m2, or m3) to an appropriate number of type
and value parameters.

The polymorphic record access expression p#pos has been replaced
with a case analysis over p. All left-hand sides in this case analysis
involve the binding pos = x. However, the fields other than pos may
differ. In the branch for m1, pos is the only field in the tuple, so this
branch really means “fetch the field at offset 0 in this tuple”. In the

35

m1 :: ∀α.{pos : α} → Record (pos : Pre α; ∂Abs)
m2 :: ∀γ1γ2.{left : γ1; right : γ2} →

Record (left : Pre γ1; right : Pre γ2; ∂Abs)
m3 :: {color , pos : int} → Record (color , pos : Pre int ; ∂Abs)

let create = Λα.λx : α.(m1 α {pos = x}) in

let bump = Λβ.λp : Record (pos : Pre int ; β).
let x = case p of [int]

| m1 α {pos = x} 7→ x
| m3 {color = y; pos = x} 7→ x

in

create int (x + 1) in

let pair =
Λγ1.Λγ2.λx1 : γ1.λx2 : γ2.(m2 γ1γ2 {left = x1; right = x2}) in

pair
(Record (pos : Pre int ; ∂Abs))
(Record (pos : Pre bool ; ∂Abs))
(bump (color : Pre int ; ∂Abs) (m3 {color = 1; pos = 0}))
(create bool true)

Figure 12. The translated code fragment

branch for m3, there is also a color field, so, assuming (for example’s
sake) that fields are laid out in memory in alphabetical order, this
branch really means “fetch the field at offset 1 in this tuple”. In other
words, examining the tag allows telling at which offset the pos field is
stored.

The case analysis does not explicitly contain a branch for m2. One
could add such a branch, but it would be provably dead. Indeed, p
has type Record (pos : Pre int ; β), while m2 builds values of type
Record (left : Pre γ1; right : Pre γ2; ∂Abs). These types are not
unifiable, so no value that carries the tag m2 can ever be substituted
for p. This is discussed more thoroughly in §8.4.

8.4. Remarks

Eliminating dead clauses For every type τ and row ρ, the proof of
Lemma 8.1 partitions c̄ℓ into two subsets, consisting respectively of
the clauses where JCK ∧ (ℓ̄ : Pre Jτ̄K; ∂Abs) = (ℓ : Pre JτK; JρK) is
satisfiable and of the clauses where it is not. The clauses in the second
group are provably dead. Indeed, when this constraint is unsatisfiable,
the type of the polymorphic record created at site m does not match
the type of the polymorphic record that is being accessed. Thus, the

36

latter cannot carry the tag m. In practice, a compiler can and will
detect and eliminate such dead clauses [42]. Thus, only the first subset
of c̄ℓ will appear in the compiled code; yet, we have a static guarantee
that the case analysis cannot fail.

According to the proof of Lemma 8.1, if a clause in c̄ℓ is live, then
ℓ ∈ ℓ̄ must hold, that is, the polymorphic record created at site m
must have a field named ℓ. It is interesting to note, however, that the
converse is not true: it is possible for a clause to satisfy ℓ ∈ ℓ̄ and to
nevertheless be provably dead. Indeed, for the above constraint to be
unsatisfiable, it is sufficient for some field (possibly other than ℓ) to
be known to be present at the access site and absent at the creation
site, or conversely, or to be present at both sites, but with incompatible
types. Thus, there are plenty of ways to prove that a clause is dead,
and, thereby, to reduce the number of cases that must be considered
at each polymorphic record access site.

Setting up fewer clauses Although, for simplicity, we have associated
a distinct tag m with every polymorphic record creation site, it is really
only necessary to distinguish between polymorphic records with distinct
domains. In other words, one could translate all source expressions of
the form {{ℓ̄ = ē}}, where ℓ̄ is fixed, to applications of a single data

constructor mℓ̄, whose type scheme is

mℓ̄ :: ∀ᾱ[true].{ℓ̄ : ᾱ} → Record (ℓ̄ : Pre ᾱ; ∂Abs) .

Notice that the constraint JCK has been replaced with true and that
the types Jτ̄K have been abstracted away and replaced with a vector of

type variables ᾱ. This allows mℓ̄ to be used at every creation site for a
polymorphic record of domain ℓ̄.

If this suggestion was followed, then there would be fewer branches
to select from when accessing a polymorphic record. In particular,
when the domain of the record is statically known at the access site
(that is, when its type does not involve a row variable), then only
one branch would remain, so polymorphic access would effectively be
compiled down to standard record access. In other words, one would
be able to guarantee that, at access sites that do not exploit the extra
expressiveness offered by polymorphic records, no time penalty is paid
for their use.

Unfortunately, at first sight, this suggestion appears at odds with
the idea put forth in the previous paragraph. Indeed, assigning less
specific type schemes to the data constructors prevents valuable type
information from being carried from polymorphic record creation sites
to access sites. As a result, some clauses, which could have been proven

37

dead using this information, may now appear potentially live. In other
words, at access sites where the domain of the polymorphic record is not
statically known, we may end up with branches that could have been
discarded if the data constructors had been assigned more specific type
schemes.

Combining the two optimizations Fortunately, the ideas discussed in
the previous two paragraphs can really be made compatible, if we make
a minor extension of the type system. Let ℓ̄ be a fixed set of field labels.
The idea is to introduce a single data constructor mℓ̄, as in the previous
paragraph, and nevertheless to assign it a very specific type scheme,
as follows. Assume that the source program contains k polymorphic
record creation sites of domain ℓ̄. Let their typing subderivations end
with

Ci,Γi ⊢ {{ℓ̄ = ēi}} : {{ℓ̄ : Pre τ̄i; ∂Abs}},

where i ranges over {1, . . . , k}. Let ᾱi stand for ftv(Ci, τ̄i). Then, the

type scheme ascribed to mℓ̄ is

mℓ̄ ::
k∧

i=1

∀ᾱi[JCiK].{ℓ̄ : Jτ̄iK} → Record (ℓ̄ : Pre Jτ̄iK; ∂Abs) .

This is exactly the type-theoretic intersection of the type schemes that
would be individually assigned to the k data constructors mℓ̄

1, . . . , m
ℓ̄
k

if we followed the definitions in §8.3 and allocated a distinct data
constructor for each polymorphic record creation site. Clearly, this is
potentially much more specific than the type scheme that was initially
suggested for mℓ̄. In fact, it is as specific as possible, while still meeting
the requirement that applications of mℓ̄ at all sites should be well-typed.

The intersection type constructor, however, is not part of the type
system studied so far, so we must extend it. The required extension
is extremely simple: we extend the syntax of constraints by letting
constraints consist of conjunctions and disjunctions of type equations.
(With this extension, entailment checks become more expensive, but
remain decidable.) Nothing else needs be modified! Then, the above
intersection of type schemes may be written as a single type scheme,
as follows:

∀ᾱᾱ1 . . . ᾱk[
k∨

i=1

(JCiK ∧ Jτ̄iK = ᾱ)].{ℓ̄ : ᾱ} → Record (ℓ̄ : Pre ᾱ; ∂Abs)

We let the reader check the following two facts. First, the translation is
still type-preserving. Second, at every polymorphic record access site,
the clause associated with mℓ̄ is provably dead if and only if all of the

38

clauses that would be associated with mℓ̄
1, . . . , m

ℓ̄
k in the approach of

§8.3 are provably dead. In other words, we have met our goal of setting
up fewer clauses and nevertheless allowing as many dead clauses as
possible to be detected.

9. A new compilation scheme for Haskell’s type classes

We now exploit concretization to eliminate the dictionary records intro-
duced by the standard compilation scheme for Haskell’s type classes [40,
17]. Where the standard encoding creates a dictionary record, we create
a data constructor application. Where the standard encoding accesses
a dictionary record, we perform case analysis. This leads to a new
compilation scheme for type classes, where dictionaries are represented
as algebraic data structures, instead of as records of functions. Thus,
we propose a rather different “explanation” of type classes.

This new encoding is also type-preserving. Its target type system
is an extension of Hindley and Milner’s discipline with polymorphic
recursion and guarded algebraic data types.

We cannot recall in this paper the definition of type classes, nor the
full details of their standard compilation scheme. Both are explained
by Hall et al. [16, 17]. We assume that the reader is familiar at least
with type classes, although perhaps not with their encoding.

The standard encoding of type classes and our new encoding share
much of their structure. We begin with an overview of this common
architecture. Then, we describe the specific aspects of the standard
encoding and those of our own encoding. We borrow much of our
notation from Hall et al. [16].

As an illustration, we use a few basic examples, given in Figure 13.
They are definitions for two classes, Eq and Ord , and for a few instances
of these classes.

9.1. Architecture of a type class encoding

To begin, every encoding must define how dictionaries are represented
at runtime. To do so, one must define within the target type system, for
every class name κ, a unary type constructor (or type abbreviation),
also written κ. In other words, whereas, in the Haskell language, every
class name κ acts as a unary predicate over types (the formula κ τ
asserts that the type τ is a member of the class κ), in the target
language, κ acts as a unary type operator (the type κ τ describes
values that form evidence that the type τ is a member of the class κ).
In the following, we also refer to evidence values as dictionaries.

39

class Eq a where

(==) :: a → a → Bool

instance Eq Int where

(==) = eqInt
where eqInt :: Int → Int → Bool

eqInt = ...
instance (Eq a) ⇒ Eq [a] where

(==) = eqList (==)
where eqList :: (a → a → Bool) → [a] → [a] → Bool

eqList = ...

class (Eq a) ⇒ Ord a where

(<) :: a → a → Bool
(≤) :: a → a → Bool

instance Ord Int where

...
instance (Ord a) ⇒ Ord [a] where

...

Figure 13. Sample class and instance declarations

Second, in every encoding, a class declaration of the general form

class (κ1 α, . . . , κm α) → κ α (class-decl)
where var1 : τ1, . . . , varn : τn

is translated into m superclass accessors and n method accessors. A
superclass accessor has type ∀α.κ α → κi α, for some i ∈ {1, . . . , m}.
Its role is to turn evidence for the formula κ α into evidence for the
formula κi α, where κi is a superclass of κ. A method accessor has type
∀α.κ α → τj , for some j ∈ {1, . . . , n}. Its role is to turn evidence for
the formula κ α into an implementation for method var j at type α.

For instance, the class declarations in Figure 13 must give rise to
three method accessors and one superclass accessor, whose types are:

(==) :: ∀α.Eq α → α → α → Bool
getEqFromOrd :: ∀α.Ord α → Eq α

(<) :: ∀α.Ord α → α → α → Bool
(≤) :: ∀α.Ord α → α → α → Bool

Third, in every encoding, an instance declaration of the general form

instance (κ′
1 τ ′

1, . . . , κ
′
l τ ′

l) → κ τ (inst-decl)
where var1 = exp1, . . . , varn = expn

40

must be translated into a value of type

∀α1 . . . αk.κ
′
1 τ ′

1 → . . . → κ′
l τ ′

l → κ τ.

Here, α1, . . . , αk are the type variables that occur free in the instance
declaration; for more details, see Hall et al. [16]. In other words, a
nonparameterized instance declaration (l = 0) is translated to a dictio-
nary. A parameterized instance declaration (l > 0) is translated to a
function that accepts l dictionaries and produces a new dictionary. In
the following, we speak of “parameterized dictionaries,” regardless of
whether l is zero or nonzero.

9.2. The standard encoding

In the standard encoding, dictionaries are records containing (pointers
to) superclass dictionaries and method implementations. Thus, in the
translated program, κ is defined as an abbreviation for a suitable record
type. Hall et al. [16] use unlabeled records, that is, tuples, and write
〈·〉 for the tuple type constructor.

For instance, if the declarations in Figure 13 are part of the source
program, then, in the transformed program, Eq α is defined as an
abbreviation for the tuple type 〈α → α → Bool〉, because a dictionary
for Eq α consists of an implementation for the method (==) at type α.
Similarly, Ord α is defined as an abbreviation for 〈Eq α, α → α →
Bool , α → α → Bool〉, because a dictionary for Ord α consists of a
dictionary for Eq α and of implementations for the methods (<) and
(≤) at type α.

Second, superclass and method accessors are simply defined as pro-
jections out of a dictionary tuple; see Hall et al. [16]. For instance,
getEqFromOrd is defined as λdOrd.π3

1 dOrd. That is, getEqFromOrd
extracts the first component of its argument, which is expected to be
a three-component tuple of type Ord α.

Third, the parameterized dictionary value associated with an in-
stance declaration of the form (inst-decl) is defined as follows:

Λα1 . . . αk.
λdvar1 : κ′

1 τ ′
1. . . . λdvarl : κ′

l τ ′
l .

〈dexp1, . . . ,dexpm, exp1, . . . , expn〉

Here, every dexpi builds a dictionary of type κi τ , where κ1, . . . , κm

are the superclasses of κ, while every expj is the translation of expj

and is an implementation for the method var j . Both dexpi and expj

may contain free occurrences of the variables dvar1, . . . ,dvarl.

41

9.3. The new encoding

As announced earlier, the basic idea underlying the new encoding is to
eliminate dictionary records by replacing them with data constructor
applications. In other words, the new encoding could be viewed as the
composition of two phases, where the first phase is the standard encod-
ing and the second phase eliminates the dictionary records introduced
by the previous phase. To avoid complicating matters, we do not insist
on such a view; instead, we give a direct definition of the new encoding.

To begin, dictionaries are algebraic data structures. Thus, in the
translated program, κ is defined as a unary algebraic data type con-
structor. In other words, we associate a distinct parameterized algebraic
data type with every class name.

Second, superclass and method accessors must perform case analysis
over their argument. Indeed, because κ is now an algebraic data type
constructor, the only way of exploiting a value of type κ α is to perform
case analysis over its tag. Thus, the superclass and method accessors
associated with a class declaration of the form (class-decl) must be
defined in the following style:

let rec dvari = Λα.λdvar : κ α.casedvar of [κi α] . . .
varj = Λα.λdvar : κ α.casedvar of [τj] . . .

We momentarily omit the clauses of the case constructs and write
ellipses in their place. We cannot yet define these clauses, because
we have not yet declared the data constructors associated with the
algebraic data type constructor κ. We shall do so shortly.

Third, every dictionary record is concretized, that is, replaced with
an application of a fresh data constructor to dvar1, . . . ,dvarl, which,
by definition, include the free variables of the original dictionary record
〈dexp1, . . . ,dexpm, exp1, . . . , expn〉.

Thus, to every instance declaration of the form (inst-decl), we asso-
ciate a unique data constructor I, whose type scheme is

I :: ∀α1 . . . αk.〈κ
′
1 τ ′

1, . . . , κ
′
l τ ′

l 〉 → κ τ.

This definition makes κ a guarded algebraic data type, as opposed to
an ordinary algebraic data type, because τ is not a type variable.

The parameterized dictionary value associated with this instance
declaration is then simply I, that is,

Λα1 . . . αk.
λdvar1 : κ′

1 τ ′
1. . . . λdvarl : κ′

l τ ′
l .

I α1 . . . αk 〈dvar1, . . . ,dvarl〉

42

Notice how the dictionary record 〈dexp1, . . . ,dexpm, exp1, . . . , expn〉,
which appeared in the standard encoding, has been replaced with an
application of I.

We have associated the data constructor I with the algebraic data
type κ. Thus, we must now add a clause for I to each of the superclass
and method accessors for the class κ. More precisely, to the definition
of the i-th superclass accessor, where i ∈ {1, . . . , m}, we add the clause

I α1 . . . αk 〈dvar1, . . . ,dvarl〉 → dexpi,

where, exactly as in the standard encoding, dexpi is evidence for κi τ .
Furthermore, to the definition of the j-th method accessor, where j ∈
{1, . . . , n}, we add the clause

I α1 . . . αk 〈dvar1, . . . ,dvarl〉 → expj,

where, exactly as in the standard encoding, expj is the translation of
expj and is an implementation for the method var j.

The definition of the new encoding is now complete. Indeed, we have
explained all of the differences with respect to the standard encoding;
the rest of the machinery is shared by both encodings [16]. In the
interest of brevity, we do not include a proof that the new encoding
is type-preserving; it is, however, straightforward. Proving that both
encodings are semantics-preserving would also be a good thing. To the
best of our knowledge, the standard encoding has never been proven
sound. We do not address this issue here.

9.4. Example

The instance declarations of Figure 13 give rise to the following data
constructors:

EqInt :: Eq Int
EqList :: ∀α.Eq α → Eq [α]
OrdInt :: Ord Int

OrdList :: ∀α.Ord α → Ord [α]

where Eq and Ord are unary guarded algebraic data type constructors.
The definition of the method accessor (==) is

(==) :: Eq a → a → a → Bool
(==) EqInt = eqInt where eqInt = ...
(==) (EqList dEq) = eqList ((==) dEq) where eqList = ...

(We have used pattern matching instead of an explicit case construct,
and have elided the definitions of eqInt and eqList , as in Figure 13).
It is straightforward to check that this case analysis is well-typed. In

43

the first clause, the type variable a is known to be Int , and the right-
hand side has type Int → Int → Bool , so this clause has the desired
type. In the second clause, the type variable a is known to be [b], and
dEq to have type Eq b, for some unknown type b. Thus, the right-hand
side has type [b] → [b] → Bool , and this clause also has the desired
type. Again, by exploiting a guarded algebraic data type, we are able
to perform case analyses whose branches have seemingly incompatible
types.

The definition of the superclass accessor getEqFromOrd is

getEqFromOrd :: Ord a →Eq a
getEqFromOrd OrdInt = EqInt
getEqFromOrd (OrdList dOrd) = EqList (getEqFromOrd dOrd)

Again, it is straightforward to check that it is well-typed.

9.5. Remarks

Proof terms In this new compilation scheme, dictionaries are repre-
sented as terms built exclusively out of the data constructors associated
with instance declarations. In fact, they may be viewed as proof terms.
Indeed, an instance declaration may be viewed as a deduction rule. A
collection of such declarations forms a deduction system, which allows
deriving formulas of the form κ τ . Dictionaries, in our encoding, are
isomorphic to derivations in this deduction system. For instance, a
dictionary for Eq [[Int]] is EqList (EqList EqInt), reflecting the de-
ductions that must be made to establish that the type [[Int]] is a
member of the type class Eq . In other words, in our encoding, a dictio-
nary is not a record of methods, but only a proof that such methods
exist. The proof term is interpreted, to produce an actual method, only
when required, that is, at method invocation time. These proof terms
are somewhat reminiscent of Sheard’s witness terms [36], which also
involve guarded algebraic data types.

An interesting feature of the new encoding is that, since dictionaries
are proof terms, they may be analyzed and deconstructed. For instance,
it is possible, in the target language, to implement a function of type
∀α.Eq [α] → Eq α. Its definition is:

getEqAFromEqListA :: Eq [a] →Eq a
getEqAFromEqListA (EqList dEq) = dEq

It is worth noting that this case analysis is exhaustive: no branches for
data constructors other than EqList are necessary. Thus, the function
getEqAFromEqListA does not involve a dynamic check, and cannot fail.
This is guaranteed by the fact that Haskell disallows so-called over-
lapping instances. Indeed, Haskell requires that all derivations whose

44

conclusion is of the form Eq [τ] begin with an application of the same
instance declaration [16]. Thus, all dictionary values whose type is of
the form Eq [τ] must be applications of EqList.

In the standard encoding, getEqAFromEqListA cannot be defined.
Indeed, a dictionary record of type Eq [α] consists of an implementation
for the method (==) at type [α] , represented as a function closure.
Even though, by construction, this closure must contain, as part of
its value environment, a pointer to a dictionary record of type Eq α,
extracting it is not permitted by the type discipline. This fact has had
implications on the design of Haskell. Indeed, in Haskell, the constraint
Eq α implies Eq [α] , but the converse implication is deemed not to
hold, because the standard compilation scheme cannot support it. Our
compilation scheme, on the other hand, supports both implications,
and would allow Eq α and Eq [α] to be considered equivalent formulæ
by the Haskell typechecker. This would allow the typechecker to find
more proofs of an assertion like Eq α, that is, more ways of building a
dictionary for such an assertion.

Flow graphs A transformation that appears similar to our encoding
is performed, in an untyped setting, by Furuse [13]. Furuse compiles a
source language equipped with a form of overloading down to a target
language where dictionaries are explicit and are represented by so-called
flow graphs. These flow graphs appear to correspond to our “proof
terms.”

One minor difference is that Furuse’s flow graphs are possibly cyclic,
whereas the proof terms that arise out of our encoding must be finite,
because the definition of Haskell requires the types that appear in the
premises of an instance declaration to be strict subterms of the type
mentioned in its conclusion.

We conjecture that, using guarded algebraic data types, it is possible
to define a type-preserving version of Furuse’s encoding.

Flat variants of the encodings The standard encoding of type classes
represents dictionaries as nested records, where the nesting of dictio-
naries reflects the class hierarchy. In this scheme, the time required
to access a method is proportional to the depth of the hierarchy. One
can imagine a variant of the standard scheme, where dictionaries are
represented as flat polymorphic records, so that superclass accessors
become identity functions. In this scheme, dictionary construction may
be more costly, but access is presumably faster, especially when the
class hierarchy is deep. Our compilation scheme also admits such a
variant.

45

The encoding as a programming idiom Our encoding of type classes
can also be viewed as a programming idiom and explicitly exploited
by programmers, if the programming language that they are using
lacks type classes, but features guarded algebraic data types. In fact,
instances of this idiom have already appeared in the literature. For
instance, Cheney and Hinze’s [8] version of equal, which relies on a
guarded algebraic data type constructor Rep, is essentially our en-
coding of the method (==), provided integers, characters, lists, and
pairs are declared to be instances of the class Eq . Similarly, Xi, Chen,
and Chen’s [44] version of val2string corresponds to an encoding of
Haskell’s standard show method. The data constructors TYint, TYtup,
and TYfun correspond to instance declarations stating that integers,
pairs, and functions are members of the class Show. However, Xi, Chen,
and Chen’s TYtyp, which also allows proof terms (that is, values of type
TY a) to be converted to string representations, cannot appear through
our encoding. Indeed, dictionaries are invisible for the Haskell program-
mer: there is no type of dictionaries, so it is impossible to declare that
this type is itself an instance of Show. Thus, directly programming
in terms of guarded algebraic data types, instead of programming in
Haskell with type classes, is more clumsy, but offers the equivalent of
“first-class dictionaries.”

Haskell allows instance declarations for a single class to be split over
several program units, whereas most programming languages equipped
with algebraic data types only provide a monolithic case construct,
preventing case analyses from being split over several program modules.
This significantly reduces the attractiveness of our encoding as a pro-
gramming idiom. However, one could design programming languages
that allow case analyses to be modularly defined. We come back to this
issue in §10.

10. Conclusion

We have defined a type-preserving version of defunctionalization for
polymorphic type systems. The transformation relies on polymorphic
recursion and on guarded algebraic data types. We have shown that se-
mantic correctness (that is, meaning preservation) can be established in
an untyped setting. Last, we have pointed out that a common principle,
which we refer to as concretization, is at the heart of several program
transformations, including defunctionalization and encodings of poly-
morphic records and of type classes. We have proved that guarded
algebraic data types allow defining type-preserving versions of these
transformations.

46

This paper is intended both as a study of concretization in a typed
setting and as an illustration of the usefulness of guarded algebraic
data types. The techniques that we describe can be of help not only to
authors of type-preserving compilers, but also to programmers whose
programming language offers guarded algebraic data types.

Defunctionalization rearranges code in a non-local manner. Indeed,
the function bodies, which could be arbitrarily spread throughout the
source program, are gathered inside the definition of apply in the trans-
lated program. Thus, the body of apply potentially contains code from
arbitrary source program modules. For this reason, defunctionalization
appears to be a whole program transformation. This is in contrast
with closure conversion, which is a modular transformation, because its
definition is compositional: it transforms expressions into expressions in
a purely local manner. The same holds of concretization: the encodings
of polymorphic records and of type classes presented in §8 and §9 appear
to be whole program transformations, whereas the standard encodings
of dynamic dispatch and of type classes, which employ code pointers
instead of tags, are not. Does that diminish the attractiveness of the
program transformations presented in this paper?

Our answer is that defunctionalization (or concretization) is not
inherently a whole program transformation. It is usually considered
one because it is usually defined for target languages that do not al-
low the definitions of dispatch functions, like apply , to be split over
several independent modules. In that case, apply must be defined in
a monolithic manner, so the transformation cannot be defined in a
modular way. Conversely, for defunctionalization (or concretization) to
become modular, it is necessary, and sufficient, to adopt a richer target
language, where function definitions can be split over several program
modules.

This point is little known, but not new: more than two decades
ago, Warren [41] noted that defunctionalization is indeed a modular
transformation when the target language is Prolog, because Prolog
allows placing the clauses that define the apply predicate inside several
independent modules.

If we choose to remain within the realm of functional programming,
then the target language must allow the definition of a (recursive)
function to be split over several independent modules. Such a facility is
currently offered by programming languages with multi-methods [5, 21,
3, 12]. In these languages, concretization is modular, and could lead to
extremely useful programming idioms. For this reason, we believe the
design of a typed programming language that combines incremental
function definitions with a form of guarded algebraic data types to be
a very interesting direction for future research.

47

Acknowledgements

The authors wish to thank Greg Pettyjohn, Simon Peyton Jones, and
the anonymous referees for numerous useful comments and suggestions.

References

1. Banerjee, A., N. Heintze, and J. G. Riecke: 2001, ‘Design and correctness of
program transformations based on control-flow analysis’. In: International
Symposium on Theoretical Aspects of Computer Software (TACS), Vol. 2215
of Lecture Notes in Computer Science. pp. 420–447.

2. Bell, J. M., F. Bellegarde, and J. Hook: 1997, ‘Type-driven defunctionalization’.
In: ACM International Conference on Functional Programming (ICFP).

3. Bonniot, D.: 2002, ‘Type-checking multi-methods in ML (a modular ap-
proach)’. In: Workshop on Foundations of Object-Oriented Languages (FOOL).

4. Boquist, U.: 1999, ‘Code optimisation techniques for lazy functional languages’.
Ph.D. thesis, Chalmers University of Technology.

5. Bourdoncle, F. and S. Merz: 1997, ‘Type checking higher-order polymorphic
multi-methods’. In: ACM Symposium on Principles of Programming Languages
(POPL). pp. 302–315.

6. Cardelli, L.: 1988, ‘A semantics of multiple inheritance’. Information and
Computation 76(2/3), 138–164.

7. Cejtin, H., S. Jagannathan, and S. Weeks: 2000, ‘Flow-directed closure conver-
sion for typed languages’. In: European Symposium on Programming (ESOP),
Vol. 1782 of Lecture Notes in Computer Science. pp. 56–71.

8. Cheney, J. and R. Hinze: 2003, ‘First-class phantom types’. Technical Report
1901, Cornell University.

9. Damas, L. and R. Milner: 1982, ‘Principal type-schemes for functional pro-
grams’. In: ACM Symposium on Principles of Programming Languages
(POPL). pp. 207–212.

10. Danvy, O.: 1998, ‘Functional unparsing’. Journal of Functional Programming
8(6), 621–625.

11. Danvy, O. and L. R. Nielsen: 2001, ‘Defunctionalization at work’. In: ACM In-
ternational Conference on Principles and Practice of Declarative Programming
(PPDP). pp. 162–174.

12. Frey, A.: 2004, ‘Approche algébrique du typage d’un langage à la ML avec
objets, sous-typage et multi-méthodes’. Ph.D. thesis, École des Mines de Paris.

13. Furuse, J.: 2003, ‘Extensional polymorphism by flow graph dispatching’. In:
Asian Symposium on Programming Languages and Systems, Vol. 2895 of
Lecture Notes in Computer Science.

14. Gaster, B. R. and M. P. Jones: 1996, ‘A polymorphic type system for extensible
records and variants’. Technical Report NOTTCS-TR-96-3, Department of
Computer Science, University of Nottingham.

15. Girard, J.-Y.: 1972, ‘Interprétation fonctionnelle et élimination des coupures
de l’arithmétique d’ordre supérieur’. Thèse d’état, Université Paris 7.

16. Hall, C., K. Hammond, S. Peyton Jones, and P. Wadler: 1994, ‘Type classes in
Haskell’. In: D. Sannella (ed.): European Symposium on Programming (ESOP),
Vol. 788 of Lecture Notes in Computer Science. pp. 241–256.

48

17. Hall, C., K. Hammond, S. Peyton Jones, and P. Wadler: 1996, ‘Type classes in
Haskell’. ACM Transactions on Programming Languages and Systems 18(2),
109–138.

18. Hanus, M.: 1988, ‘Horn clause specifications with polymorphic types’. Ph.D.
thesis, Fachbereich Informatik, Universität Dortmund.

19. Hanus, M.: 1989, ‘Horn clause programs with polymorphic types: Semantics
and resolution’. In: International Joint Conference on Theory and Practice
of Software Development (TAPSOFT), Vol. 352 of Lecture Notes in Computer
Science. pp. 225–240.

20. Hinze, R.: 2003, ‘Fun with phantom types’. In: J. Gibbons and O. de Moor
(eds.): The Fun of Programming. Palgrave Macmillan, pp. 245–262.

21. Millstein, T. and C. Chambers: 2002, ‘Modular statically typed multimethods’.
Information and Computation 175(1), 76–118.

22. Milner, R.: 1978, ‘A theory of type polymorphism in programming’. Journal
of Computer and System Sciences 17(3), 348–375.

23. Minamide, Y., G. Morrisett, and R. Harper: 1996, ‘Typed closure conversion’.
In: ACM Symposium on Principles of Programming Languages (POPL). pp.
271–283.

24. Morrisett, G. and R. Harper: 1998, ‘Typed closure conversion for recursively-
defined functions (extended abstract)’. In: International Workshop on Higher
Order Operational Techniques in Semantics (HOOTS), Vol. 10 of Electronic
Notes in Theoretical Computer Science.

25. Morrisett, G., D. Walker, K. Crary, and N. Glew: 1999, ‘From system F to
typed assembly language’. ACM Transactions on Programming Languages and
Systems 21(3), 528–569.

26. Nielsen, L. R.: 2000, ‘A denotational investigation of defunctionalization’.
Technical Report RS-00-47, BRICS.

27. Ohori, A.: 1995, ‘A polymorphic record calculus and its compilation’. ACM
Transactions on Programming Languages and Systems 17(6), 844–895.

28. Paulin-Mohring, C.: 1992, ‘Inductive definitions in the system Coq: rules and
properties’. Research Report RR1992-49, ENS Lyon.

29. Pierce, B. C.: 2002, Types and Programming Languages. MIT Press.
30. Pottier, F. and N. Gauthier: 2004, ‘Polymorphic typed defunctionalization’.

In: ACM Symposium on Principles of Programming Languages (POPL). pp.
89–98.

31. Pottier, F. and D. Rémy: 2005, ‘The essence of ML type inference’. In: B. C.
Pierce (ed.): Advanced Topics in Types and Programming Languages. MIT
Press, Chapt. 10, pp. 389–489.

32. Rémy, D.: 1994, ‘Type inference for records in a natural extension of ML’. In:
C. A. Gunter and J. C. Mitchell (eds.): Theoretical Aspects Of Object-Oriented
Programming. Types, Semantics and Language Design. MIT Press.

33. Reynolds, J. C.: 1983, ‘Types, abstraction and parametric polymorphism’. In:
Information Processing 83. pp. 513–523.

34. Reynolds, J. C.: 1998a, ‘Definitional interpreters for higher-order programming
languages’. Higher-Order and Symbolic Computation 11(4), 363–397.

35. Reynolds, J. C.: 1998b, ‘Definitional interpreters revisited’. Higher-Order and
Symbolic Computation 11(4), 355–361.

36. Sheard, T.: 2004, ‘Languages of the future’. In: ACM Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA). pp.
116–119.

49

37. Simonet, V. and F. Pottier: 2005, ‘Constraint-based type inference for guarded
algebraic data types’. Research Report 5462, INRIA.

38. Tolmach, A.: 1997, ‘Combining closure conversion with closure analysis using
algebraic types’. In: Workshop on Types in Compilation (TIC).

39. Tolmach, A. and D. P. Oliva: 1998, ‘From ML to Ada: Strongly-typed language
interoperability via source translation’. Journal of Functional Programming
8(4), 367–412.

40. Wadler, P. and S. Blott: 1989, ‘How to make ad-hoc polymorphism less ad-hoc’.
In: ACM Symposium on Principles of Programming Languages (POPL). pp.
60–76.

41. Warren, D. H. D.: 1982, ‘Higher-order extensions to PROLOG: are they
needed?’. In: J. E. Hayes, D. Michie, and Y.-H. Pao (eds.): Machine Intelligence
10. Ellis Horwood, pp. 441–454.

42. Xi, H.: 1999, ‘Dead code elimination through dependent types’. In: Interna-
tional Workshop on Practical Aspects of Declarative Languages (PADL), Vol.
1551 of Lecture Notes in Computer Science. pp. 228–242.

43. Xi, H.: 2004, ‘Applied type system’. In: TYPES 2003, Vol. 3085 of Lecture
Notes in Computer Science. pp. 394–408.

44. Xi, H., C. Chen, and G. Chen: 2003, ‘Guarded recursive datatype constructors’.
In: ACM Symposium on Principles of Programming Languages (POPL). pp.
224–235.

45. Zendra, O., D. Colnet, and S. Collin: 1997, ‘Efficient dynamic dispatch
without virtual function tables. the SmallEiffel compiler’. In: ACM Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). pp. 125–141.

46. Zibin, Y. and Y. Gil: 2002, ‘Fast algorithm for creating space efficient
dispatching tables with application to multi-dispatching’. In: ACM Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA). pp. 142–160.

