
An informal guide to
picking fresh names

François Pottier

January 3, 2008

1 Introduction
These draft course notes provide the proofs of a few key lemmas concerning Damas and Milner’s type
system, and attempt to explain, clearly but informally, how to reason “up to α-conversion”, that is,
where and why it is possible to “pick sufficiently fresh names”.

Figure 1 presents Damas and Milner’s type system [3].

2 Types, type schemes, type environments
The syntax of types, type schemes, and type environments is as follows:

τ ::= α | τ → τ
σ ::= ∀ᾱ.τ
Γ ::= ∅ | (Γ;x : τ)

3 Renamings and substitutions
Definition 3.1 A renaming ρ is a total, bijective mapping of type variables to type variables whose
domain is finite. The domain of ρ is the set of the type variables α such that ρ(α) 6= α. The support of
ρ is its domain. ¦

A renaming is also viewed as a bijective mapping of types to types, of type schemes to type schemes,
and of type environments to type environments, as follows:

ρ(τ1 → τ2) = ρ(τ1) → ρ(τ2)
ρ(∀ᾱ.τ) = ∀ρ(ᾱ).ρ(τ)

ρ(∅) = ∅
ρ(Γ;x : σ) = ρ(Γ);x : ρ(σ)

DM-VAR
Γ(x) = σ

Γ ` x : σ

DM-ABS
Γ;x : τ ` e : τ ′

Γ ` λx.e : τ → τ ′

DM-APP
Γ ` e1 : τ → τ ′ Γ ` e2 : τ

Γ ` e1 e2 : τ ′

DM-LET
Γ ` e1 : σ Γ;x : σ ` e2 : τ

Γ ` let x = e1 in e2 : τ

DM-GEN
Γ ` e : τ ᾱ # Γ

Γ ` e : ∀ᾱ.τ

DM-INST
Γ ` e : ∀ᾱ.τ

Γ ` e : [ᾱ 7→ ~τ ]τ

Figure 1: Damas and Milner’s type system

1



Lemma 3.2 Type derivations are preserved under renamings. That is, for every derivation of Γ ` e : σ,
there exists an isomorphic derivation of ρ(Γ) ` e : ρ(σ). ¦

Proof. A meta-theoretic argument suffices here. None of the typing rules that define Damas and Mil-
ner’s type system is sensitive to the choice of type variable names, so the inductive predicate that these
rules define must be preserved by renamings. This is what Gabbay and Pitts refer to as equivari-
ance [1]. ¤

Definition 3.3 A substitution ϕ is a total mapping of type variables to types whose domain is finite. The
domain of ϕ is the set of the type variables α such that ϕ(α) 6= α. The codomain of ϕ is the set of the
type variables that appear free in the image of its domain. The support of ϕ is the union of its domain
and codomain. ¦

As announced above, a type variable α is considered fresh for ϕ, which I write α # ϕ, if and only if
α is not in the support of ϕ.

A substitution is also viewed as a mapping of types to types, of type schemes to type schemes, and
of type environments to type environments, as follows:

ϕ(τ1 → τ2) = ϕ(τ1) → ϕ(τ2)
ϕ(∀ᾱ.τ) = ∀ᾱ.ϕ(τ) if ᾱ # ϕ

ϕ(∅) = ∅
ϕ(Γ; x : σ) = ϕ(Γ); x : ϕ(σ)

The following lemma states that, if a type variable appears in ϕ(α), then it must appear in ϕ or α.

Lemma 3.4 ᾱ # ϕ and ᾱ # α imply ᾱ # ϕ(α). ¦
Proof. If α is in the domain of ϕ, then, by definition, the free type variables of ϕ(α) are in the codomain
of ϕ, so the first hypothesis implies the goal. If, on the other hand, α is not in the domain of ϕ, then
ϕ(α) is α, so the second hypothesis is the goal. ¤

This lemma can be generalized, by replacing α with a type τ , a type scheme σ, or a type environment Γ.
It is a general property that, if a type variable is fresh for a number of objects, then it is fresh for the
result of applying an equivariant operation (here, function application) to these objects.

4 The type substitution lemma
Lemma 4.1 Type derivations are preserved under substitutions. That is, for every derivation of Γ ` e :
σ, there exists an isomorphic derivation of ϕ(Γ) ` e : ϕ(σ). ¦

The proof of this lemma is by structural induction over the derivation of the judgement Γ ` e : τ .
In each case, one inverts the rule, thus obtaining access to its premises; then, one invokes the induction
hypothesis, applying it to one of the premises; finally, one builds a new instance of the rule. The fact
that one builds a new instance of the same rule clearly shows that the lemma is structure-preserving.
The proof is very straightforward in all cases, except in cases DM-GEN and DM-INST, where one must
be careful to “pick sufficiently fresh names”. These two cases (and only these two) are detailed below.
In each of these two cases, the reasoning is in two steps. First, one examines the ideal situation where
a suitable freshness hypothesis is available. Then, one shows that, in the general situation, a renaming
step allows obtaining such a hypothesis. In research papers, the second step is usually omitted – the
reader is trusted to convince herself that the freshness hypothesis can indeed be assumed “without loss
of generality”.

Proof. I consider only the two cases announced above.
◦ Case DM-GEN. The hypothesis is Γ ` e : ∀ᾱ.τ , and is obtained as the conclusion of an instance

of DM-GEN whose premises are Γ ` e : τ and ᾱ # Γ. The goal is ϕ(Γ) ` e : ϕ(∀ᾱ.τ).

2



Step 1. Let us assume the freshness hypothesis ᾱ # ϕ. Invoking the induction hypothesis yields
ϕ(Γ) ` e : ϕ(τ). Besides, the freshness hypothesis ᾱ # ϕ, together with the premise ᾱ # Γ, imply
ᾱ # ϕ(Γ) (Lemma 3.4). Thus, we can build a new instance of DM-GEN, whose conclusion is ϕ(Γ) `
e : ∀ᾱ.ϕ(τ). Thanks to the freshness hypothesis, this is ϕ(Γ) ` e : ϕ(∀ᾱ.τ)—that is, the goal.

Step 2. Now, what when the freshness hypothesis is not met? Pick a vector of distinct type vari-
ables β̄, whose length is the same as that of ᾱ, such that β̄ is fresh for the judgement Γ ` e : ∀ᾱ.τ (that
is, β̄ # Γ and β̄ # ∀ᾱ.τ ) and β̄ satisfies the desired freshness hypothesis (that is, β̄ # ϕ). Let ρ be the
renaming (ᾱ β̄), that is, the bijective mapping that swaps ᾱ and β̄ and leaves all other type variables
unaffected.

Now, notice that also ᾱ is fresh for the judgement Γ ` e : ∀ᾱ.τ (that is, both ᾱ # Γ and ᾱ # ∀ᾱ.τ
hold, the former by hypothesis and the latter by construction). Since both ᾱ and β̄ are fresh for this
judgement, there follows, by definition of ρ, that ρ preserves this judgement (that is, ρ(Γ) = Γ and
ρ(∀ᾱ.τ) = ∀ᾱ.τ ).

By Lemma 3.2, applying ρ to the derivation of this judgement yields another valid derivation with
the same structure, and, by the above remarks, it is a derivation of the same judgement. By construction,
this new derivation ends with an instance of DM-GEN whose premises are Γ ` e : ρ(τ) and β̄ #Γ. This
instance of DM-GEN satisfies the freshness hypothesis that was assumed in step 1.

◦ Case DM-INST. The hypothesis is Γ ` e : [ᾱ 7→ ~τ ]τ , and is obtained as the conclusion of an
instance of DM-INST whose premise is Γ ` e : ∀ᾱ.τ . The goal is ϕ(Γ) ` e : ϕ([ᾱ 7→ ~τ ]τ).

Step 1. Let us assume the freshness hypothesis ᾱ # ϕ. Invoking the induction hypothesis yields
ϕ(Γ) ` e : ϕ(∀ᾱ.τ), which, by the freshness hypothesis, can be written ϕ(Γ) ` e : ∀ᾱ.ϕ(τ). Let us
build a new instance of DM-INST, whose conclusion is ϕ(Γ) ` e : [ᾱ 7→ ϕ(~τ)]ϕ(τ). I claim that this
is the goal. To establish this claim, it suffices to check that the substitutions ϕ1 = ϕ ◦ [ᾱ 7→ ~τ ] and
ϕ2 = [ᾱ 7→ ϕ(~τ)] ◦ϕ coincide. This is done by applying both substitutions to an arbitrary variable α. I
distinguish two sub-cases.

Sub-case α ∈ ᾱ. For some index i, α is αi, the i-th element of the vector ᾱ. Then, ϕ1(α) is ϕ(τi),
where τi is the i-th element of the vector ~τ . Besides, α ∈ ᾱ and ᾱ # ϕ imply α # ϕ, so α is not in the
domain of ϕ, so ϕ(α) is α. There follows that ϕ2(α) is also ϕ(τi).

Sub-case α 6∈ ᾱ. Then, ϕ1(α) is ϕ(α). Besides, ᾱ # ϕ and ᾱ # α imply ᾱ # ϕ(α), which implies
that ϕ2(α) is ϕ(α).

Step 2. Now, what when the freshness hypothesis is not met? Pick a vector of distinct type vari-
ables β̄, whose length is the same as that of ᾱ, such that β̄ is fresh for ∀ᾱ.τ and β̄ satisfies the desired
freshness hypothesis (that is, β̄ # ϕ). Let ρ be the renaming (ᾱ β̄).

Because both ᾱ and β̄ are fresh for the type scheme ∀ᾱ.τ , ρ is fresh for ∀ᾱ.τ as well. This implies
ρ(∀ᾱ.τ) = ∀ᾱ.τ , which can be written ∀β̄.ρ(τ) = ∀ᾱ.τ . In short, the bound variables of the type
scheme can be changed from ᾱ to β̄ via an α-conversion step.

Furthermore, I claim that the type [ᾱ 7→ ~τ ]τ can also be written [β̄ 7→ ~τ ]ρ(τ). To prove this,
it suffices to check that the substitutions [ᾱ 7→ ~τ ] and [β̄ 7→ ~τ ] ◦ ρ coincide when applied to a type
variable α that appears free in τ . As above, I distinguish two sub-cases. If, for some index i, α is αi,
the i-th element of the vector ᾱ, then it is clear that both substitutions map α to τi, the i-th element of
the vector ~τ . If, on the other hand, α is not in ᾱ, then α appears free in ∀ᾱ.τ , which, because β̄ is fresh
for ∀ᾱ.τ , means that α is not in β̄. It is then clear that both substitutions map α to itself.

By these two remarks, our instance of DM-INST has premise Γ ` e : ∀β̄.ρ(τ) and conclusion
Γ ` e : [β̄ 7→ ~τ ]ρ(τ). When viewed in this manner, it satisfies the freshness hypothesis that was
assumed in step 1. ¤

It is somewhat discomforting that the renaming arguments (the “step 2”s), when written out in full,
like above, are quite complex, yet are usually omitted – only the central arguments (the “step 1”s) are
written on paper. Expert readers are usually able to form an intuition for which freshness hypotheses
are reasonable and which are not. In case DM-GEN, the intuitive reason why ᾱ can be picked fresh
is that it does not appear free in the conclusion of the rule, so that a renaming of the entire derivation
does not affect the conclusion. In case DM-INST, the intuitive reason is that ᾱ is mute both in the
premise (where it is universally bound) and in the conclusion (where it is substituted out), so that a
local α-conversion step suffices – no global renaming of the derivation is even required. In practice, it

3



is useful for researchers to form this kind of intuition. Yet, mistakes remain possible, so that, ideally,
reasoning up to freshness hypotheses should be machine-checked. See, for instance, Pitts [2] for a
rigorous development of recursion and induction principles up to freshness hypotheses.

References
[1] Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable binding.

Formal Aspects of Computing, 13(3–5):341–363, July 2002.

[2] Andrew M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53:459–506, 2006.

[3] François Pottier and Didier Rémy. The essence of ML type inference. In Benjamin C. Pierce, editor,
Advanced Topics in Types and Programming Languages, chapter 10, pages 389–489. MIT Press,
2005.

4

http://www.cl.cam.ac.uk/~amp12/papers/newaas/newaas-jv.pdf
http://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf

	Introduction
	Types, type schemes, type environments
	Renamings and substitutions
	The type substitution lemma

