
2-4-2 / Type systems
Polymorphism

François Pottier

September 29 and October 6, 2009

1 / 125

Contents

Why polymorphism?

Polymorphic λ-calculus

Damas and Milner’s type system

Type soundness

Polymorphism and references

Bibliography

2 / 125

What is polymorphism?

Polymorphism is the ability for a term to simultaneously admit several
distinct types.

3 / 125

Why polymorphism?

Polymorphism is indispensable [Reynolds, 1974]: if a function that
sorts a list is independent of the type of the list elements, then it
should be directly applicable to lists of integers, lists of Booleans, etc.

In short, it should have polymorphic type:

∀X.(X → X → bool)→ list X → list X

which instantiates to the monomorphic types:

(int→ int→ bool)→ list int→ list int
(bool→ bool→ bool)→ list bool→ list bool

. . .

4 / 125

Why polymorphism?

In the absence of polymorphism, the only ways of achieving this effect
would be:

• to manually duplicate the list sorting function at every type
(no-no!);

• to use subtyping and claim that the function sorts lists of
values of any type:

(> → > → bool)→ list > → list >

(The type > is the type of all values, and the supertype of all
types.) This leads to loss of information and subsequently
requires introducing an unsafe downcast operation. This was the
approach followed in Java before generics were introduced in 1.5.

5 / 125

Polymorphism seems almost free

Polymorphism is already implicitly present in simply-typed λ-calculus.
Indeed, we have checked (in fact, inferred) that the type:

(X1 → X2)→ X1 → X1 → X2 × X2

is a principal type for the term λfxy.(f x, f y).

By saying that this term admits the polymorphic type:

∀X1X2.(X1 → X2)→ X1 → X1 → X2 × X2

we make polymorphism internal to the type system.

6 / 125

Towards type abstraction

Polymorphism is a step on the road towards type abstraction.

Intuitively, if a function that sorts a list has polymorphic type:

∀X.(X → X → bool)→ list X → list X

then it knows nothing about X – it is parametric in X – so it must
manipulate the list elements abstractly: it can copy them around,
pass them as arguments to the comparison function, but it cannot
directly inspect their structure.

In short, within the code of the list sorting function, the variable X is
an abstract type.

7 / 125

Parametricity

In the presence of polymorphism (and in the absence of effects), a
type can reveal a lot of information about the terms that inhabit it.
For instance, the polymorphic type

∀X.X → X

has only one inhabitant, namely the identity. Similarly, the type of the
list sorting function reveals a “free theorem” about its behavior!

This phenomenon was studied by Reynolds [1983] and by
Wadler [1989, 2007], among others. An account based on an
operational semantics is offered by Pitts [2000].

8 / 125

Ad hoc versus parametric

Let me begin a short digression.

The term “polymorphism” dates back to a 1967 paper by
Strachey [2000], where ad hoc polymorphism and parametric
polymorphism were distinguished.

I see two different (and sometimes incompatible) ways of defining this
distinction...

9 / 125

Ad hoc versus parametric: first definition

Here is one definition of the distinction:

With parametric polymorphism, a term can admit several types, all of
which are instances of a single polymorphic type:

int→ int, bool→ bool, . . .
∀X.X → X

With ad hoc polymorphism, a term can admit a collection of unrelated
types:

int→ int→ int, float→ float→ float, . . .
but not ∀X.X → X → X

10 / 125

Ad hoc versus parametric: second definition

Here is another definition:

With parametric polymorphism, untyped programs have a well-defined
semantics. (Think of the identity function.) Types are used only to
rule out unsafe programs.

With ad hoc polymorphism, untyped programs do not have a
semantics: the meaning of a term can depend upon its type (e.g.
2 + 2), or, even worse, upon its type derivation (e.g. show . read).

11 / 125

Ad hoc versus parametric: type classes

By the first definition, Haskell’s type classes [Hudak et al., 2007] are
a form of (bounded) parametric polymorphism: terms have principal
(qualified) type schemes, such as:

∀X.Num X ⇒ X → X → X

Yet, by the second definition, type classes are a form of ad hoc
polymorphism: untyped programs do not have a semantics.

End of digression – in this course, we are interested only in the
simplest form of parametric polymorphism.

12 / 125

Contents

Why polymorphism?

Polymorphic λ-calculus

Damas and Milner’s type system

Type soundness

Polymorphism and references

Bibliography

13 / 125

Polymorphic λ-calculus

The polymorphic λ-calculus (also known as: the second-order λ-calculus;
F2; System F) was independently defined by Girard (1972) and
Reynolds [1974].

Compared to the simply-typed λ-calculus, types are extended:

T ::= . . . | ∀X.T

How are the syntax and semantics of terms extended? There are
several variants, depending on whether one adopts a type-passing or a
type-erasing interpretation of polymorphism...

14 / 125

Type-passing versus type-erasing interpretations

In the type-passing view, types exist at runtime: a value of type ∀X.T
is a function that expects a type as an argument. The semantics
involves typed terms and computation over types.

In the type-erasing view, types are erased prior to runtime: a value of
type ∀X.T is a value that happens to simultaneously have type T for
every X. The semantics involves untyped terms.

(Even under the type-erasing view, one sometimes works with
type-annotated terms, for the purposes of decidable type-checking.
This will be the case, for instance, when we study type-preserving
closure conversion.)

15 / 125

Type-passing polymorphic λ-calculus

In the type-passing variant [Reynolds, 1974], there are term-level
constructs for introducing and eliminating the universal quantifier:

TAbs
Γ; X ` t : T

Γ ` ΛX.t : ∀X.T

TApp

Γ ` t : ∀X.T
Γ ` t T ′ : [X 7� T ′]T

Type variables are explicitly bound and appear in type environments.

The operational semantics is extended accordingly:

t ::= . . . | ΛX.t | t T
v ::= . . . | ΛX.t
E ::= . . . | [] T

(ΛX.t) T �� [X 7� T]t

16 / 125

Type-passing versus type-erasing: pros and cons

The type-passing interpretation has a number of disadvantages.

• because it alters the semantics, it does not fit our view that the
untyped semantics should pre-exist and that a type system is
only a predicate that selects a subset of the well-behaved terms.

• because it requires both values and types to exist at runtime, it
can lead to a duplication of machinery. Compare type-preserving
closure conversion in type-passing [Minamide et al., 1996] and in
type-erasing [Morrisett et al., 1999] styles.

An apparent advantage of the type-passing interpretation is to allow
typecase; however, typecase can be simulated in a type-erasing system
by viewing runtime type descriptions as values [Crary et al., 2002].

In the following, we focus on the type-erasing variant, which does not
alter the syntax or semantics of untyped terms.

17 / 125

Type-erasing polymorphic λ-calculus

The syntax and semantics of terms are unchanged.

The typing rules that introduce and eliminate the universal quantifier
are non-syntax-directed:

∀-Intro
Γ ` t : T X # Γ

Γ ` t : ∀X.T

∀-Elim
Γ ` t : ∀X.T

Γ ` t : [X 7� T ′]T

Because this type-erasing variant of System F allows evaluation under
a universal introduction rule, it exhibits an interaction with references,
while the type-passing variant does not. (Details later on...)

Here, type variables are not explicitly introduced (but this is just a
matter of style).

Why the side condition X # Γ?...

18 / 125

On the side condition X # Γ

Omitting the side condition leads to unsoundness:

∀-Intro2
Abs

∀-Elim

Broken ∀-Intro

x : X1 ` x : X1

x : X1 ` x : ∀X1.X1
x : X1 ` x : X2

∅ ` λx.x : X1 → X2

∅ ` λx.x : ∀X1.∀X2.X1 → X2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

19 / 125

On the side condition X # Γ

Omitting the side condition leads to unsoundness:

∀-Intro2
Abs

∀-Elim

Broken ∀-Intro
x : X1 ` x : X1

x : X1 ` x : ∀X1.X1

x : X1 ` x : X2
∅ ` λx.x : X1 → X2

∅ ` λx.x : ∀X1.∀X2.X1 → X2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

20 / 125

On the side condition X # Γ

Omitting the side condition leads to unsoundness:

∀-Intro2
Abs

∀-Elim

Broken ∀-Intro
x : X1 ` x : X1

x : X1 ` x : ∀X1.X1
x : X1 ` x : X2

∅ ` λx.x : X1 → X2

∅ ` λx.x : ∀X1.∀X2.X1 → X2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

21 / 125

On the side condition X # Γ

Omitting the side condition leads to unsoundness:

∀-Intro2

Abs

∀-Elim

Broken ∀-Intro
x : X1 ` x : X1

x : X1 ` x : ∀X1.X1
x : X1 ` x : X2

∅ ` λx.x : X1 → X2

∅ ` λx.x : ∀X1.∀X2.X1 → X2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

22 / 125

On the side condition X # Γ

Omitting the side condition leads to unsoundness:

∀-Intro2
Abs

∀-Elim

Broken ∀-Intro
x : X1 ` x : X1

x : X1 ` x : ∀X1.X1
x : X1 ` x : X2

∅ ` λx.x : X1 → X2

∅ ` λx.x : ∀X1.∀X2.X1 → X2

This is a type derivation for a type cast (Objective Caml’s Obj.magic).

23 / 125

On the side condition X # Γ

A good intuition is: a judgement Γ ` t : T corresponds to the logical
assertion ∀X̄.(Γ⇒ T), where X̄ are the free type variables of the
judgement.

In that view, ∀-Intro corresponds to the axiom:

∀X.(P ⇒ Q) ≡ P ⇒ (∀X.Q) if X # P

24 / 125

On the side condition X # Γ

Quiz: why is there no such side condition in a presentation of
System F where type variables are explicitly bound in the type
environment? Or is there one, and where? back

Answer: no such condition is needed in rule TAbs, because (1) in the
premise of TAbs, the environment is extended with an explicit binding
of X, and (2) the definition of environment lookup, not shown earlier,
contains a side condition:

(Γ; X)(x) = Γ(x) if X # Γ(x)

The details vary, but the side condition exists in all presentations.

25 / 125

On the side condition X # Γ

Quiz: why is there no such side condition in a presentation of
System F where type variables are explicitly bound in the type
environment? Or is there one, and where? back

Answer: no such condition is needed in rule TAbs, because (1) in the
premise of TAbs, the environment is extended with an explicit binding
of X, and (2) the definition of environment lookup, not shown earlier,
contains a side condition:

(Γ; X)(x) = Γ(x) if X # Γ(x)

The details vary, but the side condition exists in all presentations.

26 / 125

An example

Here is a version of the term λfxy.(f x, f y) that carries explicit type
abstractions and annotations:

ΛX1.ΛX2.λf : X1 → X2.λx : X1.λy : X1.(f x, f y)

This term admits the polymorphic type:

∀X1.∀X2.(X1 → X2)→ X1 → X1 → X2 × X2

Quite unsurprising, right?

27 / 125

An example

Perhaps more surprising is the fact that this untyped term can be
decorated in a different way:

ΛX1.ΛX2.λf : ∀X.X → X.λx : X1.λy : X2.(f X1 x, f X2 y)

This term admits the polymorphic type:

∀X1.∀X2.(∀X.X → X)→ X1 → X2 → X1 × X2

This begs the question: ...

28 / 125

Incomparable types in System F

Which of the two is more general?

∀X1.∀X2.(X1 → X2)→ X1 → X1 → X2 × X2
∀X1.∀X2.(∀X.X → X)→ X1 → X2 → X1 × X2

One requires x and y to admit a common type, while the other
requires f to be polymorphic.

Neither of these types can be an instance of the other, for any
reasonable definition of the word “instance”, because each has an
inhabitant that does not admit the other as a type.

(Exercise: find these inhabitants!)

29 / 125

Incomparable types in System F

Which of the two is more general?

∀X1.∀X2.(X1 → X2)→ X1 → X1 → X2 × X2
∀X1.∀X2.(∀X.X → X)→ X1 → X2 → X1 × X2

One requires x and y to admit a common type, while the other
requires f to be polymorphic.

Neither of these types can be an instance of the other, for any
reasonable definition of the word “instance”, because each has an
inhabitant that does not admit the other as a type.

(Exercise: find these inhabitants!)

30 / 125

Notions of instance

It seems plausible that the untyped term λfxy.(f x, f y) does not
admit a type of which both of these types are instances.

But, in order to prove this, one must fix what it means for T2 to be
an instance of T1 – or, equivalently, for T1 to be more general than T2.

Several definitions are possible...

31 / 125

Syntactic notions of instance

In System F , “to be an instance” is usually defined by the rule:

InstGen
Ȳ # ∀X̄.T

∀X̄.T ≤ ∀Ȳ .[~X 7� ~T]T

One can show that, if T1 ≤ T2, then any term that has type T1 also
has type T2; that is, the following rule is derivable:

Sub
Γ ` t : T1 T1 ≤ T2

Γ ` t : T2

(Not-so-easy exercise: prove it!)

32 / 125

Another syntactic notion of instance: System Fη

Mitchell [1988] defines System Fη, a version of System F extended
with a richer instance relation:

InstGen
Ȳ # ∀X̄.T

∀X̄.T ≤ ∀Ȳ .[~X 7� ~T]T

Distributivity

∀X̄.(T1 → T2) ≤ (∀X̄.T1)→ (∀X̄.T2)

Congruence-→
T2 ≤ T1 T ′1 ≤ T ′2
T1 → T ′1 ≤ T2 → T ′2

Congruence-∀
T1 ≤ T2

∀X.T1 ≤ ∀X.T2

Transitivity

T1 ≤ T2 T2 ≤ T3
T1 ≤ T3

In System Fη, Sub is an explicit rule.

System Fη can also be defined as the closure of System F under
η-equality.

Why is a rich notion of instance potentially interesting?

33 / 125

A definition of principal typings

Ideally, a type system should satisfy the principal typings
property [Wells, 2002]:

Every well-typed term t admits a principal typing – one whose
instances are exactly the typings of t.

Whether this property holds depends on a definition of instance. The
more liberal the instance relation, the more hope there is of having
principal typings.

34 / 125

A “semantic” notion of instance

Wells [2002] notes that, once a type system is fixed, a most liberal
notion of instance can be defined, a posteriori, by:

A typing θ1 is more general than a typing θ2 if and only if
every term that admits θ1 admits θ2 as well.

This is the largest reasonable notion of instance: ≤ is defined as the
largest relation such that a subtyping principle is admissible.

This definition can be used to prove that a system does not have
principal typings, under any reasonable definition of “instance”.

35 / 125

Which systems have principal typings?

We have seen that simply-typed λ-calculus has principal typings, with
respect to a substitution-based notion of instance.

Wells [2002] shows that neither System F nor System Fη have
principal typings.

It was shown earlier that System Fη’s instance relation is
undecidable [Wells, 1995, Tiuryn and Urzyczyn, 2002] and that type
inference for both System F and System Fη is
undecidable [Wells, 1999].

36 / 125

Which systems have principal typings?

There are still a few positive results...

Some systems of intersection types have principal
typings [Wells, 2002] – but they are very complex and have yet to
see a practical application.

Damas and Milner’s type system (coming up next) has principal types
and decidable type inference.

37 / 125

Other approaches to type inference in System F

In System F , one can still perform bottom-up type checking, provided
type abstractions and type applications are explicit.

One can perform incomplete forms of type inference, such as local
type inference [Pierce and Turner, 2000, Odersky et al., 2001].

Finally, one can design restrictions or variants of the system that
have decidable type inference. Damas and Milner’s type system is one
example; MLF [Le Botlan and Rémy, 2003] is a more expressive, and
more complex, approach.

38 / 125

Contents

Why polymorphism?

Polymorphic λ-calculus

Damas and Milner’s type system

Type soundness

Polymorphism and references

Bibliography

39 / 125

Damas and Milner’s type system

Damas and Milner’s type system [Milner, 1978] offers a restricted
form of polymorphism, while avoiding the difficulties associated with
type inference in System F .

This type system is at the heart of Standard ML, Objective Caml, and
Haskell.

40 / 125

Some intuitions

The type inference algorithm should be a simple extension of the
algorithm that was developed for simply-typed λ-calculus.

To this end, it should exploit polymorphism where obviously available,
but should not try to guess where polymorphism is necessary.

In other words, it should continue to rely on first-order unification:
that is, type variables should continue to stand for types without
quantifiers.

41 / 125

Some intuitions

For instance, this term should be well-typed:

let f = λz.z in (f 0, f true)

Indeed, f is known to be bound to λz.z, a term whose principal type
(∀X.X → X) can be inferred as in simply-typed λ-calculus.

On the other hand, this term should be ill-typed:

λf.(f 0, f true)

Indeed, the type of f is unknown, so it must be a monomorphic type.
Under this constraint, this term cannot be well-typed.

In short, let-bound variables receive possibly polymorphic types, while
λ-bound variables must receive monomorphic types.

42 / 125

Some intuitions

There is a simple intuition behind Damas and Milner’s type system: a
closed term has type T if and only if its let-normal form has type T
in simply-typed λ-calculus.

A term’s let-normal form is obtained by iterating the rewrite rule:

let x = t1 in t2 �� t1; [x 7� t1]t2

This intuition suggests type-checking and type inference algorithms.
But these algorithms are not practical, because:

• they have exponential complexity;

• separate compilation prevents reduction to let-normal form.

43 / 125

Some intuitions

In the following, we study a direct presentation of Damas and Milner’s
type system, which does not involve let-normal forms.

It is practical, because:

• it leads to an efficient type inference algorithm;

• it supports separate compilation.

44 / 125

Terms

Terms are now given by:

t ::= x | λx.t | t t | let x = t in t | . . .

The let construct is no longer sugar for a β-redex: it is now a
primitive form.

45 / 125

Types and type schemes

The syntax of types is unchanged with respect to simply-typed
λ-calculus:

T ::= X | T → T | . . .

A separate category of type schemes is introduced:

S ::= ∀X̄.T

These correspond to the principal type schemes of simply-typed
λ-calculus. All quantifiers must appear in prenex position, so type
schemes are less expressive than System F types.

46 / 125

Typing judgements

A type environment Γ is now a finite sequence of bindings of variables
to type schemes.

Judgements now take the form:

Γ ` t : S

Types form a subset of type schemes, so type environments and
judgements can contain types too.

47 / 125

Typing rules

Here is a standard, non-syntax-directed presentation.

Var
Γ(x) = S

Γ ` x : S

Abs
Γ; x : T ` t : T ′

Γ ` λx.t : T → T ′

App

Γ ` t1 : T → T ′ Γ ` t2 : T

Γ ` t1 t2 : T ′

Let
Γ ` t1 : S Γ; x : S ` t2 : T

Γ ` let x = t1 in t2 : T

Gen
Γ ` t : T
X̄ # Γ

Γ ` t : ∀X̄.T

Inst
Γ ` t : ∀X̄.T

Γ ` t : [~X 7� ~T]T

Let moves a type scheme into the environment, which Var can exploit.

Abs and App are unchanged. λ-bound variables receive a monotype.

Gen and Inst are as in type-erasing System F , except they introduce or

eliminate multiple universal quantifiers at once. Type variables are instantiated

with monotypes.

48 / 125

Example

Here is a simple type derivation that exploits polymorphism:

Let

Gen

Abs

Var
z : X ` z : X

∅ ` λz.z : X → X

∅ ` λz.z : ∀X.X → X

Γ ` f : ∀X.X → X
Var

Γ ` f : int→ int
Inst

Γ ` f 0 : int
App

Γ ` f : ∀X.X → X
Var

Γ ` f : bool→ bool
Inst

Γ ` f true : bool
App

Γ ` (f 0, f true) : int × bool
Pair

∅ ` let f = λz.z in (f 0, f true) : int × bool

(Γ stands for f : ∀X.X → X.)

Gen is used above Let (at left), and Inst is used below Var. In fact,
every type derivation can be put in this form. forward

49 / 125

A non-example

As announced, this term is ill-typed:

λf.(f 0, f true)

Indeed, this term contains no “let” construct, so it is type-checked
exactly as in simply-typed λ-calculus, where it is ill-typed, because the
equation:

int→ T1 = bool→ T2

has no solution.

Recall that this term is well-typed in type-erasing System F .

50 / 125

A non-example

As announced, this term is ill-typed:

λf.(f 0, f true)

Indeed, this term contains no “let” construct, so it is type-checked
exactly as in simply-typed λ-calculus, where it is ill-typed, because the
equation:

int→ T1 = bool→ T2

has no solution.

Recall that this term is well-typed in type-erasing System F .

51 / 125

Contents

Why polymorphism?

Polymorphic λ-calculus

Damas and Milner’s type system

Type soundness

Polymorphism and references

Bibliography

52 / 125

Outline

Type soundness for Damas and Milner’s type system is proved using
the standard syntactic method [Wright and Felleisen, 1994].

Before reviewing the Subject Reduction proof, we need two stepping
stones:

• a Type Substitution lemma;

• a syntax-directed presentation of the type system.

53 / 125

Renamings

Definition

A renaming ρ is a total, bijective mapping of type variables to type
variables whose domain is finite. The domain of ρ is the set of the
type variables X such that ρ(X) 6= X. The support of ρ is its domain.

Renamings apply to types, type schemes, and type environments:

ρ(T1 → T2) = ρ(T1)→ ρ(T2)
ρ(∀X̄.T) = ∀ρ(X̄).ρ(T)

ρ(∅) = ∅
ρ(Γ; x : S) = ρ(Γ); x : ρ(S)

54 / 125

Renamings

The skeleton of a type derivation is its underlying rule name tree. Two
derivations are isomorphic when they have the same skeleton.

Lemma (Renaming)

For every derivation of Γ ` t : S, there exists an isomorphic derivation of
ρ(Γ) ` t : ρ(S).

Proof.

No typing rule is sensitive to the choice of type variable names.

55 / 125

Substitutions

Definition

A substitution ϕ is a total mapping of type variables to types whose
domain is finite. The domain of ϕ is the set of the type variables X
such that ϕ(X) 6= X. The codomain of ϕ is the set of the type
variables that appear free in the image of its domain. The support of
ϕ is the union of its domain and codomain. X # ϕ holds if and only if
X is not in the support of ϕ.

Substitutions apply to types, type schemes, and type environments:

ϕ(T1 → T2) = ϕ(T1)→ ϕ(T2)
ϕ(∀X̄.T) = ∀X̄.ϕ(T) if X̄ # ϕ

ϕ(∅) = ∅
ϕ(Γ; x : S) = ϕ(Γ); x : ϕ(S)

56 / 125

Type substitution

Lemma (Type substitution)

For every derivation of Γ ` t : S, there exists an isomorphic derivation of
ϕ(Γ) ` t : ϕ(S).

Proof.

By structural induction over derivations. Only two cases are of
interest, namely Gen and Inst. See next slides...

57 / 125

Type substitution: Gen

The hypothesis is:

Γ ` t : T X̄ # Γ

Γ ` t : ∀X̄.T

The goal is:
ϕ(Γ) ` t : ϕ(∀X̄.T)

How to proceed? (Hint: what do we know about ϕ(∀X̄.T)?)

58 / 125

Type substitution: Gen

We distinguish two cases:

• first, the ideal case where X̄ # ϕ holds; there, the goal becomes:

ϕ(Γ) ` t : ∀X̄.ϕ(T)

• then, the general case.

59 / 125

Type substitution: Gen / ideal case

Invoking the induction hypothesis yields ϕ(Γ) ` t : ϕ(T).

The freshness hypothesis X̄ # ϕ and the premise X̄ # Γ, imply X̄ # ϕ(Γ)
(lemma – exercise!).

We now build a new instance of Gen:

ϕ(Γ) ` t : ϕ(T) X̄ # ϕ(Γ)

ϕ(Γ) ` t : ∀X̄.ϕ(T)

This is the goal.

60 / 125

Type substitution: Gen / ideal case

Invoking the induction hypothesis yields ϕ(Γ) ` t : ϕ(T).

The freshness hypothesis X̄ # ϕ and the premise X̄ # Γ, imply X̄ # ϕ(Γ)
(lemma – exercise!).

We now build a new instance of Gen:

ϕ(Γ) ` t : ϕ(T) X̄ # ϕ(Γ)

ϕ(Γ) ` t : ∀X̄.ϕ(T)

This is the goal.

61 / 125

Type substitution: Gen / ideal case

Invoking the induction hypothesis yields ϕ(Γ) ` t : ϕ(T).

The freshness hypothesis X̄ # ϕ and the premise X̄ # Γ, imply X̄ # ϕ(Γ)
(lemma – exercise!).

We now build a new instance of Gen:

ϕ(Γ) ` t : ϕ(T) X̄ # ϕ(Γ)

ϕ(Γ) ` t : ∀X̄.ϕ(T)

This is the goal.

62 / 125

Type substitution: Gen / general case

What if X̄ # ϕ does not hold?

Recall that the hypothesis is:

Γ ` t : T X̄ # Γ

Γ ` t : ∀X̄.T

This is where the premise X̄ # Γ plays a role.

Because the X̄ do not appear free in the conclusion, they can be
renamed in the premises (via the renaming lemma) without affecting
the conclusion. In a sense, they are internal to this sub-derivation.

We are then back to the ideal case, with a different choice of X̄.

63 / 125

Type substitution: Gen / general case

What if X̄ # ϕ does not hold?

Recall that the hypothesis is:

Γ ` t : T X̄ # Γ

Γ ` t : ∀X̄.T

This is where the premise X̄ # Γ plays a role.

Because the X̄ do not appear free in the conclusion, they can be
renamed in the premises (via the renaming lemma) without affecting
the conclusion. In a sense, they are internal to this sub-derivation.

We are then back to the ideal case, with a different choice of X̄.

64 / 125

Type substitution: Gen / general case

What if X̄ # ϕ does not hold?

Recall that the hypothesis is:

Γ ` t : T X̄ # Γ

Γ ` t : ∀X̄.T

This is where the premise X̄ # Γ plays a role.

Because the X̄ do not appear free in the conclusion, they can be
renamed in the premises (via the renaming lemma) without affecting
the conclusion. In a sense, they are internal to this sub-derivation.

We are then back to the ideal case, with a different choice of X̄.

65 / 125

Type substitution: Inst

The hypothesis is:

Γ ` t : ∀X̄.T
Γ ` t : [~X 7� ~T]T

The goal is:
ϕ(Γ) ` t : ϕ([~X 7� ~T]T)

How to proceed?

66 / 125

Type substitution: Inst / ideal case

We again begin with the ideal case where X̄ # ϕ holds.

By the induction hypothesis, we have:

ϕ(Γ) ` t : ϕ(∀X̄.T)

which, by the freshness hypothesis, can be written:

ϕ(Γ) ` t : ∀X̄.ϕ(T)

We now build a new instance of Inst:

ϕ(Γ) ` t : ∀X̄.ϕ(T)
ϕ(Γ) ` t : [X̄ 7� ϕ(~T)]ϕ(T)

Is this the goal ϕ(Γ) ` t : ϕ([~X 7� ~T]T)?

67 / 125

Type substitution: Inst / ideal case

We again begin with the ideal case where X̄ # ϕ holds.

By the induction hypothesis, we have:

ϕ(Γ) ` t : ϕ(∀X̄.T)

which, by the freshness hypothesis, can be written:

ϕ(Γ) ` t : ∀X̄.ϕ(T)

We now build a new instance of Inst:

ϕ(Γ) ` t : ∀X̄.ϕ(T)
ϕ(Γ) ` t : [X̄ 7� ϕ(~T)]ϕ(T)

Is this the goal ϕ(Γ) ` t : ϕ([~X 7� ~T]T)?

68 / 125

Type substitution: Inst / ideal case

We again begin with the ideal case where X̄ # ϕ holds.

By the induction hypothesis, we have:

ϕ(Γ) ` t : ϕ(∀X̄.T)

which, by the freshness hypothesis, can be written:

ϕ(Γ) ` t : ∀X̄.ϕ(T)

We now build a new instance of Inst:

ϕ(Γ) ` t : ∀X̄.ϕ(T)
ϕ(Γ) ` t : [X̄ 7� ϕ(~T)]ϕ(T)

Is this the goal ϕ(Γ) ` t : ϕ([~X 7� ~T]T)?

69 / 125

Type substitution: Inst / ideal case

We again begin with the ideal case where X̄ # ϕ holds.

By the induction hypothesis, we have:

ϕ(Γ) ` t : ϕ(∀X̄.T)

which, by the freshness hypothesis, can be written:

ϕ(Γ) ` t : ∀X̄.ϕ(T)

We now build a new instance of Inst:

ϕ(Γ) ` t : ∀X̄.ϕ(T)
ϕ(Γ) ` t : [X̄ 7� ϕ(~T)]ϕ(T)

Is this the goal ϕ(Γ) ` t : ϕ([~X 7� ~T]T)?

70 / 125

Type substitution: Inst / ideal case

There remains to check that, under the hypothesis X̄ # ϕ, the

substitutions ϕ1 = ϕ ◦ [~X 7� ~T] and ϕ2 = [~X 7� ϕ(~T)] ◦ ϕ coincide.

This is done by applying both substitutions to an arbitrary variable X.

We distinguish two sub-cases: X ∈ X̄ and X 6∈ X̄.

71 / 125

Type substitution: Inst / ideal case / sub-case X ∈ X̄

Recall ϕ1 = ϕ ◦ [~X 7� ~T] and ϕ2 = [~X 7� ϕ(~T)] ◦ ϕ.

For some index i, X is Xi, the i-th element of the vector ~X. Then,
ϕ1(X) is ϕ(Ti), where Ti is the i-th element of the vector ~T .

X ∈ X̄ and X̄ # ϕ imply X # ϕ, so X is not in the domain of ϕ, so
ϕ(X) is X. There follows that ϕ2(X) is also ϕ(Ti).

72 / 125

Type substitution: Inst / ideal case / sub-case X ∈ X̄

Recall ϕ1 = ϕ ◦ [~X 7� ~T] and ϕ2 = [~X 7� ϕ(~T)] ◦ ϕ.

For some index i, X is Xi, the i-th element of the vector ~X. Then,
ϕ1(X) is ϕ(Ti), where Ti is the i-th element of the vector ~T .

X ∈ X̄ and X̄ # ϕ imply X # ϕ, so X is not in the domain of ϕ, so
ϕ(X) is X. There follows that ϕ2(X) is also ϕ(Ti).

73 / 125

Type substitution: Inst / ideal case / sub-case X ∈ X̄

Recall ϕ1 = ϕ ◦ [~X 7� ~T] and ϕ2 = [~X 7� ϕ(~T)] ◦ ϕ.

For some index i, X is Xi, the i-th element of the vector ~X. Then,
ϕ1(X) is ϕ(Ti), where Ti is the i-th element of the vector ~T .

X ∈ X̄ and X̄ # ϕ imply X # ϕ, so X is not in the domain of ϕ, so
ϕ(X) is X. There follows that ϕ2(X) is also ϕ(Ti).

74 / 125

Type substitution: Inst / ideal case / sub-case X 6∈ X̄

Recall ϕ1 = ϕ ◦ [~X 7� ~T] and ϕ2 = [~X 7� ϕ(~T)] ◦ ϕ.

Then, ϕ1(X) is ϕ(X).

X̄ # ϕ and X̄ # X imply X̄ # ϕ(X), which implies that ϕ2(X) is ϕ(X).

75 / 125

Type substitution: Inst / ideal case / sub-case X 6∈ X̄

Recall ϕ1 = ϕ ◦ [~X 7� ~T] and ϕ2 = [~X 7� ϕ(~T)] ◦ ϕ.

Then, ϕ1(X) is ϕ(X).

X̄ # ϕ and X̄ # X imply X̄ # ϕ(X), which implies that ϕ2(X) is ϕ(X).

76 / 125

Type substitution: Inst / ideal case / sub-case X 6∈ X̄

Recall ϕ1 = ϕ ◦ [~X 7� ~T] and ϕ2 = [~X 7� ϕ(~T)] ◦ ϕ.

Then, ϕ1(X) is ϕ(X).

X̄ # ϕ and X̄ # X imply X̄ # ϕ(X), which implies that ϕ2(X) is ϕ(X).

77 / 125

Type substitution: Gen / general case

What if X̄ # ϕ does not hold?

Recall that the hypothesis is:

Γ ` t : ∀X̄.T
Γ ` t : [~X 7� ~T]T

Because X̄ is mute in the premise (where it is bound) and in the
conclusion (where it is substituted out), it can be renamed without
affecting either of them.

We are then back to the ideal case, with a different choice of X̄.

78 / 125

Type substitution: Gen / general case

What if X̄ # ϕ does not hold?

Recall that the hypothesis is:

Γ ` t : ∀X̄.T
Γ ` t : [~X 7� ~T]T

Because X̄ is mute in the premise (where it is bound) and in the
conclusion (where it is substituted out), it can be renamed without
affecting either of them.

We are then back to the ideal case, with a different choice of X̄.

79 / 125

Reasoning up to alpha-conversion

What if you don’t believe me!?

Isn’t there too much handwaving in these alpha-conversion arguments?

True. It would be easy to get one of them wrong.

Confidence can be increased via mechanized proof-checking.

However, how to understand name binding, and how to deal with it in
a logic or a proof assistant, is still partly an open issue.

For theoretical bases, see Gabbay and Pitts [2002] and
Pitts [2006]. There is also work within proof assistants, e.g.
Coq [Aydemir et al., 2008, Chlipala, 2008],
Isabelle/HOL [Urban and Tasson, 2005],
Twelf [Harper and Licata, 2007, Pientka, 2007].

80 / 125

Annihilation

An instance of Gen followed with an instance of Inst annihilate.

Lemma (Annihilation)

If Γ ` t : S admits a derivation with skeleton ∆/Gen/Inst, then it
admits a derivation with skeleton ∆.

Proof.

By the Type Substitution lemma (see next slides)...

81 / 125

Annihilation

Up to a renaming of Gen’s premise, the hypothesis is:

Inst

Gen
Γ ` t : T X̄ # Γ

Γ ` t : ∀X̄.T
Γ ` t : [~X 7� ~T]T

where the derivation of Γ ` t : T has skeleton ∆.

By the Type Substitution lemma, there is a derivation of:

[~X 7� ~T]Γ ` t : [~X 7� ~T]T

with skeleton ∆.

Because X̄ # Γ, this is exactly:

Γ ` t : [~X 7� ~T]T

82 / 125

Annihilation

Up to a renaming of Gen’s premise, the hypothesis is:

Inst

Gen
Γ ` t : T X̄ # Γ

Γ ` t : ∀X̄.T
Γ ` t : [~X 7� ~T]T

where the derivation of Γ ` t : T has skeleton ∆.

By the Type Substitution lemma, there is a derivation of:

[~X 7� ~T]Γ ` t : [~X 7� ~T]T

with skeleton ∆.

Because X̄ # Γ, this is exactly:

Γ ` t : [~X 7� ~T]T

83 / 125

Annihilation

Up to a renaming of Gen’s premise, the hypothesis is:

Inst

Gen
Γ ` t : T X̄ # Γ

Γ ` t : ∀X̄.T
Γ ` t : [~X 7� ~T]T

where the derivation of Γ ` t : T has skeleton ∆.

By the Type Substitution lemma, there is a derivation of:

[~X 7� ~T]Γ ` t : [~X 7� ~T]T

with skeleton ∆.

Because X̄ # Γ, this is exactly:

Γ ` t : [~X 7� ~T]T

84 / 125

Annihilation

In Damas and Milner’s type system, back a non-trivial instance of
Gen cannot appear above Abs, App, Let (at right), or Gen. It can
appear above Let (at left) or Inst.

A non-trivial instance of Inst cannot appear below Abs, App, Let, or
Inst. It can appear below Var or Gen.

The Annihilation lemma implies that disallowing Gen above Inst removes
no expressive power.

In summary, Gen is useful only above Let (at left), or possibly at the
root of the derivation; and Inst is useful only below Var.

This leads to an alternative formulation of the type system...

85 / 125

Typing rules

Here is the standard, syntax-directed presentation of Damas and
Milner’s type system.

VarInst
Γ(x) = ∀X̄.T

Γ ` x : [~X 7� ~T]T

Abs
Γ; x : T ` t : T ′

Γ ` λx.t : T → T ′

App

Γ ` t1 : T → T ′ Γ ` t2 : T

Γ ` t1 t2 : T ′

GenLet
Γ ` t1 : T1 X̄ # Γ
Γ; x : ∀X̄.T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2

Judgements are now of the form Γ ` t : T .

86 / 125

Correspondence

The two presentations are equivalent:

Lemma (Equivalence)

Let X̄ # Γ. The non-syntax-directed presentation derives Γ ` t : ∀X̄.T if
and only if the syntax-directed presentation derives Γ ` t : T .

This is good to know in itself.

Furthermore, this means that, in the subject reduction proof that
follows, we can deconstruct syntax-directed derivations (nice, because
there are fewer) and build non-syntax-directed derivations (nice,
because there are more).

87 / 125

Value substitution

As in the simply-typed λ-calculus, we prove a straightforward value
substitution lemma:

Lemma (Value substitution)

x : S, Γ ` t : T and x 6∈ dom(Γ) and ∅ ` v : S imply Γ ` [x 7� v]t : T .

Here, the lemma is formulated in terms of the original presentation of
the system.

By the way, this means that, if a term is well-typed, then so is its
let-normal form. The converse is also true, and will be shown when we
study type inference.

88 / 125

Subject reduction

To prove subject reduction, we assume that the syntax-directed
presentation derives Γ ` t : T , we assume t �� t′, and check that
Γ ` t′ : T holds in the original presentation.

The proof is immediate:

• Case (β): deconstruct App and Abs, then apply the value
substitution lemma;

• Case (let): deconstruct GenLet, then apply Gen and the value
substitution lemma;

• Case (context): routine.

Progress is proved just as in the simply-typed λ-calculus, working on
the syntax-directed presentation.

89 / 125

Bottom line

In summary, Type Substitution and Annihilation are the key properties
that make the type system sound.

For further reading, see Wright and Felleisen [1994], Pierce [2002],
Pottier and Rémy [2005].

90 / 125

Contents

Why polymorphism?

Polymorphic λ-calculus

Damas and Milner’s type system

Type soundness

Polymorphism and references

Bibliography

91 / 125

Hints of unsoundness

In a previous session, we noted that the program:

let x = ref 3 in (x := 1; !x)

does not have the same semantics as its let-normal form:

ref 3; (ref 3) := 1; !(ref 3)

In the presence of effects, a term and its let-normal form do not
have the same semantics, so the naı̈ve approach to polymorphism,
based on let-normal forms, back has no reason to be sound.

Damas and Milner’s type system, which (we will prove) derives the
same (monomorphic) typings as the naı̈ve approach, has no reason to
be sound either...

92 / 125

Hints of unsoundness

In the last course, we also noted that type soundness strongly relies
on the fact that every reference cell has a fixed type.

So, it is important to rule out polymorphic references: cells that admit
multiple types at once. In short, a type of the form:

∀X.ref T

(where X appears in T) should never be inhabited.

Right?

93 / 125

Unsoundness revealed

Right! Yet, if naı̈vely extended with references, Damas and Milner’s
type system allows constructing polymorphic references.

This well-typed program, where x receives the type scheme
∀X.ref (X → X), goes wrong:

let x = ref (λz.z) in x := (λz.z + 1); !x true

The cell x is written at type int→ int, then read at type bool→ bool.

94 / 125

The interaction of polymorphism and references

We have proved type soundness for references without polymorphism,
and for polymorphism without references, but the combination fails. Ah!

Let’s review the proof for references and polymorphism together.

95 / 125

Augmenting typing judgements

First, we augment typing judgements so that they take the form:

M, Γ ` t : S

where M is a store typing, which maps memory locations to...

types.

No choice here: the syntax of types is T ::= . . . | ref T , not
T ::= . . . | ref S, so the contents of a cell must have monomorphic type.

This restriction is imposed by the design of ML. It is not required for
soundness. In System F with references, a type of the form ref (∀X.T)
would be fine.

96 / 125

Augmenting typing judgements

First, we augment typing judgements so that they take the form:

M, Γ ` t : S

where M is a store typing, which maps memory locations to... types.

No choice here: the syntax of types is T ::= . . . | ref T , not
T ::= . . . | ref S, so the contents of a cell must have monomorphic type.

This restriction is imposed by the design of ML. It is not required for
soundness. In System F with references, a type of the form ref (∀X.T)
would be fine.

97 / 125

Clarifying the typing rules

The two novel rules of Damas and Milner’s type system become:

Gen
M, Γ ` t : T X̄ # Γ

M, Γ ` t : ∀X̄.T

Inst
M, Γ ` t : ∀X̄.T

M, Γ ` t : [~X 7� ~T]T

Right?

No way! This version of Gen is broken. Because X̄ can appear in M,
the Type Substitution lemma does not hold. So...

98 / 125

Clarifying the typing rules

The two novel rules of Damas and Milner’s type system become:

Gen
M, Γ ` t : T X̄ # Γ

M, Γ ` t : ∀X̄.T

Inst
M, Γ ` t : ∀X̄.T

M, Γ ` t : [~X 7� ~T]T

Right?

No way! This version of Gen is broken. Because X̄ can appear in M,
the Type Substitution lemma does not hold. So...

99 / 125

Clarifying the typing rules

The correct rule is, of course:

Gen
M, Γ ` t : T X̄ # M, Γ

M, Γ ` t : ∀X̄.T

Mysterious slogan #1: one must not generalize a type variable that
appears in the store typing. Aha!

This version satisfies Type Substitution.

Yet, the counter-example program shows that Subject Reduction is
still broken... Where is the bug?

100 / 125

Nailing the bug

The problem lies in the (context) case of the Subject Reduction proof,
and more specifically in the case of reduction under Gen (that is,
reduction under the left-hand side of GenLet).

The hypotheses are:

M, ∅ ` t : T X̄ # M

M, ∅ ` t : ∀X̄.T
and ` µ : M and t/µ �� t′/µ′

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T and ` µ′ : M′ and M ⊆ M′

Here, we are stuck. We would like to build a new instance of Gen, but
we are missing X̄ # M′.

101 / 125

Nailing the bug

The problem lies in the (context) case of the Subject Reduction proof,
and more specifically in the case of reduction under Gen (that is,
reduction under the left-hand side of GenLet).

The hypotheses are:

M, ∅ ` t : T X̄ # M

M, ∅ ` t : ∀X̄.T
and ` µ : M and t/µ �� t′/µ′

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T and ` µ′ : M′ and M ⊆ M′

Here, we are stuck. We would like to build a new instance of Gen, but
we are missing X̄ # M′.

102 / 125

Nailing the bug

The problem lies in the (context) case of the Subject Reduction proof,
and more specifically in the case of reduction under Gen (that is,
reduction under the left-hand side of GenLet).

The hypotheses are:

M, ∅ ` t : T X̄ # M

M, ∅ ` t : ∀X̄.T
and ` µ : M and t/µ �� t′/µ′

By the induction hypothesis, there exists M′ such that:

M′, ∅ ` t′ : T and ` µ′ : M′ and M ⊆ M′

Here, we are stuck. We would like to build a new instance of Gen, but
we are missing X̄ # M′.

103 / 125

Nailing the bug

Mysterious slogan #2: one must not generalize a type variable that
might, after evaluation of the term, enter the store typing. Aha!

This is what happens in the counter-example:

let x = ref (λz.z : X → X) in x := (λz.z + 1); !x true

The type variable X is generalized by GenLet. Yet, when ref (λz.z)
reduces, X → X becomes the type of the newly allocated cell, so it
appears in the new store typing.

This is all well and good, but how do we enforce slogan #2? Should
we somehow restrict X̄ so as to ensure X̄ # M′?

104 / 125

Fixing the bug

A number of rather complex historic approaches have been followed:
see Leroy [1992] for a survey.

Then came Wright [1995], who suggested an amazingly simple solution,
known as the value restriction: only values can be polymorphic.

Gen
M, Γ ` v : T X̄ # M, Γ

M, Γ ` v : ∀X̄.T

The problematic proof case vanishes: we now never reduce under Gen.
Subject Reduction holds again.

105 / 125

Consequences

In its syntax-directed presentation, the system becomes:

GenLet
Γ ` v1 : T1 X̄ # Γ
Γ; x : ∀X̄.T1 ` t2 : T2

Γ ` let x = v1 in t2 : T2

MonoLet
Γ ` t1 : T1 (t1 not a value)

Γ; x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2

106 / 125

Consequences

The problematic program is now ill-typed:

let x = ref (λz.z) in x := (λz.z + 1); !x true

Indeed, ref (λz.z) is not a value, so Gen is not applicable. The variable
x must receive a monotype, but none is suitable.

107 / 125

Consequences

With the value restriction, some pure programs become ill-typed, even
though they were well-typed in the absence of references. This style of
introducing references in ML is not a conservative extension.

This definition cannot receive a polymorphic type scheme:

let f = map id list T → list T , for any type T

A common work-around is to perform a manual η-expansion:

let f xs = map id xs ∀X.list X → list X

Of course, in the presence of side effects, η-expansion is not
semantics-preserving, so this must not be done blindly.

108 / 125

In practice

The value restriction can be slightly relaxed by delimiting a syntactic
category of so-called non-expansive terms – terms whose evaluation
definitely will not allocate new reference cells. Non-expansive terms
form a strict superset of values.

Garrigue [2004] relaxes the value restriction in a more subtle way,
which is justified by a subtyping argument.

Objective Caml implements both refinements.

109 / 125

Conclusion

Experience has shown that the value restriction is tolerable. Even
though it is not conservative, the search for better solutions has
been pretty much abandoned.

110 / 125

Conclusion

In a type-and-effect
system [Lucassen and Gifford, 1988, Talpin and Jouvelot, 1994], or
in a type-and-capability system [Charguéraud and Pottier, 2008], the
type system indicates which expressions may allocate new references,
and at which type.

There, the value restriction is no longer necessary.

However, if one extends a type-and-capability system with a mechanism
for hiding state, the need for the value restriction re-appears.

111 / 125

Contents

Why polymorphism?

Polymorphic λ-calculus

Damas and Milner’s type system

Type soundness

Polymorphism and references

Bibliography

112 / 125

Bibliography I

(Most titles are clickable links to online versions.)

Aydemir, B., Chargéraud, A., Pierce, B., Pollack, R., and Weirich, S.
2008.
Engineering formal metatheory.
In ACM Symposium on Principles of Programming Languages (POPL).
3–15.

Charguéraud, A. and Pottier, F. 2008.
Functional translation of a calculus of capabilities.
In ACM International Conference on Functional Programming (ICFP).
213–224.

113 / 125

http://www.cis.upenn.edu/~bcpierce/papers/binders.pdf
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf

[II

Bibliography]Bibliography

Chlipala, A. 2008.
Parametric higher-order abstract syntax for mechanized semantics.

In ACM International Conference on Functional Programming (ICFP).
143–156.

Crary, K., Weirich, S., and Morrisett, G. 2002.
Intensional polymorphism in type erasure semantics.
Journal of Functional Programming 12, 6 (Nov.), 567–600.

Gabbay, M. J. and Pitts, A. M. 2002.
A new approach to abstract syntax with variable binding.
Formal Aspects of Computing 13, 3–5 (July), 341–363.

114 / 125

http://adam.chlipala.net/papers/PhoasICFP08/PhoasICFP08.pdf
http://www-2.cs.cmu.edu/~crary/papers/2002/typepass/typepass.ps
http://www.cl.cam.ac.uk/~amp12/papers/newaas/newaas-jv.pdf

[III

[][

Garrigue, J. 2004.
Relaxing the value restriction.
In Functional and Logic Programming. Lecture Notes in Computer
Science, vol. 2998. Springer, 196–213.

Harper, R. and Licata, D. R. 2007.
Mechanizing metatheory in a logical framework.
Journal of Functional Programming 17, 4–5, 613–673.

Hudak, P., Hughes, J., Peyton Jones, S., and Wadler, P. 2007.
A history of Haskell: being lazy with class.
In ACM SIGPLAN Conference on History of Programming Languages.

115 / 125

http://www.math.nagoya-u.ac.jp/~garrigue/papers/morepoly-long.pdf
http://www.cs.cmu.edu/~rwh/papers/mech/jfp07.pdf
http://research.microsoft.com/~simonpj/papers/history-of-haskell/history.pdf

[IV

[][

Le Botlan, D. and Rémy, D. 2003.
MLF: Raising ML to the power of system F .
In ACM International Conference on Functional Programming (ICFP).
27–38.

Leroy, X. 1992.
Typage polymorphe d’un langage algorithmique.
Ph.D. thesis, Université Paris 7.

Lucassen, J. M. and Gifford, D. K. 1988.
Polymorphic effect systems.
In ACM Symposium on Principles of Programming Languages (POPL).
47–57.

116 / 125

http://cristal.inria.fr/~remy/work/mlf/icfp.pdf
http://cristal.inria.fr/~xleroy/publi/these-doctorat.ps.gz
http://pag.lcs.mit.edu/reading-group/lucassen88effects.pdf

[V

[][

Milner, R. 1978.
A theory of type polymorphism in programming.
Journal of Computer and System Sciences 17, 3 (Dec.), 348–375.

Minamide, Y., Morrisett, G., and Harper, R. 1996.
Typed closure conversion.
In ACM Symposium on Principles of Programming Languages (POPL).
271–283.

Mitchell, J. C. 1988.
Polymorphic type inference and containment.
Information and Computation 76, 2–3, 211–249.

117 / 125

http://www.diku.dk/undervisning/2006-2007/2006-2007_b2_246/milner78theory.pdf
http://www.cs.cornell.edu/Info/People/jgm/papers/closure-summary.ps
http://dx.doi.org/10.1016/0890-5401(88)90009-0

[VI

[][

Morrisett, G., Walker, D., Crary, K., and Glew, N. 1999.
From system F to typed assembly language.
ACM Transactions on Programming Languages and Systems 21, 3
(May), 528–569.

Odersky, M., Zenger, M., and Zenger, C. 2001.
Colored local type inference.
In ACM Symposium on Principles of Programming Languages (POPL).
41–53.

118 / 125

http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://lampwww.epfl.ch/papers/clti-colored.ps.gz

[VII

[][

Pientka, B. 2007.
Proof pearl: The power of higher-order encodings in the logical
framework LF.
In International Conference on Theorem Proving in Higher Order
Logics (TPHOLs). Lecture Notes in Computer Science, vol. 4732.
Springer, 246–261.

Pierce, B. C. 2002.
Types and Programming Languages.
MIT Press.

119 / 125

http://www.cs.mcgill.ca/~bpientka/papers/pearl.pdf
http://www.cs.mcgill.ca/~bpientka/papers/pearl.pdf
http://www.cis.upenn.edu/~bcpierce/tapl/

[VIII

[][

Pierce, B. C. and Turner, D. N. 2000.
Local type inference.
ACM Transactions on Programming Languages and Systems 22, 1
(Jan.), 1–44.

Pitts, A. M. 2000.
Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Science 10, 321–359.

Pitts, A. M. 2006.
Alpha-structural recursion and induction.
Journal of the ACM 53, 459–506.

120 / 125

http://doi.acm.org/10.1145/345099.345100
http://www.cl.cam.ac.uk/~amp12/papers/parpoe/parpoe.pdf
http://www.cl.cam.ac.uk/~amp12/papers/alpsri/alpsri.pdf

[IX

[][

Pottier, F. and Rémy, D. 2005.
The essence of ML type inference.
In Advanced Topics in Types and Programming Languages, B. C.
Pierce, Ed. MIT Press, Chapter 10, 389–489.

Reynolds, J. C. 1974.
Towards a theory of type structure.
In Colloque sur la Programmation. Lecture Notes in Computer
Science, vol. 19. Springer, 408–425.

Reynolds, J. C. 1983.
Types, abstraction and parametric polymorphism.
In Information Processing 83. Elsevier Science, 513–523.

121 / 125

http://cristal.inria.fr/~fpottier/publis/emlti-final.pdf
http://www.springerlink.com/content/p5801737k78207p7/
ftp://ftp.cs.cmu.edu/user/jcr/typesabpara.pdf

[X

[][

Strachey, C. 2000.
Fundamental concepts in programming languages.
Higher-Order and Symbolic Computation 13, 1–2 (Apr.), 11–49.

Talpin, J.-P. and Jouvelot, P. 1994.
The type and effect discipline.
Information and Computation 11, 2, 245–296.

Tiuryn, J. and Urzyczyn, P. 2002.
The subtyping problem for second-order types is undecidable.
Information and Computation 179, 1, 1–18.

122 / 125

http://dx.doi.org/10.1023/A:1010000313106
http://www.irisa.fr/prive/talpin/papers/ic94.pdf
http://dx.doi.org/10.1006/inco.2001.2950

[XI

[][

Urban, C. and Tasson, C. 2005.
Nominal techniques in Isabelle/HOL.
In International Conference on Automated Deduction (CADE).
Lecture Notes in Computer Science, vol. 3632. Springer, 38–53.

Wadler, P. 1989.
Theorems for free!
In Conference on Functional Programming Languages and Computer
Architecture (FPCA). 347–359.

Wadler, P. 2007.
The Girard-Reynolds isomorphism (second edition).
Theoretical Computer Science 375, 1–3 (May), 201–226.

123 / 125

http://www4.in.tum.de/~urbanc/Publications/nom-cade-05.ps
http://homepages.inf.ed.ac.uk/wadler/papers/free/free.ps.gz
http://homepages.inf.ed.ac.uk/wadler/papers/gr2/gr2.pdf

[XII

[][

Wells, J. B. 1995.
The undecidability of Mitchell’s subtyping relation.
Technical Report 95-019, Computer Science Department, Boston
University. Dec.

Wells, J. B. 1999.
Typability and type checking in system F are equivalent and
undecidable.
Annals of Pure and Applied Logic 98, 1–3, 111–156.

124 / 125

http://www.cs.bu.edu/ftp/pub/jbw/types/subtyping-undecidable.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz
http://www.macs.hw.ac.uk/~jbw/papers/f-undecidable-APAL.ps.gz

[XIII

[][

Wells, J. B. 2002.
The essence of principal typings.
In International Colloquium on Automata, Languages and
Programming. Lecture Notes in Computer Science, vol. 2380.
Springer, 913–925.

Wright, A. K. 1995.
Simple imperative polymorphism.
Lisp and Symbolic Computation 8, 4 (Dec.), 343–356.

Wright, A. K. and Felleisen, M. 1994.
A syntactic approach to type soundness.
Information and Computation 115, 1 (Nov.), 38–94.

125 / 125

http://www.macs.hw.ac.uk/~jbw/papers/Wells:The-Essence-of-Principal-Typings:ICALP-2002.pdf
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/lasc95-w.ps.gz
http://www.cs.rice.edu/CS/PLT/Publications/Scheme/ic94-wf.ps.gz

	Why polymorphism?
	Polymorphic lambda-calculus
	Damas and Milner's type system
	Type soundness
	Polymorphism and references
	Bibliography

