
A Framework for Assertion-based Debugging

in Constraint Logic Programming

Germ�an Puebla, Francisco Bueno, and Manuel Hermenegildo

fgerman,bueno,hermeg@fi.upm.es
Department of Computer Science

Technical University of Madrid (UPM)

Abstract. We propose a general framework for assertion-based debugging of con-
straint logic programs. Assertions are linguistic constructions which allow expressing
properties of programs. We de�ne assertion schemas which allow writing (partial)
speci�cations for constraint logic programs using quite general properties, including
user-de�ned programs. The framework is aimed at detecting deviations of the pro-
gram behavior (symptoms) with respect to the given assertions, either at compile-
time or run-time. We provide techniques for using information from global analysis
both to detect at compile-time assertions which do not hold in at least one of the
possible executions (i.e., static symptoms) and assertions which hold for all possible
executions (i.e., statically proved assertions). We also provide program transforma-
tions which introduce tests in the program for checking at run-time those assertions
whose status cannot be determined at compile-time. Both the static and the dynamic
checking are provably safe in the sense that all errors agged are de�nite violations
of the speci�cations. Finally, we report on an implemented instance of the assertion
language and framework.

1 Introduction

As (constraint) logic programming (CLP) systems [19] mature and larger applications are
built, an increased need arises for advanced development and debugging environments. Such
environments will likely comprise a variety of tools ranging from declarative diagnosers to
execution visualizers (see, for example, [1] for a more comprehensive discussion of tools and
possible debugging scenarios). In this paper we concentrate our attention on the particular
issue of program validation and debugging via direct static and/or dynamic checking of
user-provided assertions.

We assume that a (partial) speci�cation is available with the program and written in
terms of assertions [5, 4, 12, 13, 22]. Classical examples of assertions are the type declara-
tions used in languages such as G�odel [18] or Mercury [25] (and in functional languages).
However, herein we are interested in supporting a more general setting in which, on one
hand assertions can be of a more general nature, including properties which are statically
undecidable, and, on the other, only a small number of assertions may be present in the
program, i.e., the assertions are optional. In particular, we do not wish to limit the program-
ming language or the language of assertions unnecessarily in order to make the assertions
statically decidable.

Consequently, the proposed framework needs to deal throughout with approximations
[6, 10, 17]. It is imperative that such approximations be performed in a safe manner, in the
sense that if an \error" (more formally, a symptom) is agged, then it is indeed a violation
of the speci�cations. However, while the system can be complete with respect to statically
decidable properties (e.g., certain type systems), it cannot be complete in general, in the
sense that when statically undecidable properties are used in assertions, there may be errors
in the program with respect to such assertions that are not detected at compile time. This

:- trust

:- entry

Specific.
:- check

Analyzer

Comparator

Program RT-test

Annotator

Program +

RT-tests

:- check

:- checked

:- true

:- false
(A.Sym.)

C.Sympt.

Diagnosis

(Declarative
/ Abstract)

Fig. 1. A Combined Framework for Program Development and Debugging

is a tradeo� that we accept in return for the greater exibility. However, in order to detect
as many errors as possible, the framework combines static (i.e., compile-time) and dynamic
(i.e., run-time) checking of assertions. In particular, run-time checks will be generated for
assertions which cannot be determined to be true or false statically.

Our approach is strongly motivated by the availability of powerful and mature static
analyzers for (constraint) logic programs (see, e.g., [5, 7, 15, 16, 21] and their references),
generally based on abstract interpretation [10]. These systems can statically infer a wide
range of properties (from types to determinacy or termination) accurately and e�ciently,
for realistic programs. Thus, we would like to take advantage of standard program analysis
tools, rather than developing new abstract procedures, such as concrete [4, 12, 13] or abstract
[8, 9] diagnosers and debuggers, or using traditional proof-based methods [2, 3, 11, 14, 26].

Figure 1 presents the general architecture of the type of debugging environment that we
propose.1 Hexagons represent the di�erent tools involved and arrows indicate the commu-
nication paths among such tools. It is a design decision of the framework implementation
that most of such communication be performed in terms of assertions, and that, rather
than having di�erent languages for each tool, the same assertion language be used for all
of them (due to space limitations, we cannot present the assertion language itself { see [22]
for details). This facilitates communication among the di�erent tools, enables easy reuse of
information (i.e., once a property has been stated there is no need to repeat it for the dif-
ferent tools), and makes such communication understandable for the user. Note that not all
tools need to be capable of dealing with all properties expressible in the assertion language.
Rather, each tool will only make use of the part of the information given as assertions which
the tool \understands."

As mentioned before, we assume that a (partial) speci�cation of the intended meaning
or behavior of the (possibly partially developed) program (i.e., the user requirements) is
available and written in terms of assertions. Because these assertions are to be checked
we will refer to them as \check" assertions.2 All these assertions (and those which will be
mentioned later) are written in the same syntax, with a pre�x denoting their status (check,
trust, ...). The program analyzer generates an approximation of the actual semantics of the

1 The implementation (to be described later) includes also other techniques, such as traditional
procedural debugging and visualization, which are however beyond the scope of the work pre-
sented in this paper.

2 The user may optionally provide additional information to the analyzer by means of \entry"
assertions (which describe the external calls to a module) and \trust" assertions (which provide
abstract information on a predicate that the analyzer can use even if it cannot prove it) [5, 23].

2

program, expressed in the form of true assertions (in the case of CLP programs standard
analysis techniques {e.g., [16, 15]{ are used for this purpose). The comparator, using the
analyzer's abstract operations, compares the user requirements and the information gen-
erated by the analysis. This process produces three di�erent kinds of results, which are in
turn represented by three di�erent kinds of assertions:

{ Veri�ed requirements (represented by checked assertions).
{ Requirements identi�ed not to hold (represented by false assertions). In this case an

abstract symptom has been found and diagnosis should start.
{ None of the above, i.e., the analyzer/comparator pair cannot prove that a requirement

holds nor that it does not hold (and some assertions remain in check status). Run-
time tests are then introduced to test the requirement (which may produce \concrete"
symptoms during program testing). Clearly, this may introduce signi�cant overhead
and can be turned o� after program testing.

Given this overall design, in the rest of the paper we �rst de�ne formally a series of
assertions and the notions of correctness and errors of a program with respect to those
assertions. We then present and prove correct techniques for static and dynamic checking
of the assertions. Finally, we report on the implementation of the framework, and present
some preliminary performance results.

2 Preliminaries and Notation

A constraint is essentially a conjunction of prede�ned predicates (such as term equations
or inequalities over the reals) whose arguments are constructed using prede�ned functions
(such as real addition). We let 9W � be constraint � restricted to the variables W .

An atom has the form p(t1; :::; tn) where p is a predicate symbol and the ti are terms. A
literal is either an atom or a primitive constraint. A goal is a �nite sequence of literals. A
rule is of the form H:-B where H , the head, is an atom with distinct variables as arguments
and B, the body, is a possibly empty �nite sequence of literals. A constraint logic program,
or program, is a �nite set of rules. The de�nition of an atom A in program P , defnP (A),
is the set of variable renamings of rules in P such that each renaming has A as a head and
has distinct new local variables.

We assume that all rule heads are normalized. This is not restrictive since programs can
always be normalized.

The operational semantics of a program is in terms of its \derivations" which are se-
quences of reductions between \states". A state hG �i consists of the current goal G and
the current constraint �. A state hL :: G �i where L is a literal can be reduced as follows:

1. If L is a primitive constraint and � ^ L is satis�able, it is reduced to hG � ^ Li.
2. If L is an atom, it is reduced to hB :: G �i for some rule (L:-B) 2 defnP (L).

where :: denotes concatenation of sequences and we assume for simplicity that the underlying
constraint solver is complete. A derivation from state S for program P is a sequence of states
S0 ;P S1 ;P :::;P Sn where S0 is S and there is a reduction from each Si to Si+1. Given
a non-empty derivation D, we denote by curr state(D) and curr store(D) the last state in
the derivation, and the store in such last state, respectively. E.g., if D is the derivation
S0 ;P Sn with Sn = hG �i then curr state(D) = Sn and curr store(D) = �. A query is a
pair (L; �) where L is a literal and � a store for which the CLP systems starts a computation
from state hL �i. The set of all derivations from Q for P is denoted derivations(P;Q). We
will denote sets of queries by Q. We extend derivations to operate on sets of queries as
follows: derivations(P;Q) =

S
Q
derivations(P;Q).

3

:- success qsort(A,B) : list(A) => list(B), sorted(B). % A1

% A1: { success(qsort(A,B) , list(A) , list(B) and sorted(B)) }

qsort([X|L],R) :-

partition(L,X,L1,L2),

qsort(L2,R2), qsort(L1,R1),

append(R1,[X|R2],R).

qsort([],[]).

:- calls partition(A,B,C,D) : list(A). % A2

% A2: { calls(partition(A,B,C,D) , list(A)) }

partition([],B,[],[]).

partition([E|R],C,[E|Left1],Right):- E < C, !,

partition(R,C,Left1,Right).

partition([E|R],C,Left,[E|Right1]):- E >= C,

partition(R,C,Left,Right1).

sorted([]). list([]).

sorted([_]). list([_|L]):-

sorted([X,Y|L]):- X =< Y, sorted([Y|L]). list(L).

Fig. 2. An Example Program Annotated with Assertions

The observational behavior of a program is given by its \answers" to queries. A �nite
derivation from a state S for program P is �nished if the last state in the derivation cannot
be reduced. A �nished derivation from a state S is successful if the last state has form
hnil �i. The constraint �9vars(S)� is an answer to S. A �nished derivation is failed if the
last state is not of the form hnil �i.

3 Assertions

Assertions are linguistic constructions which allow expressing properties of programs. The
properties can relate to the program execution, particular derivations, or execution states.

De�nition 3.1 [Assertion] An assertion A for a program P is a pair (appA; valA) s.t.
both appA and valA are �rst-order logic formulae and appA(D) and valA(curr store(D))
are decidable for any derivation D for P .

Note that this is a very open de�nition of assertions. In the following we provide some
more speci�c schemas for assertions which correspond to the assertions traditionally used:
i.e., pre and post conditions. For each of these schemas we provide the meaning of the logic
formulae associated to app and val corresponding to the assertion. An example program
annotated with assertions of this kind is shown in Figure 2, where two assertions A1 and A2

are provided in the schema oriented syntax that we use herein, as well as in the program
oriented syntax of [22]. In the �gure, A1 expresses that if qsort is called with its �rst
argument being a list then upon success (if it succeeds) its second argument is a sorted
list, and A2 expresses that partition is expected to be called with its �rst argument a list.
These assertions refer to particular execution states in derivations in which qsort (resp.
partition) are involved. We say that these assertions are \evaluable" only in such states.

De�nition 3.2 [Evaluation of an Assertion for a Derivation] Given an assertion A =
(appA; valA) for program P , the evaluation of A for a derivation D is

4

solve(A;D; P) = 8r : appA(r(D)) ! valA(curr store(r(D))):
where r is a variable renaming which relates the variable names in A with the variables in
a concrete derivation D.

3.1 Assertion Schemas

Assertion Schemas are expressions which produce an assertion A = (appA; valA) given a
syntactic object AS, by syntactic manipulation only. Assertions described using the given
assertion schemas will be denoted as AS in order to distinguish them from the actual asser-
tion (i.e., a pair of logic formulae) A = (appA; valA). We use schema(AS) = (appAS ; valAS)
to denote that (appAS ; valAS) is the result of the translation of AS.

Calls Assertions: This assertion schema is used to describe execution states of the possible
calls to a predicate. Given an assertion AS = calls(p; P recond), appAS and valAS are
de�ned as follows:

appcalls(p;Precond)(D) =

�
true if current state(D) = hp :: G �i
false otherwise

valcalls(p;Precond)(�) = Precond(�9vars(p)�)

Clearly, there is no way a calls assertion calls(p; P recond) can be violated unless the
next predicate to be executed, i.e., the leftmost literal in the goal of the current state, is p.

Success Assertions: Success assertions are used in order to express postconditions of
predicates. These postconditions may be required to hold for any call to the predicate, i.e.,
the precondition is true, or only for calls satisfying certain preconditions.

appsuccess(p;Pre;Post)(D) =

8<
:
true if current state(D) = hG �i and

9hp :: G �0i 2 D and Pre(�9vars(p)�
0)

false otherwise

valsuccess(p;Pre;Post)(�) = Post(�9vars(p)�)

Note that, for a given assertion A and derivation D, several states of the form hp :: G �0i
may exist in D. As a result, the assertion A will have to be checked several times with
di�erent renamings so that the variables of the assertion are related to di�erent states in D.

3.2 Assertions and Debugging

Assertions have often been used for performing debugging with respect to partial correct-
ness, i.e., to ensure that the program does not produce unexpected results. In this section
we provide several simple de�nitions which will be instrumental in the rest of the paper.

De�nition 3.3 [Error Set] Given an assertion A, the error set of A in program P for a
set of queries Q is E(A;P;Q) = fD 2 derivations(P;Q)j:solve(A;D; P)g.

De�nition 3.4 [Checked Assertion] An assertion A for program P and set of queries Q,
is checked i� E(A;P;Q) = ;.

De�nition 3.5 [True Assertion] An assertion A for program P , A is true i� 8Q :
E(A;P;Q) = ;.

De�nition 3.6 [False Assertion] An assertion A for program P and set of queries Q, is
false i� E(A;P;Q) 6= ;

It is clear that given a program P and a set of queries Q, any assertion A is either false
or checked. Also, any assertion which is true is also checked.

5

De�nition 3.7 [Partial Correctness] A program P is partially correct w.r.t. a set of asser-
tions A and a class Q of queries i�

S
A E(A;P;Q) = ;.

Our goal is to prove that a program is partially correct w.r.t. a set of assertions when
it indeed is, and to detect the assertions which are false otherwise. There are two kinds
of approaches to doing this. One is based on actually trying all possible execution paths
(derivations) for all possible queries. When it is not possible to try all derivations an al-
ternative is to explore a hopefully representative set of them. This approach is explored in
Sections 4 and 5. The second approach is to use global analysis techniques and is based on
computing safe approximations of the program behavior statically. This approach is studied
in Section 6.

4 Run-Time Checking of Assertions

The main idea behind run-time checking of assertions is, given a program P and a set of
assertions A, to directly apply De�nitions 3.4 and 3.6 in order to determine whether the
assertions in A are checked or false. It is not to be expected that De�nition 3.5 can be used
to determine that an assertion is true as this would require checking the derivations from
all possible queries (to any predicate) which is in general an in�nite set and thus checking
may not terminate.

An important observation is that in constraint logic programming, and under suitable
assumptions, it is possible to use the underlying logic inference system for checking whether
the given assertions (logic formulae) hold or not. In order to be able to perform run-time
checking in this way, we require that Precond(�) of an assertion calls(p; P recond), and
Pre(�) and Post(�) of an assertion success(p; P re; Post) can be computed in the CLP
system. To this end, we restrict the admissible pre and post conditions of assertions to
those which can be expressed as CLP programs. We argue that this is not too strong a
restriction given the high expressive power of CLP languages. Note that the approach also
implies that the program P must contain the de�nitions for the pre and post conditions
used in assertions (Figure 2). We believe that this choice of a language for writing conditions
is in fact of practical interest because it facilitates the job of programmers, which do not
need to learn a speci�cation language in addition to the CLP language.

For simplicity, in the formalization (but not in the implementation) pre and post con-
ditions are assumed to be literals (rather than for example goals or disjunctions of goals).
Note, however, that this is not a restriction since given a logic expression built using literals,
conjunctions, and disjunctions, it is always possible to write a predicate whose (declarative)
semantics is equivalent to the such logic expression. Also, it is crucial to ensure that run-
time checking does not introduce non-termination into terminating programs. As a result,
not all possible predicates which can be written in a CLP language can be used as properties
in assertions:

De�nition 4.1 [Test] A literal L is a test i� 8� : derivations(P; (L; �)) is �nite.

Only tests are admissible as pre and post conditions in assertions.

De�nition 4.2 [Trivially Succeeds] A literal L trivially succeeds for � in P , denoted
�)P L, if 9 a successful derivation for hL �i with answer �0 s.t. �9vars(L)�

0 = �.

Theorem 4.3 [Checking of Tests] Let t be a test de�ned in a program P . t(�) holds i�
�)P t.

6

Theorem 4.3 guarantees that checking of pre and post conditions, which are required
to be tests, is complete since the set of derivations (search space) is �nite.

We now provide an operational semantics which checks whether assertions hold or
not while computing the derivations from a query. A check literal is a syntactic object
check(L;A) where L is either an atom or a constraint and A (an identi�er for) the assertion
which generated the check literal. In this semantics, a literal is now an atom, a constraint,
or a check literal. A CLP program with assertions is a pair (P;A), where P is a program,
as de�ned in Section 2 and A is a set of assertions.3

A �nished derivation for a query Q in a CLP program P may be either successful (with
answer �) or failed. In the case of programs with assertions, we consider a third case for
�nished derivations which we refer to as erroneous. We introduce a class of distinguished
states of the form (�; A) which cannot be further reduced. A �nished derivation is erroneous
if the last state in the derivation is of the form (�; A), where A is (an identi�er for) an
assertion. Erroneous derivations indicate that the assertion A has been violated.

A state hL :: G �i, where L is a literal can be reduced as follows:

1. If L is a primitive constraint and � ^ L is satis�able, it is reduced to hG � ^ Li.
2. If L is an atom,

{ if 9 A = calls(p; Cond) 2 A s.t. � 6)P Cond, then it is reduced to h� Ai.
{ otherwise if 9(L:-B) 2 defnP (L) it is reduced to hB :: PostCond :: G �i where
PostCond = fcheck(S;A)j 9 A = success(L;C; S) 2 A ^ �)P Cg.

3. If L is a check literal check(prop;A),
{ if �)P prop then it is reduced to hG �i
{ otherwise it is reduced to h� Ai.

Note that the relative order of the check literals in PostCond is not �xed in the
semantics. However, this order is irrelevant as they may be checked in any order. We
will write derivations using the operational semantics for programs with assertions as
hG �i ;(P;A) : : : ;(P;A) hG

0 �0i in order to distinguish them from derivations using
the operational semantics of Section 2. Also, the set of derivations from a set of queries
Q in a program P using the semantics with assertions is denoted derivationsA(P;Q).

Theorem 4.4 [Run-time Checking] Given a program P , a set of assertions A, and a set
of queries Q,

A is false i� 9 D 2 derivationsA(P;Q) with current state(D) = h�; Ai

Theorem 4.4 guarantees that we can use the proposed operational semantics for pro-
grams with assertions in order to detect violation of assertions.

Corollary 4.5 Given a program P , a set of assertions A, and a set of queries Q, A is
checked i� 8 D 2 derivationsA(P;Q) : D is not erroneous.

Corollary 4.5 is a direct consequence of Theorem 4.4. However, proving 8 D 2
derivationsA(P;Q) : D is not erroneous is often not feasible in practice as in general
Q is in�nite. Furthermore, for a single query Q derivationsA(P;Q) may also be in�nite.
The approach usually taken in practice is to take a �nite Q'� Q (the test set) which is
considered to be representative of Q. Then, (a subset of) derivations(P;Q0) is computed.
If an erroneous derivation is found, diagnosis is started. Otherwise, P is (unsafely) assumed
to be correct w.r.t A though it has not actually been proved, or more testing is performed.

3 Program point assertions can be introduced by just allowing check literals to appear in the body
of rules [22]. However, for simplicity we do not discuss program point assertions in this paper.

7

Furthermore, this semantics can also be used to obtain answers to the original query, as
stated by Theorem 4.6 below.

Theorem 4.6 Let P be a program, A a set of assertions, and Q set of queries. If P is
partially correct w.r.t. Athen derivations(P;Q) = derivationsA(P;Q).

Theorem 4.6 guarantees that the behavior of a partially correct program is the same
under the operational semantics of Section 2 and the semantics with assertions.

5 Run-Time Checking with Existing CLP Systems

Even though the semantics for programs with assertions presented in the previous section
can be used to perform run-time checking, an important disadvantage is that existing CLP
system do not implement such semantics. Modi�cation of a CLP system with that aim is not
a trivial task due to the complexity of typical implementations. Thus, it seems desirable to be
able to perform run-time checking on top of existing systems without having to modify them.
Writing a meta-interpreter which implements this semantics on top of a CLP system is not a
di�cult task. However, the drawback of this approach is its ine�ciency due to the overhead
introduced by the meta-interpretation level.4 A second approach, which is the one used
in our implementation, is based on program transformation. Given a program P , another
program P 0 is obtained which checks the assertions while running on a standard CLP
system. The meta-interpretation level is eliminated since the process of assertion checking
is compiled into P 0.

The program transformation from P into P 0 given a set of assertions A is as follows.
Let new(P; p) denote a function which returns an atom of a new predicate symbol di�erent
from all predicates de�ned in P with same arity and arguments as p. Let renaming(A; p; p0)
denote a function which returns a set of assertions identical to A except for the assertions
referred to p which are now referred to p0, and let renaming(P; p; p0) denote a function
which returns a set of rules identical to P except for the rules of predicate p which are now
referred to p0. We obtain P 0 = rtchecks(A; P), where:

rtchecks(A; P) =

�
rtchecks(A0; P 0) if A = fAg [A00

P if A = ;

where

A0 = renaming(A00; p; p0)
P 0 = renaming(P; p; p0) [fCLg
p0 = new(P; p)

CL =

�
p:-check(C;A); p0: if A = calls(p; C)

p:-(ts(C)->p0; check(S;A) ; p0): if A = success(p; C; S)

As usual, the construct (cond-> then ; else) is the Prolog if-then-else. The program above
contains two unde�ned predicates: check(C;A) and ts(C). check(C;A) must check whether
C holds or not and raise an error if it does not. ts(C) must return true i� for the current
constraint store �, �)P C. As an example, for the particular case of Prolog, check(C;A)
can be de�ned as \check(C,A) :- (ts(C) -> true ; error(A))." where error(A) is
a predicate which informs about the false assertion A. ts(C) can be de�ned as \ts(C) :-

copy term(C,C1), call(C1), variant(C,C1).".

4 Partial evaluation may be used to reduce such overhead for those parts of the program in which
no assertion is to be checked.

8

Theorem 5.1 [Program Transformation] Let P be a program and A a set of assertions.
Let P 0 = rtchecks(A; P). If during the execution of P 0 for a query Q a literal error(A) is
executed then A is false and E(A;P;Q) 6= ;.

Theorem 5.1 guarantees correctness of the transformed program, i.e., if the transformed
program detects that an assertion is false, it is actually false.

6 Compile-Time Checking

In this section we present some techniques which allow in certain cases determining at
compile-time the results of run-time assertion checking. With this aim, we assume the exis-
tence of a global analyzer, typically based on abstract interpretation [10] which is capable of
computing at compile-time certain characteristics of the run-time behavior of the program.
In particular, we consider the case in which the analysis provides safe approximations of
the calling and success patterns for predicates. Note that it is not to be expected that all
assertions are checkable at compile-time, either because the properties in the assertions are
not decidable at compile-time or because the available analyzers are not accurate enough.
Those which cannot be checked at compile-time should, in general, be checked at run-time.

6.1 Abstract Interpretation

Abstract interpretation [10] is a technique for static program analysis in which execution
of the program is simulated on an abstract domain (D�) which is simpler than the actual,
concrete domain (D). For this study, abstract interpretation is restricted to complete lattices
over sets (i.e., power domains, in general) both for the concrete hD;�i and abstract hD�;vi
domains. As usual, the concrete and abstract domains are related via a pair of monotonic
mappings abstraction � : D 7! D�, and concretization : D� 7! D, such that

8x 2 D : (�(x)) � x and 8y 2 D� : �((y)) = y:

In general v is induced by � and � (in such a way that 8�; �0 2 D� : � v �0 , (�) �
(�0)), and is not equal to set inclusion. The operations of least upper bound and greatest
lower bound in the abstract domain are denoted t and u respectively. Also, as usual in
abstract interpretation, ? denotes the abstract substitution such that (?) = ;.

De�nition 6.1 [Calling Context] Consider a program P , a predicate p and a set of queries
Q. The calling context of p for P and Q is C(p; P;Q) = f �9vars(p)�j 9D 2 derivations(P;Q)
with current store(D) = hp :: G �i g.

De�nition 6.2 [Success Context] Consider a program P , a predicate p, a constraint store
�, and a set of queries Q. The success context of p and � for P and Q is S(p; �; P;Q) = f
�9vars(p)�

0j 9D 2 derivations(P;Q) with D = � � �;P hp :: G �i;P � � �;P hG �0i.

We can restrict the constraints in the calling and success contexts to the variables in p

since this does not a�ect the behavior of calls and success assertions.
Goal dependent abstract interpretation takes as input a program P , a set Q� of pairs

(pj ; �j), where pj is a predicate symbol (denoting one of the exported predicates) and �j a re-
striction of the initial stores for p expressed as an abstract substitution � in the abstract do-
main D�, and which represents the set of concrete queries Q = (Q�). Such an abstract in-
terpretation computes a set of triples Analysis(P;Q�; D�) = fhp1; �c1; �

s
1i; : : : ; hpn; �

c
n; �

s
nig.

For each predicate p in a program P not detected to be dead code, we assume that the
abstract interpretation based analysis computes a tuple hp; �c; �si. Correctness of abstract
interpretation guarantees that (�c) � C(p; P;Q) and (�s) �

S
�2(�c) S(p; �; P;Q).

9

6.2 Exploiting Information from Abstract Interpretation

Before presenting the actual su�cient conditions that we propose for performing compile-
time checking of assertions, we present some de�nitions and results which will then be
instrumental.

De�nition 6.3 [Trivial Success Set] Given a literal L and a program P we de�ne the
trivial success set of L in P as

TS(L; P) = f�9vars(L)� j�)P Lg

This de�nition is an adaptation of that presented in [24], where analysis information is
used to optimize automatically parallelized programs.

De�nition 6.4 [Abstract Trivial Success Subset] An abstract substitution ��
TS(L;P) is an

abstract trivial success subset of L in P i� (��
TS(L;P)) � TS(L; P).

Lemma 6.5 Let � be an abstract substitution and let ��
TS(L;P) be an abstract trivial

success subset of L in P .

1. if � v ��
TS(L;P) then 8 � 2 (�) : �)P L

2. if � u ��
TS(L;P) 6= ? then 9 � 2 (�) : �)P L

De�nition 6.6 [Abstract Trivial Success Superset] An abstract substitution �+
TS(L;P) is

an abstract trivial success superset of L in P i� (�+
TS(L;P)) � TS(L; P).

Lemma 6.7 Let � be an abstract substitution and let �+
TS(L;P) be an abstract trivial

success superset of L in P .

1. if �+
TS(L;P) v � then 8 � : if �)P L then � 2 (�).

2. if � u �+
TS(L;P) = ? then 8 � 2 (�) : � 6)P L

In order to apply Lemmas 6.5 and 6.7 e�ectively, accurate �+
TS(L;P) and ��

TS(L;P) are

required. Finding a correct, and hopefully accurate �+
TS(L;P) can simply be done by ana-

lyzing the literal L and taking �+
TS(L;P) = �s if the analysis information for L is hL; �c; �si.

Correctness of the analysis guarantees that �s is a superset approximation of TS(L; P).
Unfortunately, obtaining a (non-trivial) correct ��

TS(L;P) in an automatic way is not so

easy, assuming that analysis provides superset approximations. In [24], correct ��
TS(L;P) for

built-in predicates were computed by hand and provided to the system as a table of \builtin
abstract behaviors". This is possible because the semantics of built-ins is known in advance
and does not depend on P (also, computing by hand is well justi�ed in this case because,
in general, code for built-ins is not available since for e�ciency they are often written in a
lower-level language {e.g., C{ and analyzing their de�nition is thus not straightforward).

In the case of user de�ned predicates, precomputing ��
TS(L;P) is not possible since their

semantics is not known in advance. However, the user can provide trust assertions which
provide this information. Also, since in this case the code of the predicate is present, analysis
of the de�nition of L can also be applied and will be e�ective if analysis is precise for
L, i.e., (�s) =

S
�2(�c) S(p; �; P;Q) rather than (�s) �

S
�2(�c) S(p; �; P;Q). In this

situation we can use �s as (the best possible) ��
TS(L;P). Requiring that the analysis be

precise for any arbitrary literal L is not realistic. However, if the success set of L corresponds

10

exactly to some abstract substitution �L, i.e. TS(L; P) = (�L), then analysis can often
be precise enough to compute hL; �c; �si with �s = �L. This implies that not all the tests
the user could write are checkable at compile-time, but only those of them which coincide
with some abstract substitution. This means that if we only want to perform compile-
time checking, then it is best to use tests which are perfectly captured by the abstract
domain. An interesting situation in which this occurs is the use of regular programs as
type de�nitions (as in Figure 2). There is a direct mapping from type de�nitions (i.e., the
abstract values in the domain) to regular programs and vice-versa which allows accurately
relating any abstract value to any program de�ning a type (i.e., to any regular program). In
our implementation of the framework the user can choose whether to use type de�nitions or
regular programs for de�ning tests. In the �rst case, the corresponding regular program is
automatically generated if run-time checking is to be performed. Unfortunately, in general
there is no such straightforward mapping from abstract substitutions to programs for a
given arbitrary abstract domain.

6.3 Checked Assertions

In this section we provide su�cient conditions for proving at compile-time that an assertion
is never violated. Detecting checked assertions at compile-time is quite useful. First, if all
assertions are found to be checked, then the program has been validated. Second, even if only
some assertions are found to be checked, performing run-time checking for those assertions
can be avoided, thus improving e�ciency of the program with run-time checks. Finally,
knowing that some assertions have been checked also allows the user to focus debugging on
the remaining assertions.

Theorem 6.8 [Checked Calls Assertion] Let calls(p; P recond) be an assertion, P a pro-
gram, and hp; �c; �si the analysis information for p and a class of queries Q. If �c v
��
TS(Precond;P) then A is checked.

Theorem 6.9 [Checked Success Assertion] Let success(p; P re; Post) be an assertion, and
P a program. Let hp; �c; �si be the analysis information for p and a class of queries Q. If

1. �c u �+
TS(Pre;P) = ?, or

2. �s v ��
TS(Post;P)

then A is checked.

Theorem 6.9 states that there are two situations in which a success assertion is checked.
Case 1 indicates that the precondition is never satis�ed, and thus the postcondition does
not need to be tested. Case 2 indicates that the postcondition holds for all stores in the
success contexts, which is a superset of the applicability set of the assertion.

6.4 True Assertions

As with checked assertions, if an assertion is true then it is guaranteed that it will not
raise any error at run-time. Thus, there is no need to consider it when performing run-time
checking. However, there is an important di�erence between them. Assertions which are
checked will not raise errors for the considered (class of) queries, but may not hold for
other queries. True assertions hold for any possible query and thus can be used as a (goal-
independent) property of the program, regardless of the query. Thus, true assertions can be
used to express analysis information, as already done, for example, in [5]. This information
can then be reused when analyzing the program for di�erent queries.

11

Note that, due to the de�nition of true assertions, an assertion calls(p; P recond) can
never be found to be true, as the calling context of p depends on the query. If we pose no
restriction on the queries we can always �nd a calling state which violates the assertion,
unless Precond is a tautology.

Theorem 6.10 [True Success Assertion] Let success(p; P re; Post) be an assertion, and P

a program. Let hp; �c; �si be the analysis information for p and a class of queries Q. If

1. �+
TS(Pre;P) v �c, and

2. �s v ��
TS(Post;P)

then A is true.

Condition 1 guarantees that �s describes any store which is a descendent of a calling
state of p which satis�ed the precondition. Condition 2 ensures that any store described
by �s satis�es the postcondition. Thus, any store in the success context originated from a
calling state which satis�ed the precondition satis�es the postcondition.

6.5 False Assertions

The aim of this section is to �nd su�cient conditions which ensure statically that there is
an erroneous derivation D 2 derivations(P;Q), i.e., without having to actually compute
derivations(P;Q). Unfortunately, this is a bit trickier than it may seem at �rst sight if
analysis over-approximates computation states, as is the usual case.

Theorem 6.11 [False Calls Assertion] Let calls(p; P recond) be an assertion, and P a
program. Let hp; �c; �si be the analysis information for p and a class of queries Q. If
C(p; P;Q) 6= ; and �c u �+

TS(Precond;P) = ? then A is false.

In order to prove that a calls assertion is false it is not enough to prove that
�+
TS(Precond;P) < �c as the contexts which violate the assertion may not appear in the

real execution but rather may have been introduced due to the loss of accuracy of analysis
w.r.t. the actual computation. Furthermore, even if �c and �+

TS(Precond;P) are incompatible,

it may be the case that there are no calls for predicate P in derivations(P;Q) (and analysis
is not capable of detecting so). This is why the condition C(p; P;Q) 6= ; is also required.

Theorem 6.12 [False Success Assertion] Let success(p; P re; Post) be an assertion, and
P a program. Let hp; �c; �si be the analysis information for p and a class of queries Q. If

1. �c u ��
TS(Pre;P) 6= ?, and

2. �s u �+
TS(Post;P) = ? and 9 � 2 (�c u ��

TS(Pre;P)) : S(p; �; P;Q) 6= ;.

then A is false.

Now again, �s is an over-approximation, and in particular it can approximate the empty
set. This is why the extra condition 9 � 2 (�c u ��

TS(Pre;P)) : S(p; �; P;Q) 6= ; is required.

If an assertion A is false then the program is not correct w.r.t. A. Detecting the mininal
part of the program responsible for the incorrectness, i.e., diagnosis of a static symptom is
an interesting problem. However, such static diagnosis is out of the scope of this paper.

12

Types Modes Aliasing

Prog Ps Props Infer Simp Props Infer Simp Props Infer Simp

ann 66 514 9.64 0.55 265 1.60 1.22 419 2.22 6.57
palin 6 28 0.56 0.19 15 0.18 0.02 22 0.21 0.02
progeom 10 58 0.70 0.65 56 0.08 0.06 57 0.06 0.06
queen 6 28 0.23 0.09 26 0.05 0.03 28 0.04 0.04
warplan 31 132 8.33 0.12 71 1.83 0.07 98 2.35 0.10

Fig. 3. Analysis/Checking Performance

6.6 Equivalent Assertions

Since our assertion language allows expressing properties which are not required to be
statically decidable, it is to be expected that some assertions are not detected as checked or
false at compile-time. However, it is possible some that part of the assertion can be replaced
at compile time by a simpler one, i.e., one which can be checked more e�ciently.

De�nition 6.13 [Equivalent Assertions] Two assertions A;A0 are equivalent for program
P and set of queries Q i� E(A;P;Q) = E(A;P;Q).

If A and A0 are equivalent but A0 is simpler then obviously A0 should be used instead
for run-time checking. Generating equivalent assertions (i.e., simplifying assertions) can
be done using techniques such as abstract specialization (see, e.g., [24]). However, space
limitations prevent us from discussing further this interesting issue.

7 Implementation

We have implemented the schema of Figure 1 as a generic framework. This genericity means
that di�erent instances of the tools involved in the schema can be incorporated in a straight-
forward way. Currently, two di�erent experimental debugging environments have been de-
veloped using this framework: ciaopp, the CIAO system preprocessor, developed by UPM,
and fdtypes, an assertion-based type inferencing and checking tool developed by Pawel
Pietrzak at the U. of Link�oping, in collaboration with UPM. Also, an assertion-based pre-
processor for PrologIV has been developed by Claude Lai of PrologIA extending the work
of [26], which is based on the same overall design, but separately coded and using simpler
analysis techniques. These three environments share the same source language (ISO-Prolog
+ �nite domain constraints) and the same assertion language [23], so that source and out-
put programs (annotated with assertions and/or run-time tests) can be easily exchanged.
fdtypes has been interfaced by Cosytec with the CHIP system (adding a graphical user
interface) and is currently under industrial evaluation.

ciaopp uses as analyzers both the CLP version of the PLAI abstract interpreter [16] and
adaptations of Gallagher's type analysis [15], and works on the domains of moded types,
de�niteness, freeness, and grounding dependencies (as well as more complex properties, such
as bounds on cost or non-failure for Prolog programs). This tool is currently an integral
part of the CIAO system.

The actual evaluation of the practical bene�ts of these tools is beyond the scope of this
paper, but we believe that the signi�cant industrial interest shown is encouraging. Also,
it has certainly been observed during use by the system developers and a few early users
that these tools can indeed detect some bugs much earlier in the program development
process than with any previously available tools. Interestingly, this has been observed even
when no speci�cations are available from the user: in these systems the system developers
have included a rich set of assertions inside library modules (such as those de�ning the

13

With Run-time Checks

Types Modes Aliasing

Prog Props Slowdown Props Slowdown Props Slowdown

ann 514 2.95 265 3.55 419 3.50
palin 28 15.0 15 6.00 22 9.00
progeom 58 104 56 65.0 57 66.0
queen 28 6.10 26 6.10 28 6.10
warplan 132 190 71 151 98 177

Fig. 4. Run-Time Checking Cost

system built-ins and standard libraries) for the predicates de�ned in these modules. As a
result, symptoms in user programs are often agged during compilation simply because
the analyzer/comparator pair detects that assertions for the system library predicates are
violated by program predicates.

It is also not our current purpose to perform a detailed evaluation of the performance of
these systems. However, preliminary results also show that the performance is quite reason-
able. Figure 3 presents results for ciaopp, inferring types (using Gallagher's type analyzer
[15]), modes (using a variant of the Sharing+Freeness domain [20]), and variable aliasing
(using the standard Sharing+Freeness). Analysis times are relatively well understood for
these domains. The assertion processing time (normalization, simpli�cation, etc.) obviously
depends on the number of assertions in the input program. Given the lack at this point of a
standardized set of benchmarks including assertions, for our preliminary evaluation we have
opted for a simple and repeatable method of generating assertions automatically: previous
to our measurements, we have run the analyzer on the program, producing true assertions
which express the analysis results, rewritten such assertions into check assertions, and used
this program as input for the system. Prog is the program being debugged and Ps the
number of predicates, and, thus, of assertions (analysis variants were collapsed into one per
predicate) in the program. Props is the number of properties which appear in the program
assertions. Infer the analysis time, and Simp the time taken by the comparator to simplify
the input assertions. These times are relative to the time taken by the standard (SICStus-
)Prolog compiler to compile the program without assertions. For example, a 2 for Infer
means that analysis time is twice the normal Prolog compiler time for the benchmark.

Clearly, in our case all assertions should be proven to be checked statically (and, indeed
ciaopp does so). Figure 4 provides some data on the run-time cost of the assertions elim-
inated. It shows the slowdowns incurred when running the programs with the assertions
relative to the running times of the original programs without assertions. Prog and Props

are as before. Obviously, in our stylized case, when running the programs with assertions
through ciaopp no slowdowns occur, since all run-time checks are eliminated.

Again, the purpose of presenting these results is just to give a avor for the behavior of
the system. Clearly, the results should be contrasted with those obtained in an exhaustive
evaluation, using more realistic, user provided assertions, which is left as future work.

Acknowledgments

This work has been supported in part by ESPRIT project DiSCiPl and CICYT project
ELLA. The authors would also like to thank Jan Ma luszy�nski, Wlodek Drabent and Pierre
Deransart for many interesting discussions on assertions and assertion-based debugging, to
Pawel Pietrzak for his important contribution in the adaptation of the John Gallagher's
type analysis for CLP(FD), and to Abder Aggoun, Helmut Simonis, Eric Vetillard and
Claude Lai for their feedback on the assertion language design.

14

References

1. A. Aggoun, F. Benhamou, F. Bueno, M. Carro, P. Deransart, W. Drabent, G. Ferrand,
F. Goualard, M. Hermenegildo, C. Lai, J.Lloyd, J. Maluszynski, G. Puebla, and A. Tessier.
CP Debugging Tools: Clari�cation of Functionalities and Selection of the Tools. Technical
Report D.WP1.1.M1.1-2, DISCIPL Project, June 1997.

2. K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from modes through types to
assertions. Formal Aspects of Computing, 6(6):743{765, 1994.

3. K. R. Apt and D. Pedreschi. Reasoning about termination of pure PROLOG programs. In-
formation and Computation, 1(106):109{157, 1993.

4. J. Boye, W. Drabent, and J. Ma luszy�nski. Declarative diagnosis of constraint programs: an
assertion-based approach. In Proc. of the 3rd. Int'l Workshop on Automated Debugging{
AADEBUG'97, pages 123{141, Linkoping, Sweden, May 1997. U. of Linkoping Press.

5. F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of Standard Prolog
Programs. In European Symposium on Programming, number 1058 in LNCS, pages 108{124,
Sweden, April 1996. Springer-Verlag.

6. F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo, J. Maluszynski, and
G. Puebla. On the Role of Semantic Approximations in Validation and Diagnosis of Constraint
Logic Programs. In Proc. of the 3rd. Int'l Workshop on Automated Debugging{AADEBUG'97,
pages 155{170, Linkoping, Sweden, May 1997. U. of Linkoping Press.

7. B. Le Charlier and P. Van Hentenryck. Experimental Evaluation of a Generic Abstract Inter-
pretation Algorithm for Prolog. ACM Transactions on Programming Languages and Systems,
16(1):35{101, 1994.

8. M. Comini, G. Levi, M. C. Meo, and G. Vitiello. Proving properties of logic programs by
abstract diagnosis. In M. Dams, editor, Analysis and Veri�cation of Multiple-Agent Languages,
5th LOMAPS Workshop, number 1192 in Lecture Notes in Computer Science, pages 22{50.
Springer-Verlag, 1996.

9. M. Comini, G. Levi, and G. Vitiello. Abstract debugging of logic programs. In L. Fribourg and
F. Turini, editors, Proc. Logic Program Synthesis and Transformation and Metaprogramming
in Logic 1994, volume 883 of Lecture Notes in Computer Science, pages 440{450, Berlin, 1994.
Springer-Verlag.

10. P. Cousot and R. Cousot. Abstract Interpretation: a Uni�ed Lattice Model for Static Analysis
of Programs by Construction or Approximation of Fixpoints. In Fourth ACM Symposium on
Principles of Programming Languages, pages 238{252, 1977.

11. P. Deransart. Proof methods of declarative properties of de�nite programs. Theoretical Com-
puter Science, 118:99{166, 1993.

12. W. Drabent, S. Nadjm-Tehrani, and J. Ma luszy�nski. The Use of Assertions in Algorithmic
Debugging. In Proceedings of the Intl. Conf. on Fifth Generation Computer Systems, pages
573{581, 1988.

13. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with assertions.
In (H. Abramson and M.H.Rogers, editors, Meta-programming in Logic Programming, pages
501{522. MIT Press, 1989.

14. G. Ferrand. Error diagnosis in logic programming. J. Logic Programming, 4:177{198, 1987.

15. J.P. Gallagher and D.A. de Waal. Fast and precise regular approximations of logic programs.
In Pascal Van Hentenryck, editor, Proceedings of the Eleventh International Conference on
Logic Programming, pages 599{613. The MIT Press, 1994.

16. M. Garc��a de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier, G. Janssens, and
W. Simoens. Global Analysis of Constraint Logic Programs. ACM Transactions on Program-
ming Languages and Systems, 18(5):564{615, 1996.

17. M. Hermenegildo and the CLIP Group. Programming with Global Analysis. In Proceedings
of ILPS'97. MIT Press, October 1997. (abstract of invited talk).

18. P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cambridge MA, 1994.

19. J. Ja�ar and M.J. Maher. Constraint Logic Programming: A Survey. Journal of Logic Pro-
gramming, 19/20:503{581, 1994.

15

20. K. Muthukumar and M. Hermenegildo. Combined Determination of Sharing and Freeness of
Program Variables Through Abstract Interpretation. In 1991 International Conference on
Logic Programming, pages 49{63. MIT Press, June 1991.

21. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable Dependency Us-
ing Abstract Interpretation. Journal of Logic Programming, 13(2/3):315{347, July 1992. Orig-
inally published as Technical Report FIM 59.1/IA/90, Computer Science Dept, Universidad
Politecnica de Madrid, Spain, August 1990.

22. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging
of Constraint Logic Programs. In Proceedings of the ILPS'97 Workshop on Tools
and Environments for (Constraint) Logic Programming, October 1997. Available from
ftp://clip.dia.fi.upm.es/pub/papers/assert lang tr discipldeliv.ps.gz

ftp://clip.dia.�.upm.es/pub/papers/assert lang tr discipldeliv.ps.gz.
23. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Debugging of Con-

straint Logic Programs. Technical Report CLIP2/97.1, Facultad de Inform�atica, UPM, July
1997.

24. G. Puebla and M. Hermenegildo. Abstract Specialization and its Application to Program
Parallelization. In J. Gallagher, editor, VI International Workshop on Logic Program Synthesis
and Transformation, number 1207 in LNCS, pages 169{186. Springer-Verlag, 1997.

25. Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury: an e�cient
purely declarative logic programming language. JLP, 29(1{3), October 1996.

26. E. Vetillard. Utilisation de Declarations en Programmation Logique avec Constraintes. PhD
thesis, U. of Aix-Marseilles II, 1994.

16

