
Abstraction Preservation and Subtyping in Distributed
Languages

Pierre-Malo Deniélou James J. Leifer
INRIA Rocquencourt

{Pierre-Malo.Denielou,James.Leifer}@inria.fr

Abstract
In most programming languages, type abstraction is guaranteed by
syntactic scoping in a single program, but is not preserved by mar-
shalling during distributed communication. A solution is to gener-
ate hash types at compile time that consist of a fingerprint of the
source code implementing the data type. These hash types can be
tupled with a marshalled value and compared efficiently at unmar-
shall time to guarantee abstraction safety. In this paper, we extend
a core calculus of ML-like modules, functions, distributed com-
munication, and hash types, to integrate structural subtyping, user-
declared subtyping between abstract types, and bounded existen-
tial types. Our semantics makes two contributions: (1) the explicit
tracking of the interaction between abstraction boundaries and sub-
typing; (2) support for user-declared module upgrades with propa-
gation of the resulting subhashing relation throughout the network
during communication. We prove type preservation, progress, de-
terminacy, and erasure for our system.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features

General Terms Languages, Design

Keywords programming language semantics, serialisation and
distributed computation, module systems, type theory, subtyping

1. Introduction
1.1 Background and motivation

Abstract types are a powerful feature of modern programming
languages. They arise when the implementation of a collection
of types and accompanying functions, often called a module, is
partly hidden by an interface. The creation and manipulation of an
abstract data type are then constrained by the functions declared in
its interface.

This abstraction mechanism helps the programmer to build data
types that support two properties. The first is invariant preserva-
tion, which states that the interface, by the limits it imposes on
data manipulation, ensures the preservation of the internal invari-
ants. The second is secrecy (also known as encapsulation) which
states that the underlying implementation of all abstract types and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP06 September 18–20, 2006, Portland, Oregon, USA
Copyright c© 2006 ACM [to be supplied]. . . $5.00.

of values of those types is hidden and cannot be observed by exter-
nal code outside the abstraction boundaries. The programming lan-
guage semantics and the type system then ensure that these prop-
erties, which we collectively call abstraction preservation, hold
throughout all executions.

In the ML [9] family of languages, it is sufficient to check stat-
ically at compile time the scoping and typing information required
to ensure abstraction preservation. Thus they may be forgotten at
run time. A completely untyped run time is, however, inadequate
in a distributed environment where a value marshalled on one ma-
chine may be transmitted and unmarshalled on another.

Even if one exchanges concrete type information to prevent un-
safe unmarshalling of a value at the wrong concrete type, this is
not sufficient for ensuring either of abstraction preservation’s two
properties. Nor can we trivially solve this by relying on abstract
type names, since they are only meaningful when they are unam-
biguously linked to their original module declaration — which is
not possible to check on a distant machine.

We proposed a solution in [7], which was later developed in
the Acute programming language [12]. A global name for an ab-
stract type is constructed at compile time by hashing the source
of the module that exports that type. We thereby identify, between
distributed programs, abstract types that share the same implemen-
tation (representation type and code), and thus the same abstract
properties. We used the mechanism of coloured brackets introduced
by Zdancewic et al. [5] to track the evolution of abstract values
through the operational semantics and thus show the abstraction
preservation property.

1.2 Problem and solution

Distributed systems involve code that is not only executed on dif-
ferent machines, but also asynchronously modified and deployed
across a network. We therefore regard the distributed communica-
tion of values between differing versions of code to be an expected,
rather than exceptional, situation.

In our previous work on Acute, we considered two sorts of
version change. The first was concerned with dynamic rebinding.
When marshalling a value, the user could choose which code point-
ers in the value should have their targets included in the marshalled
package and which should be cut. The cut pointers would then be
rebound at the receiver side to locally available modules, provided
the locally available module versions satisfied the right version con-
straints. This aspect of rebinding is completely outside the scope of
the present paper.

The second sort was concerned with marshalling a value at one
abstract type and unmarshalling it according to another, upgraded,
one. The present paper directly addresses this issue. In Acute, the
only way to support compatibility between abstract types is via the
strong coercion with!, which makes the hash of the new module’s
abstract type equal the hash of the old module’s one. This strategy

has a highly efficient implementation: the compiler checks that the
underlying implementation types are the same in the new and old
module and then gives the new module the same hash as the old.
The drawback to this approach is that it only supports bidirectional
compatibility: unmarshalling can convert values from the old type
to the new one as well as from the new to the old, even if the user
only asserts abstraction safety for one of those directions.

We thus propose to use subtyping to model a more refined un-
marshalling test and to introduce subtyping throughout the lan-
guage so that the user may declare unidirectional compatibility.

Subtyping will come from three different sources. First, we add
immutable records, almost the simplest possible data structure that
supports structural subtyping. Second, to model upgrade compat-
ibility between two modules, we introduce a constrained form of
subtyping between abstract types. Third, we allow the declaration
of partially abstract types (also known as bounded existentials)
which enable the user to partially reveal information about an ab-
stract type.

In order to define an operational semantics that encompasses
these features, we needed to make substantive changes to [7].
To handle the second feature, namely subtyping between abstract
types, we introduce into the semantics a subhash relation that is
calculated at compile time and propagated throughout the network
at run time. For the third feature, namely partial abstract types,
we add explicit subtyping operations to the syntax (instead of
implicit subsumption) and change the typing and reduction rules
for coloured brackets to accommodate additive brackets, that allow
code inside them to see through the ambient abstractions but not
vice versa. Our erasure theorem shows that the explicit subtyping
and coloured bracket operations can be safely eliminated in an
implementation.

1.3 Outline

Our aim in this paper is to provide a type-safe, abstraction-
preserving core calculus featuring a simple module system with
abstract types, networking and marshalling primitives, and hashes
and coloured brackets. Our presentation is divided in three stages.

In the first stage, section 2, we define our core calculus, which
closely follows our previous work in [7], with two main changes:
a subtype check replaces the equality check at unmarshall time
and the system is extended to include simple records and structural
subtyping. The details presented in this section will be used as setup
for later developments.

In the second, section 3, we introduce user declarations of mod-
ule upgrades which induce compatibility between abstract types
based on subtyping. This leads to changes to the operational se-
mantics for propagating the enriched subtype relation throughout
the network during communication.

Finally, in the third, section 4, we extend the module signature
syntax to allow partial abstract types. These changes force us to
replace implicit subtyping subsumption by explicit subtyping nodes
and to make coloured brackets partially transparent.

We present in section 5 our theorems for type preservation,
progress, and determinacy. We discuss in section 6 implementa-
tion issues for our calculus and state a type erasure theorem. We
conclude with the future work in section 7.

2. Base system
In this section we recall the core distributed λ-calculus with ab-
stract types of [7]. Our presentation differs from the original by the
introduction of records and structural subtyping. This calculus is
the initial setup upon which all further modifications in this paper
are made, thus we treat in detail the unusual aspect of this calculus
and detail the significant typing and semantics rules.

We give in Figure 1 the initial, “temporary”, syntax. In the tech-
nical report [4] the reader can find the complete final definition that
encompasses all sections in this paper as well as all the theorems
and proofs.

2.1 Typed λ-calculus and records

The heart of our system is a simply-typed call-by-value λ-calculus
with tuples and records. Concretely, our expression grammar in-
cludes expression variables x , functions λx .e and applications
e e ′, tuples (e1, ..., ej) and projection proj

i
e , records {l1 =

e1; ...; lj = ej} and access to a field e.li. These elements have
the usual typing and reduction rules. Records are not the focus of
our paper, but are a convenient way of obtaining structural subtyp-
ing; as a result, we take them in almost their simplest form, namely
ordered, immutable, and non extensible. The base expressions are
unit () and integers n.

We write values as v c , where c is a colour annotation as ex-
plained later in section 2.9.

2.2 Types, type equivalence, and subtyping

These expressions are typed using a standard ML type grammar:
the base types are UNIT and INT, and the constructors are arrows
T→T ′, tuples T1 ∗ ... ∗Tj and records {l1:T ; ...; lj :T}. There is
also a special base type corresponding to data in raw form (i.e. byte
strings) that circulate on the network: BYTES.

There are two important relations for comparing types. The first,
an equivalence relation, written ==, is used to relate the abstract
types with their implementations under certain precise conditions
that we will detail later in section 2.7. The second, a subtyping re-
lation, denoted <:, is induced by record typing, and is lifted to the
other constructors in the usual way. Subtyping includes type equiv-
alene. As we want to keep the subtyping relation between records
as simple as possible, we consider only width subtyping between
records, i.e. two conditions hold for one record type to be a subtype
of another: (1) the supertype’s labels are included in the subtype’s;
(2) types under a common label are equivalent. Then, for example
we have {l1:T1, ..., lj :Tj , ..., lk:Tk} <: {l1:T1, ..., lj :Tj}. (We
treat depth subtyping in our handling of tuples.)

These two relations, equivalence and subtyping, are mirrored
by two different kinds that we will use to describe sets of types: the
kind Eq(T) represents the types that are equivalent (w.r.t. ==) to
T ; the kind Le(T) represents the subtypes (w.r.t. <:) of T . Type
equivalence is included in subtyping.

Finally we add to the type grammar a greatest type, written >,
so that the correctness of a type T can be easily expressed by the
statement that T <: > or, equivalently, T :Le(>).

2.3 Modules

For simplicity, our module syntax is just rich enough for each
module to define one abstract type. Concretely, a module, referred
to by the metavariable U , is the association of a structure M and a
signature S : the full declaration is written moduleNU = M :S .
We here distinguish, as in [6], the internal name U (which binds
and is thus alpha convertible) from the fixed external name N .

A structure M defines one type abbreviation and one value,
written [T , v•]; of course the value itself may be a record of several
fields, for example. Since each structure declares only one type and
one value, they do not need individual identifiers. The declared type
of a module U will then be referred as U .TYPE and the value as
U .term. In Ocaml, we would have to name the type and value
explicitly, for example writing our structure [T , v •] as:

struct type t = T let x = v• end
In order to avoid consideration of side effects in module initialisa-
tion, we only consider expression fields that are values. The reader

Figure 1. Initial syntax of the calculus
The elements that are below the dotted lines are not in user source
programs but are introduced by compilation and reduction steps.

Summary of variables:
x expressions
X types
U modules

Expressions:
e ::= () | n unit, integer
| (e, ..., e) | proji e tuple
| {l1 = e, ..., lj = e} | e.li records
| x | λx :T .e | e1 e2 λ-calculus (x binds in e)
| U .term term declared by module U
| mar (e:T) marshalling
| unmar e:T unmarshalling
| ! e | ? send and receive

. .
| marshalled c(e:T) marshalled value
| UnmarfailureT unmarshalling error
| [e]Tc coloured brackets

Values:
vc ::= () | n unit, integer

| (vc

1 , ..., vc

j) tuple
| {l1 = v c

1 , ..., lj = v c

j } record
| λx :T .e function
| marshalled c(e:T) marshalled value
| [vc

′

]h.TYPE
c′

coloured brackets (h /∈ c ∪ c′)

Machines:
m ::= e expression

|moduleNU = M :S in m module declaration
(U binds in m)

Modules (structures and signatures):
M ::= [T , v•] structure
S ::= [X :K ,T] signature (X binds in T)

Kinds:
K ::= Le(T) kind of all subtypes of T
| Eq(T) singleton kind of T

Types:
T ::= UNIT | INT base types
| X | T→T variable, function
| {l1:T ; ...; lj :T} record (j > 0)
| T ∗ ... ∗ T tuple
| U .TYPE type declared in the module U
| BYTES byte string
| > top

. .
| h.TYPE hash type

Networks:
n ::= 0 empty

| m single machine
| (n|n) parallel composition

Colours and hashes:
h ::= hash(N ,M :[X :Le(T1),T2]) hash (X binds in T2)

c ::= • empty colour
| {h} colour with one hash
| c ∪ c union

may wish to look at our analysis of module initialisation issues in
the work on Acute [12].

A signature S is written [X :K ,T]. It is a dependant pair of
two elements. First X :K corresponds to the type definition from
the structure, where K is a kind specifying if the type is manifest
(using K = Eq(T0)) or abstract (using K = Le(>)). The type
variable X refers to this type and binds to the right in T , the type
of the value field. For example, the Ocaml-like syntax of a manifest
signature [X :Eq(INT), INT→X] would be

sig type t=int val x : int->t end;
for an abstract signature [X :Le(>), INT→X] the Ocaml transla-
tion would be

sig type t val x : int->t end.
Later, in section 4, we will accept kind declaration of the form
Le(T ′) for any type T ′ (not just >), in order to describe partial
abstract types. The typing judgement for modules is as follows:

E `• T :Le(>)
E `• [T0, v

•]:S
E ,U :S `• m:T

E `• (moduleNU = [T0, v
•]:S in m):T (1)

The premises check that T does not have U as a free variable,
that the signature corresponds to the structure, and that the rest of
the code may be typed in an environment enriched by the present
declaration.

2.4 Networking

Our calculus features simple communication of byte strings be-
tween machines, denoted m . A machine consist of a succession
of module definitions, followed by an expression. Every machine
(modules and main expression) is compiled separately. A network
n is simply modelled by a parallel composition of machines m1 |
m2 | ..., linked by an anonymous, unique, shared, untyped channel
only capable of transmitting byte strings. Any machine may send a
message on this channel, which may be removed and received once
by any machine. Note that we only consider a reliable and safe net-
work: no message gets altered; no attacker is present to listen or
send any message.

While it might be possible to do away with the network via a
continuation-style encoding into λ-calculus, the explicit represen-
tation of machines and the network carries little overhead in our
semantics and allows us to have a precise view of the differing run-
time information available at each machine (such as the subhash
relation which is propagated during communication, as we see in
Section 3.3).

The communication expressions are ! of type BYTES→UNIT
for sending and ? of type BYTES for receiving. The communica-
tion rule is the following (CC •

c and CC •

c′
are contexts, they are

described more precisely in section 2.9).

CC
•

c .! v
c | CC

•

c′ .? −→ CC
•

c .() | CC
•

c′ .v
c

Finally, we provide the two operations of marshalling and unmar-
shalling, written mar (e:T) and unmar e:T , which are statically
annotated with types. The first converts any expression to a byte
string and the second reads a byte string to recreate a value. We do
not describe the internals of these two operations but do give their
operational semantics later. The type annotation on mar gives the
type of the value to be marshalled; the type annotation on unmar
gives the expected type of the value resulting from unmarshalling.
At unmarshall time, we compare the sent type with the expected
type by a subtype check. This is sufficient to ensure the safety of
the unmarshalling operation. However, when the types are abstract,
a simple equality check (we do not have subtyping between abstract
types yet) is not sufficient for abstraction safety, as we show in the
following example.

Example 2.1 (Abstract type preservation failure) Here is a
simple module providing an abstract counter, which, for simplicity,
we write in Ocaml-like syntax:

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x + 1 val incr : t -> t
let value x = x val value : t -> int

end end

Suppose that we want to send a counter over the network, which
can be done with an expression such as:

!(mar(Counter.incr(Counter.init):Counter.t))
On the receiver side, however, suppose that we have a different
module implementing a counter that always stays even, but with
the same name.

module Counter =
struct sig
type t = int type t
let init = 0 : val init : t
let incr x = x + 2 val incr : t -> t
let value x = x val value : t -> int

end end

To import a counter and see its value: we write
Counter.value(unmar(?): Counter.t).

For safety, we have to check that the representation types are equal
(here they are both integers), but if that is all we check, we risk
importing a counter which has an odd value, thus breaking the
expected invariants on the receiver’s side. 2

Therefore, we need a way to unambiguously identify each dif-
ferent abstract type, independently from the originating machine.
This can be achieved by using hashes.

2.5 Hashes and compilation

We will now take as run-time identifiers for abstract types a fin-
gerprint of their original module source code. A hash type, written
h.TYPE, will then represent the abstract type of the module whose
source code has hash h . The hashes are computed from the ex-
ternal name, the structure and the signature of a given module:
h = hash(N , ([T , v•]:[X :Le(T ′′),T ′]). In practice, we use a
normalized form of the syntax tree and a usual (cryptographic) fin-
gerprint algorithm; for simplicity, we ignore possible collisions.

To show exactly where hash types come in the compilation pro-
cess of machines, we have to first describe the compilation of man-
ifest modules. The compilation rule in this case is the following.
Braces denote a substitution.

moduleNU = [T , v•]:[X :Eq(T ′′),T ′] in m

−→m {U .TYPE←T
′′,U .term←v

•}m

The references to the module are all substituted at compile time.
U .TYPE is replaced by the type present in the signature, while
U .term is replaced by its value as defined in the structure.

However our compilation rule for abstract types has to be dif-
ferent since we want abstract types to be present at run-time and
different from their concrete representation. Then for a module de-
scribed by moduleNU = [T , v•]:[X :Le(T ′′),T ′], compilation
will replace all occurrences ofU .TYPE by the corresponding hash-
type h.TYPE with h = hash(N , ([T , v•]:[X :Le(T ′′),T ′]).

Naively introducing hashes via compilation, however, breaks
type preservation, as we see next.

Example 2.2 (Introduction of hashes) Let us take the first im-
plementation of an abstract Counter seen above. If we have as an

expression the following well-typed term:

(fun x:Counter.t -> ()) (Counter.init)

Then, if we write h for the hash of the module Counter, the com-
pilation will lead to:

(fun x:h.t -> ()) 0

However, this expression is not typable since h.t is an abstract
type and its real implementation cannot be revealed outside the
Counter module: we cannot prove that 0 of type int has type
h.t as supertype. 2

2.6 Coloured brackets

A solution to the previous problem is to use coloured brackets to
wrap abstract terms and separate the revelation areas of abstract
types. We write these terms as [e]Tc , where T is the outside type
and c the colour, i.e. a set of hashes representing the abstract types
that are allowed to be revealed inside. We write • for the empty
colour.

Example 2.3 (Coloured brackets) If we reuse the situation of the
example 2.2, the result of the compilation will be:

(fun x:h.t -> ()) [0]h.t
h

where h is the hash of the Counter module. Then [0]h.t
h can be

typed with type h.t and, inside the brackets, using the colour h , we
can associate 0 and its natural type int with type h.t. This typing
proof is detailed below in example 2.4. 2

This example shows how coloured brackets can split an expres-
sion into a subterm where an abstract type, i.e. a hash type, can
be revealed, and a context where the abstract type remains opaque.
Our type system has to take this behaviour into account and be
able to prove different typing judgements depending on the set of
abstract types that can be revealed, i.e. the colour. That is the rea-
son why we annotate our typing judgements by a colour: a typing
judgement of expression e with type T in a colour c, with an envi-
ronment of type, module and expression variables, denoted E , will
be written E `c e:T .

Of course, other sorts of judgements will use the same colour
annotation, such as kinding judgements, correction, equivalence or
subtyping judgements.

Since a current colour represents the state of knowledge we have
about abstract types, and brackets are the borders between these
states, the typing rule for bracketed expression can be written in
the following way.

E `c′ e:T E `c ok

E `c [e]T
c′

:T

The coloured brackets are typed in colour c, while the internal
expression is typed in colour c′. The second premise only checks
the correctness of the colour c.

2.7 Revelation and equivalence.

Coloured brackets define, in a term, a limit between a subterm
where some abstract types are revealed and the rest of the expres-
sion. The revelation mechanism relies on the equivalence relation
==, which will relate a hash type with its implementation when the
colour allows it, i.e. when the hash belongs to the current colour.
The following rule reflects this behaviour.

E `c ok

E `c h.TYPE == T
where h = hash(N , [T , v•]:S) ∈ c

We see that we can prove the equivalence between h.TYPE and its
implementation when h ∈ c. We finally need a way to implicitly

use equivalences in typing proofs.

E `c e:T E `c T == T ′

E `c e:T ′

This last rule was the last missing step to prove the typing judge-
ment of coloured brackets, as we show in the following example.

Example 2.4 (Typing proof) Following example 2.3, we show
here how we can prove that the expression Counter.init, com-
piled to [0]h.t

h , can be typed in the empty colour.
. . .

`h ok
`h 0:INT

. . .

`h ok
`h h.t == INT

`h 0 : h.t `• ok
`• [0]h.t

h : h.t

To prove that [0]h.t
h has type h.t in the empty colour •, we use

the fact that, in colour {h}, 0 can be typed with type h.t; this is
achieved by using the usual integer typing rule and the equivalence
between INT and h.t that is coming from the presence of h in
the colour {h}. The proof above is truncated to omit the leaves
corresponding to colour and hash correctness.

2.8 Compilation

With the help of coloured brackets, we can finally write a correct
module reduction rule in the abstract case.

moduleNU = [T , v•]:[X :Le(T ′′),T ′] in m

−→m {U .TYPE←h.TYPE,U .term←[v•]
{X←h.TYPE}T ′

{h} }m

where h = hash(N , ([T , v•]:[X :Le(T ′′),T ′])

We remark that besides the substitution of U .TYPE by h.TYPE
which was explained in example 2.2, we need to wrap the value v •

by some coloured brackets, as shown in example 2.3. The brackets
have a type annotation T ′ where all uses of the abstract type (i.e.
X) are replaced by the corresponding hash type.

Now that we have completed our compilation rules by the intro-
duction of bracketed expressions, we need a corresponding expres-
sion reduction semantics.

2.9 Expression reduction and bracket pushing rules

The concept of current colour is extended to the operational seman-
tics so that abstract values that are surrounded by coloured brackets
can be opened and reduced when they enter, by substitution, an au-
thorized part of the term. An expression reduction from e to e ′ in
colour c is then written e −→c e ′.

As in the type system, the coloured brackets are the limits
between the different levels of knowledge. We first present the
context rule that expresses the fact that in a coloured bracket of
colour c, expressions are evaluated with colour c.

e −→c e ′

C c
′

c .e −→c′ C c
′

c .e ′

The single-level contexts designated by the variable C c
′

c are the
usual call-by-value contexts for which c = c ′, except for the
coloured bracket case where the inner colour c can be different
from the outer colour c′. The grammar for single-level evaluation
contexts is thus:

C c1
c2

::= []Tc2 coloured bracket
All other single-level contexts impose c1 = c2.

| .li | proji field access, projection
| e | v c1 applications
| (vc1

1 , .., vc1

i−1, , ei+1, .., ej) tuple
| {l1 = v

c1

1 , ..., li−1 = v
c1

i−1,
li = , li+1 = ei+1,
..., lj = ej} record (1 6 i 6 j)

| mar (:T) | unmar :T marshall and unmarshall
| ! send

Coloured evaluation contexts, written CC c1
c2

, are just a com-
posed chain of zero or more single-level evaluation contexts:

CC c1
c2

::= coloured evaluation context
| CC

c1

c′
.C c

′

c2
extra level

| identity, if c1 = c2

The current colour of the reduction should then be able to open
and reveal the abstract expressions that are wrapped by coloured
brackets. This has a first consequence: the outcome of the reduction
of an expression depends on the current colour. This is the reason
why the values, i.e. the subset of expressions that are in normal
form, are annotated by colours, as the v • part from the structure
in the module reduction rule. In fact, values are mostly used in the
definitions of the reduction rules in order to have a deterministic
semantics.

If we now consider the way brackets can be opened, we have
first to remark that other expressions than abstract values are
wrapped in coloured brackets: the abstract module reduction rule
that was presented above always add coloured brackets to the de-
clared value. Our first concern is then to push the brackets through
the term until we reach an abstract value: we realize it by a few
bracket pushing rules.

[()]UNIT
c′ −→c ()

[n]INT
c′ −→c n

When we reach a base type which is not abstracted (the coloured
brackets are annotated with a concrete type) we just delete the
brackets since they are no longer useful.

If we have an explicit type constructor in the annotation on the
coloured brackets, we just push the brackets inside and decompose
the annotations into each of the subterms.

[(vc
′

, ..., vc
′

j)]
T1∗...∗Tj

c′
−→c ([vc

′

1]T1

c′
, ..., [vc

′

j]
Tj

c′
)

[{l1 = v
c
′

1 , .., lj = v
c
′

j }]
{l1:T1,...,lj :Tj}

c′

−→c {l1 = [v c
′

1]T1

c′
, .., lj = [v c

′

j]
Tj

c′
}

Pushing the coloured brackets through a λ-expression is more
complex because of substitutions, as discussed in Section 2.12.

Finally, our expression reduction rules push all the brackets
towards the leaves of the term and either the brackets disappear or
they meet an abstract type. The revelation rule then carefully checks
if the brackets are useful, i.e. if the hash type is really abstract or
can be revealed.

[vc
′

]h.TYPE
c′ −→c [vc

′

]Tc′ when h ∈ c ∩ c
′ and impl(h)=T

The side condition checks if the abstract type can be revealed
inside the coloured brackets (h ∈ c′) and outside the coloured
brackets (h ∈ c). We use then the abbreviation impl (h) to
denote the implementation type of h: impl (h) is defined by
impl (hash(N , [T , v•]:S)) = T .

Finally, our bracket pushing subsystem needs to deal with se-
quences of several brackets. In this case, only the inner coloured

brackets and the outer type annotation matter.

[[vc0]h0.TYPE
c0

]h0.TYPE
c1

−→c [vc0]h0.TYPE
c0

(2)

when h0 /∈ c ∩ c1 and h0 /∈ c0 ∩ c1

These two last rules are slightly different from their counterparts of
our previous work in [7]. The first difference lies in the bracket
revelation mechanism that was previously directly removing the
brackets. The second one is that colours are now sets of hashes
instead of sets of at most one element. Our new rules, while they
are still equivalent to the old ones, will make the introduction of
our main contributions smoother.

Since we just presented the coloured brackets and their corre-
sponding reduction rules, we can switch to the main reduction rule
of our system, i.e. the unmarshalling rule. This first requires more
explanations and details about the mar and unmar constructors.

2.10 Marshalling and unmarshalling.

The typing rules for mar and unmar are straighforward. For the
former, we check that the expression e has the declared type; for
the latter, we check that the received expression is a byte string and
the expected type is correct:

E `c e:T

E `c mar (e:T):BYTES

E `c T :Le(>) E `c e:BYTES

E `c (unmar e:T):T

As we intend it to be possible to send mar (e:T) to a different ma-
chine, using a different current colour, we let marshalling produce
an expression that can be typed in any colour. We call this expres-
sion marshalled and annotate it with the colour in which is was
created:

E `c ok nil `c′ e:T

E `c marshalled c′(e:T):BYTES

The premises check if the environment is correct with respect to the
current colour and if the expression e has the declared type T in
the declared colour.

In some way, marshalled c works as a coloured bracket with
the difference that marshalled c(e:T) is a value and no reduction
can happen in such a context. However, after unmarshalling, the
colour annotation on marshalled turns into real colour brackets
to allow the sent expression to be well-typed.

The production rule of marshalled is just the addition of the
colour annotation to a mar expression.

mar (v c :T) −→c marshalled c(v
c :T)

Now we focus on the unmarshall rule that recreates a value from
its marshalled form. By contrast with Leifer et al. [7] who use a
type equivalence check to compare the expected and actual types,
we choose to use a subtyping check. Also, as described above, the
unmarshalled expression is wrapped by coloured brackets in order
to be well-typed on this distant machine.

unmar (marshalled c′(e:T):T ′)

−→c

(
[e]T

c′
if nil `• T <: T ′

UnmarfailureT
′

otherwise

The subtyping check is done in the empty colour for implemen-
tation reasons. We will give more details in section 6. Finally, we
solve the case when the subtyping check fails by introducing a fail-
ure expression that will stop the evaluation.

2.11 Subtyping

Expressions are typed using implicit subtyping subsumption: a well
typed expression e:T can be typed with any supertype of T :

E `c e:T E `c T <: T ′

E `c e:T ′

The subtyping relation in itself comes from the records that only
support width subtyping. We present the rule here.

E `c Ti:Le(>) 1 6 i 6 k

E `c {l1:T1, ..., lj :Tj , ..., lk:Tk} <: {l1:T1, ..., lj :Tj}

The subtyping relation is lifted in the usual way to the other con-
structors.

2.12 Coloured brackets and substitutions

Finally, typing for coloured brackets can potentially be broken due
to substitutions, as we show in the following example.

Example 2.5 (Substitutions) Let us consider (λx :T .[x]T
′

c1
)vc0 ,

a well-typed redex in the colour c0. Then if we β-reduce it, apply-
ing the substitution, we will get [v c0]T

′

c1
which is not necessarily

typable: though v c0 is typable in c0, it may not be in c1. 2

Therefore, our rules should not allow arbitrary values to move
from one colour to another. We then need to add additional coloured
brackets to the only rule creating substitutions at run time, the β-
reduction rule:

(λx :T .e) v
c −→c {x←[v c]Tc }e

where the brackets wrap the substituted value in the current colour,
so that it can be safely typed.

The same kind of protection is necessary when we want to push
the coloured brackets inside a function.

[λx :T .e]T
′→T

′′

c′ −→c (λx :T ′.[{x←[x]Tc′}e]T
′′

c′)

Since on the left-hand side the brackets only wrap the function,
its argument is expected to have type T and to be typable in the
c′ colour. However on the right-hand side, the function lives in
the outside colour and expects an argument of type T ′ from the
c colour: we need to wrap the variable in the function so that the
new argument can be inserted in a safe place where extra brackets
are providing a safe interface with the inside implementation.

We have now achieved the presentation of our base system
which smoothly extends our previous with structural subtyping and
subtyping at unmarshall time.This review and the issues it raised
will be useful in the following sections where we introduce our
main contributions.

3. User declared subtyping
During the life of a distributed program, parts of it are often cor-
rected or rewritten to fix bugs or add features. If the deployment is
decentralised, the updates may not necessarily be rolled out on all
hosts at the same time. As a result, a program trying to unmarshall
a value of an abstract type may be using a different version of the
module from the one that created the value. Should the run-time
allow this unmarshall to succeed? More precisely, under what con-
ditions should the subtype comparison of two hash types succeed?

The calculus presented in the previous section prohibits inter-
operability after version change: any modification of a module’s
code results in a different hash incomparable to the original. Thus,
unmarshalling always throws an exception in the face of such a
change. This discipline is prudent: the only way for the compiler
to allow such updates and still guarantee abstraction preservation
by unmarshalling would be for it to mechanically prove that the

changes affected no invariants of an abstract type, an unrealistic
task given current theorem proving technology.

While the compiler cannot guarantee abstraction safety after
code change, the user can. In this section we extend the calculus
to allow user declarations of compatibility between a module ex-
porting an abstract type and an earlier one. The compiler checks
that such a declaration is safe, i.e. that the representation types are
compatible, but relies on the user’s good judgement about abstrac-
tion preservation.

The addition of this new declaration has many ramifications to
compilation, typing, and reduction, which we detail below.

3.1 Motivating example

Before treating the new declaration formally, we present a motivat-
ing example: two modules with different structures and signatures
for which invariant preservation holds despite their differences. In
this example we see how this compatibility is asserted by the user
through the new keyword restricts.

Example 3.1 (Module upgrade and subtyping) First we define
an abstract module of counters:

module CounterA =
struct type t = int

let v = { init = 0 ;
incr = fun (x:int)-> x+1;
get = fun (x:int)-> x }

end :
sig type t

val v : { init : t ;
incr : t -> t ;
get : t -> int }

end

A new version of this module can then be defined by adding a
decr function:

module CounterB restricts CounterA =
struct type t = int

let v = { init = 0;
incr = fun (x:int)-> x+1;
decr = fun (x:int)-> x-1;
get = fun (x:int)-> x }

end :
sig type t

val v : { init : t ;
incr : t -> t ;
decr : t -> t ;
get : t -> int }

end

The old invariant that any value of CounterA.t was a
non-negative integer implies the new invariant that any value of
CounterB.t is an integer. Moreover, the inclusion of the decr
function gives no more discriminating power to distinguish be-
tween values than there was without it.

As shown in the above example, the programmer asserts this
compatibility by writing restricts CounterA, resulting in
CounterA.t being treated as a subtype of CounterB.t.

Consider now the converse: should a marshalled value of type
CounterB.t be unmarshallable as CounterA.t? No, since the
invariant ensured by CounterA’s implementation, namely that the
counter is always non-negative, would be broken. 2

By design, restricts introduces only a subtype relationship,
not a type equality, so is well suited to this kind of example where
the programmer does not want symmetric compatibility. (If two-
way compatibility is required, that is easily catered for by also
using extends, which is the symmetric analogue of restricts.

For the sake of brevity, we limit formal treatment of extends to
the technical report [4], where we also allow both constructs to
accept multiple arguments.)

This precision is in contrast to the blunter with! mechanism
of Acute which always introduces a run-time type equality, thus
forcing the programmer to choose between no compatibility or
bidirectional compatibility with no middle ground. Because of this
limitation, with! is remarkably easy to implement: when a new
abstract type is declared to be compatible with a previous one, the
compiler just reuses the old hash rather than computing a new one.
Our present work pays a much higher implementation price for
its flexibility, namely the necessity to propagate the user-declared
subtype relation throughout the run-time, as we describe below.

3.2 Syntax, typing, and reduction

Formally, we extend the syntax to include the new declaration as
follows (κ is a metavariable referring to a previously defined mod-
ule, or a hash).

m ::= e expression
| moduleNU restrictsκ =

M :S in m module declaration

The effect of this declarations is to enrich the subtyping relation
with new pairs, such as U .TYPE <: V .TYPE or h.TYPE <:
U .TYPE.

In order for the judgements to make use of the larger subtyping
relation, we introduce a subhashing relation H containing pairs
such as κ <: κ′, which decorates the judgements. For example, the
old typing judgement E `c e:T now will be written E `H

c e:T ;
the subhash relation intervenes in the type system through the
following rule:

E `H

c ok κ <: κ′ ∈ H

E `H

c κ.TYPE <: κ′.TYPE

Most of the old typing rules are transparently lifted with this new
annotation: the premises and the conclusion are annotated with a
same metavariable H . We consider now the interesting changes.

The first rule that has to be modified is the rule to type module
declarations.

E `H

•
T :Le(>)

E `H

•
[T0, v

•]:S

E ,U (T0):S `
H∪{κ<:U}
• m:T

E `H

•
(moduleNU restrictsκ = [T0, v

•]:S in m):T

Compared to the first version, rule 1 in Section 2.3, we see two main
changes. First, the subhash annotation appears in all judgements
and is enriched, thanks to restricts, in the rest, m , of the program.
Second, in order to check the present subhash declaration κ <: U ,
as well as subsequent ones in m , we store the representation type
T0 of U in the environment.

Note that the modules in m may now rely on the enriched sub-
hash relation in order to be well typed. As a result, hashes now
also rely on a subhash relation for their correctness. Our current
hash correctness rule assumes the existence of such a subhash re-
lation without providing it in a computable way. Another solution
would be to annotate all hashes with their original subhash relation,
but this would risk polluting hash equality and other set operations
involving hashes and colours. In any event, in a type-erased im-
plementation, is unnecessary to check hash correctness at run time
(section 6).

Since the judgements take a new parameter H , the reduc-
tion rules have to follow suit. By analogy with compilation,
H ,m −→m H ′,m ′, expression reduction, H , e −→c H ′, e ′,
is now similarly annotated. The module reduction rule (when the

declared type is abstract) is thus adapted to enrich the current sub-
hash relation with its new restricts declaration.

H ,moduleNU restricts h0 = [T , v•]:[X :Le(T ′′),T ′] in m

−→m H
′, {U←h,U .TYPE←h.TYPE,

U .term←[v•]
{X←h.TYPE}T ′

{h} }m

with

(
h = hash(N , [T , v•]:[X :Le(T ′′),T ′])

H ′ = H ∪ {h0 <: h}

3.3 Propagation of H over the network

In a similar way as the presence of H in the hashes, marshalled
values may need the original H in order to be well-typed. Thus we
need to annotate the marshalled constructor with H so that it
can be properly carried over the network.

e ::= ... |marshalled c,H (e:T) marshalled value

The corresponding typing rule will then become:

E `H0
c ok nil `H1

c′
e:T

E `H0
c marshalled c′,H1

(e:T):BYTES

and the corresponding reduction rule will be:

H ,mar (v c :T) −→c H ,marshalled c,H ([vc]Tc :T)

The logic would be that now, at unmarshall time, we incorporate
the received H with the local subhashing relation, so that the
received term could be typed. However, this opens a potential
security hole: a programmer would be able, intentionally or not, to
spread an unsafe abstraction compatibility declaration. To counter
this problem each machine on the network could have its own trust
policy and refuse some or all incoming H ′. A side effect would be
that the subtype check in unmarshalling would fail more often with
an UnmarfailureT

′

.
Trust questions are mostly orthogonal to our main concerns, so

for simplicity we accept all incoming H ′, leaving a discussion of
the range of potential policies to Section 7.3. We present here the
final rule for unmarshalling:

H ,unmar (marshalled c′,H ′(v•:T):T ′)

−→c

(
H ∪H ′, [v•]T

c′
if nil `H∪H ′

•
T <: T ′

H ,UnmarfailureT
′

otherwise

Note that the condition nil `H∪H ′

•
T <: T ′ not only checks

the subtyping relation between T and T ′, but also checks the
correctness of H ∪ H ′ and thus of H ′, ensuring at least the type
safety of the result.

4. Partial abstract types
In this section we add expressive power to the calculus by allow-
ing abstract types to be partly revealed without fully exposing their
representation types. This is done by enriching signatures to allow
the declaration of a supertype, i.e. an upper bound, for each abstract
type. This notion, called partial abstract types or bounded existen-
tials, was first described by Cardelli et al. [3, 10], and implemented
in Oberon [14] and Modula-3 [2].

This is our final addition to the calculus, which is now suffi-
ciently rich to have nontrivial instances of subtyping between two
abstract types (through restricts) and between an abstract type
and a concrete one (through partial abstract types). As a conse-
quence, the interplay between subtyping and abstraction bound-
aries becomes complex and entails two significant changes to the

calculus in order to maintain type preservation. First, we make
coloured brackets additive: rather than them masking the colour
outside, they now simply add to it. Second, we remove the implicit
subtyping rule and track explicitly the flow of subtyping coercions
as they commute with coloured brackets. (The explicit subtype co-
ercions may be deleted in a type-erased semantics, as we show in
the Theorem 6.1 (Correspondence with the erased semantics).)

4.1 Relaxed signatures for partial abstractions

A partial abstract type arises when, instead of giving a com-
pletely opaque signature such as sig type t ... end, the
programmer specifies a known supertype in the following way:
sig type t <: T ... end. This can be seen as a way to
hide parts of a data-type. For example, some of the record fields of
an abstract type may be exported and some hidden.

In section 2, the grammar for signatures [X :K ,T] includes the
possibility to define partial abstract types through the kind produc-
tion K = Le(T ′′), though we excluded the “partial” possibility
by confining our attention to the case T ′′ = >. We now lift the
restriction on K , allowing Le(T ′′) to be used with any type T ′′

(including >). Consequently, the module reduction rule presented
in section 2 gains immediate power by generalising T ′′ to be an
arbitrary type.

As a result, all hashes, whether they are in the current colour or
not, may be compared to their declared supertype:

E `H

c ok ` h ok

E `H

c h.TYPE <: T ′0
where h = hash(N , [T0, v

•:T1]:[X :Le(T ′0),T
′
1])

(3)

In the following subsection, we examine the potential difficulties
that arise in our system because of this addition.

4.2 Semantic consequences

Consider an expression built as a destructor applied to an abstract
value. Before the changes introduced in this section, the abstract
value could not be completely opaque in the current colour (other-
wise the application would be badly typed) so the only possibility
was for it to be completely transparent. In this case, the value’s
coloured brackets could be pushed inwards to allow the destructor
to proceed. Now, there is another possibility, namely the abstract
type is not transparent in the current colour but is a subtype of a
concrete type. We make this precise in the following example.

Example 4.1 (Partial abstract types and coloured brackets) If
a partial abstract type h.TYPE mentions in the signature that it is
bounded above by a tuple T1 ∗ T2 (e.g. by writing Le(T1 ∗ T2)
as its kind in the signature), then a projection applied to such
an abstract expression should succeed, i.e. the coloured brackets
around the abstract value have to be partially opened, leading to
several difficulties as we now illustrate.

Let h.TYPE be an abstract type of which we know under the
colour c0 has as a supertype the pair T1 ∗T2. We might be tempted
to give the following reduction rule:

H ,proj1 [vc]h.TYPE
c −→c0

H , [proj1 v
c]T1

c

But this rule would break for two reasons.
First, even though on the left-hand side we can prove under the

colour c0 that h.TYPE is actually a pair, it is not necessarily so
under the colour c which is the current colour inside the brackets.

Second, T1 is a candidate for the annotation on the right-hand
side, but it is not the only choice, and may not be the best or
even a safe choice. Suppose that from H we learn that h.TYPE <:
h ′.TYPE and that h ′ happens to belong to c ∩ c1, meaning that
we can prove that h.TYPE <: T ′1 ∗ T ′2 where T ′1 ∗ T ′2 is the
concrete representation of h ′.TYPE. Then we can safely write T ′1

on the brackets instead of T1. As T ′1 may be more precise than T1,
choosing T1 may lead to a stuck expression.

2

The two problems shown in the above example lead to two
interdependent major changes, which we present in the following
subsections, 4.3 and 4.4.

4.3 Additive brackets

Coloured brackets completely mask the expression inside from the
type equivalences valid outside them. Moving a destructor inside
coloured brackets can thereby lead to an ill-typed term, as we have
seen in the example 4.1. However, this situation can only arise when
the value inside the coloured brackets is itself an abstract value, i.e.
surrounded by another pair of coloured brackets.

One solution is to introduce a bracket merging rule that super-
sedes the rule (2) presented in section 2.9 to eliminate consecutive
coloured brackets in expressions and thus prevent their presence in
the value grammar.

H , [[v c0]h0.TYPE
c0

]h1.TYPE
c1

−→c H , [v c0]h1.TYPE
c0∪c1 (4)

if h0 /∈ c1 ∩ c0 and h1 /∈ c1 ∩ c

However, this rule does not fully solve our original problem,
which was that type equivalences from outside coloured brackets
are forgotten inside them. The subtyping annotations that we intro-
duce in the next subsection face this difficulty. We thus consider a
more radical solution.

Our first major change will be to make coloured brackets ad-
ditive, meaning that the outside equalities are accessible from the
inside, as shown in the following typing rule:

E `H

c T :Le(>) E `H

c∪c′ e:T

E `H

c [e]T
c′

:T

The inside expression is now typed in the colour c ∪ c ′ instead of
c′ only: the brackets are now only opaque in one direction.

Some rules are changed in the semantics by this new additivity
of the coloured brackets. For example, the brackets are no longer
necessary in the β-rule since all the sites where x appears in e have
at least the type equalities available in c:

(λx :T .e) v
c −→c {x←v

h}e

The rules governing coloured brackets are also smoothly adapted
as we see in the following bracket revelation rule:

H , [bv c
′∪c]h.TYPE

c′ −→c H , [bv c
′∪c]Tc′

if h ∈ c and impl(h)=T

Note that values and their colour annotations are changed to
reflect the new additivity of coloured brackets. Values that are
written bv represent values that do not have any coloured brackets
as the outermost construct. The side conditions have also to be
rewritten, as is the case in the previous rule as well as in the bracket
merging rule, for which we now show the definitive versions:

H , [[bv c∪c0∪c1]h0.TYPE
c0

]h1.TYPE
c1

−→c H , [bv c∪c0∪c1]h1.TYPE
c0∪c1

if h0 /∈ c1 ∪ c and h1 /∈ c

4.4 Explicit subtyping

Example 4.1 illustrated some of the difficulties caused by the com-
plexity of the subtyping relation: it was unclear which type to
choose for the brackets on the right-hand side of a reduction push-
ing a tuple projection inwards.

A solution in that specific case could be to compute a notion
of principal tuple supertype. However, the result of this calculation
would depend on the current colour and subhashing relation, and is
thus quite complicated.

In general, we could use an oracle to non-deterministically
choose an upper bound. This would have transferred the obligation
of discovering an appropriate bound to the proof of type preserva-
tion. However, our presentation to pursue a syntax-directed reduc-
tion relation permits us to experiment with executable prototypes
of the fully typed semantics (à la Acute).

Thus we adopt the strategy to make the type on the right-hand
directed by types already present on the left. This is achieved by
switching to a system with explicit subtyping, which is our second
major change to address the issues raised in example 4.1.

We can expect that these annotations can be inferred at compile
time so the user is not burdened by inserting them manually. Others
are added automatically by the run-time time semantics (e.g. at
unmarshall time).

For now we add a new syntactic constructor to the syntax of
expressions.

e ::= ... | (T1<:T2)e explicit subtyping
The old implicit subtyping subsumption rule is replaced by a

new explicit one:

E `H

c e:T E `H

c T <: T ′

E `H

c (T<:T ′)e:T ′

Most typing and reduction rules are not changed since explicit
subtyping only aims at syntactically witnessing the implicit subtyp-
ing that was already present.

However in a few situations some type annotations have to be
inserted to match the presence of implicit subtyping. This is the
case of the unmar rule where we expect the two types to be
related by subtyping, so we introduce the corresponding annotation
on the right-hand side:

H ,unmar (marshalled c′,H ′(v•:T):T ′)

−→c

(
H ∪H ′, (T<:T ′)[v

•]T
c′

if nil `H∪H ′

c T <: T ′

H ,UnmarfailureT
′

otherwise

This is also the case in the module reduction rule. There is
implicit subtyping between the (implicit) type of the value field
in the structure and its declared type in the signature. Thus we
need to make the type explicit in structures so we can construct
the subtyping node at compile time, as follows:
M ::= [T , v•:T ′] structure

The module reduction rules now explicitly insert the subtyping
node:

H ,moduleNU = [T0, v
•:T1]:[X :Eq(T ′0),T

′
1] in m

−→m H , {U .TYPE←T
′
0,U .term← (T1<:{X←T ′

0
}T ′

1
)v

•}m

H ,moduleNU restricts h1 =

[T0, v
•:T1]:[X :Le(T ′0),T

′
1] in m

−→m H ∪ {h1 <: h}, σ m

where

h =hash(N , [T0, v
•:T1]:[X :Le(T ′0),T

′
1])

σ ={U←h,
U .TYPE←h.TYPE,

U .term←[(T1<:{X←h.TYPE}T ′

1
)v

•]
{X←h.TYPE}T ′

1

{h} }

In these two rules we can observe the introduction of the two
explicit subtyping annotations that give the value v • the declared
type of the signature.

Finally, we consider the interaction between explicit subtyping
and coloured brackets. When the former meets the latter, we swap
them around in the following way:

H , (T ′<:T ′′)([bvc
′∪c]h.TYPE

c′) −→c H , [(T ′<:T ′′)bvc
′∪c]T

′′

c′

where h /∈ c

Note that moving the subtyping annotation inside the brackets
depends on brackets being additive: without additivity, the subtyp-
ing node which is valid in colour c would not be valid anymore in
colour c′; with additivity, it is valid since we have the colour c ∪ c ′

on the inside. We also remark the introduction of new elements in
the value grammar. The grammar is now divided in three parts: v c

represent all values in colour c; bv c represents the values that do
not have coloured brackets as their outermost construct; bbv c

are the
subclass of bv c values that do not have a subtyping annotation either
as their outermost construct.

When explicit subtyping annotations move inside coloured
brackets, they become exposed to the additional colours annotat-
ing the brackets. As a result, the types in the subtyping annotation
may be rewritten accordingly with hashes being replaced by more
concrete types. We omit these bookkeeping rules here and refer the
reader to the technical report [4].

Let us return to example 4.1 in the light of the changes made
in this and the previous subsections. Now, when a projection meets
coloured brackets we know that the latter’s type is a product since
there is no more implicit subtyping subsumption. Of course, the
situation in the example of a projection applied to an abstract
expression could arise, but only if there is an intervening explicit
subtyping node between the projection and the brackets. Thanks
to the rules introduced, the subtyping node can be pushed inside
and propogated as far as necessary to produce an explicit tuple, as
desired.

5. Theorems
In this section we summarise the formal results about the global
safety of our static and dynamic semantics. All the following results
with their proofs can be found in [4].

Our calculus satisfies the properties of type preservation for ma-
chine reduction (i.e. compilation), expression and network reduc-
tions.

Theorem 5.1 (Type preservation for machine, expression and
network reduction)
If `H

•
m:T and H ,m −→m H ′,m ′ then `H

′

•
m ′:T .

If `H

c e:T and H , e −→c H ′, e ′ then `H
′

c e ′:T .
If ` n ok and n −→ n ′ then ` n ′ ok.

The progress property also holds for machine, expression and
network reduction.

Theorem 5.2 (Progress for compilation) If `H

•
m:T then either

m is an expression or it reduces under −→m. Moreover, compile
time reduction is terminating.

Theorem 5.3 (Progress for expressions) If `H

c e:T then one of
the following holds :

• e is a value, i.e. there exists a v c such that e = v c

• e can reduce, i.e. there exist e ′ and H ′ such that H , e −→c

H ′, e ′

• e is waiting for I/O, i.e. there exist CC c

c2
and v c2 such that

e = CC c

c2
.! vc2 or e = CC c

c2
.?

• e has thrown an exception, i.e. there exist CC c

c2
and T ′ such

that e = CC c

c2
.UnmarfailureT

′

Concerning networks, our theorem has to include the different
possible outcomes from the communication.

Theorem 5.4 (Progress of networks) If ` n ok then one of the
following cases holds:

• n is stopped, i.e. there exists n() and nfail such that n≡n()|nfail.
• n is waiting to input, i.e. there exists n() and nfail and n? such

that n ≡ n() | nfail | n?

• n is waiting to output, i.e. there exists n() and nfail and n! such
that n ≡ n() | nfail | n!

• n can reduce, i.e. there exists n ′ such that n −→ n ′

where ≡ is a standard network structural congruence and

n() ::= 0 null
n() | n() parallel composition
() unit

nfail ::=0 null
nfail | nfail parallel composition

CC
•

c .Unmarfailure
T dead

n? ::=n? | n? parallel composition
CC

•

c .? waiting to input
n! ::=n! | n! parallel composition

CC
•

c .! v waiting to output

Both compile-time machine reduction and run-time expression
reduction are deterministic (network reduction is not, of course):

Theorem 5.5 (Determinism of machine reduction) Reduction
of machines is deterministic, i.e. if m −→m m1 and m −→m m2

then m1 = m2 and both reductions use the same rule on the same
redex.

Theorem 5.6 (Determinism of expression reduction) Expres-
sion reduction is deterministic, i.e. if H , e −→c H ′, e ′ and
H , e −→c H ′′, e ′′ then e ′ = e ′′ and H ′ = H ′′ and both re-
ductions use the same rule on the same redex.

6. Implementation challenges
Now that we have presented our calculus and its properties, we dis-
cuss the challenges to integrating it into a programming language.

6.1 Erasure

In most ML-languages, all type annotations are erased at run-time
thanks to a theorem stating that the behaviour of the erased version
of a correctly typed program is similar to the original. Our system
satisfies a similar result.

First, let us describe a proposed erasure operation, which turns
out to be almost, but not quite, what we need. An erased term is
a term where all type and subtyping annotations and all coloured
brackets have been forgotten, with the notable exception of the type
annotations on mar , marshalled and unmar . The reductions
in the erased world are formed by applying erasure to both sides
of each reduction rule in the typed world, throwing out any rules
whose RHS becomes identical to the LHS after erasure.

One reduction rule, however, does not behave well in the erased
world, namely the garbage-collection of the unused fields of a
record:

H , ({l1:T1;...;lj :Tj}<:{l1:T ′

1
;...;li:T

′

i
}){l1 = v

c

1 ; ...; lj = v
c

j }

−→c H , {l1 = v
c

1 ; ...; li = v
c

i }

The difficulty in applying erasure to this rule is that the explicit
subtype disappears, thus we have no way of knowing locally which
fields should be garbage collected.

One solution could be to find a way to safely add some ex-
plicit garbage collection nodes to the erased-world syntax. How-
ever, this is difficult to do. The problem is that explicit subtyp-
ing nodes in the typed world evolve during reduction: it is possi-
ble for the source and target types to start as completely abstract,
e.g. (h.Type<:h′.Type)e , and only later become manifestly record
types when the expression is used in a different colour context (as
explained at the end of Section 4.4). Thus it is unclear how erasure
should translate abstract subtype nodes so that they later evolve
into the correct garbage collection — a problem we leave for future
work.

Therefore, we chose a different strategy here. We weaken our
erasure function to an erasure relation erase(e, e) which relates
any term e to its erased version e, in which every record {l1 =
vc

1 ; ...; lj = v c

j } in e is related to one in e that may contain
additional junk value fields: {l1 = v1; ...; lj = v j ; ...; lk = vk}.
We write −→

nb
for the expression reduction relation in the erased

world.
The theorem then asserts that reduction paths in both worlds

follow a strict correspondence, namely each reduction in the typed
world is mapped to at most one reduction in the erased world; and
each reduction in the erased world is reflected by a series of one or
more reductions in the typed world.

Theorem 6.1 (Correspondence with the erased semantics) If
`H

c e:T and H , e −→c H ′, e ′ and the erased-world expres-
sion e is such that erase(e, e), then there exists a e′ such that
H , e −→

nb

?H ′, e′ and erase(e ′, e′).

If `H

c e:T and there is a e such that erase(e, e) and if
H , e −→

nb
H ′, e′ then there exists e ′ such that erase(e ′, e′) and

H , e −→+
c H ′, e ′.

Finally, note that the presence of garbage fields in the erased
world is not disturbing: by examining the type of a whole program
at compile time it is possible to statically infer which fields in the
final value are garbage. Even if, as we discuss above, it turns out
not to be possible to systematically eliminate garbage fields in all
intermediate values of the computation, it seems likely that we can
derive record narrowings in enough cases to render the problem
moot for real examples. We will investigate this in future work.

6.2 Hashing

Thus far in our presentation we have considered hashes, such as
hash(N , [T0, v

•]:[X :Le(T),T ′]), to be algebraic constructions
from which we can extract all the subparts, such as the structure
[T0, v

•] or the representation type T0. However, in an implemen-
tation, we would like to compile hashes to small fingerprints gener-
ated from the application of an uninvertible, pseudo-injective func-
tion, such as SHA-1. As a result an implementation can only com-
pare hashes for equality.

We now examine the erased-world semantics to show that this
implementing strategy of compiling hashes to fingerprints is safe,
modulo a small change.

In the erased semantics, there is only one place in which the
parts of a hash are examined, namely the subtype check performed
at unmarshall time. Note first that the subtype check potentially
engages all of the rest of the type system, except the “expression
has type” rules. Therefore we have to systematically consider ev-
ery place in the type system where a hash may need to be decon-
structed. We show that each case, except the last, may be avoided;
the last case motivates a simple change, leading to our final pro-
posal.

• The subtyping check at unmarshall time is done in the empty
colour. None of the premises of any type rule (except the ex-
cluded “expression hash type” ones) has a different colour from
the conclusion’s. Thus we never use type revelation in the
erased semantics, obviating the need to know the representation
type of a hash.

• In all type derivation trees, any hash h that appears in a judge-
ment is ultimately checked for correctness, i.e. the leaves of the
derivation tree consist of subproofs of the form ` h ok. These
subproofs look into the structure of h . However, our hypothesis
is that all information received from the network is generated
by a well-typed program and transmitted by a reliable network,
thus we may assume that all hashes are correct. As a result, we
can dispense with the hash correctness checks: as far as hash
correctness is concerned, hashes may be completely opaque, as
desired.

• In all type derivation trees, the subhash annotation H is also
checked for correctness. The check consists or each pair of
types present in H in verifying the compatibility between the
two representation types and the two announced kinds. How-
ever, for the same reason as the previous item, i.e. because of
our security assumptions, this check is superfluous.

• Finally, hashes for partial abstract types are subtypes of their
declared supertypes via the rule 3 from section 4.1. The super-
type is not necessarily available locally and we thus need access
to the declared supertype in every hash type.

As a consequence, we conclude that we can safely compile a
hash h = hash(N ,M :[X :Le(T),T ′]) to a pair consisting of a
fingerprint of all the components and the declared supertype T ,
i.e. we compile h to (sha1(N ,M :[X :Le(T),T ′]),T), the first
component being opaque and the second being readable. As a
result, hashes may be implemented compactly and, thanks to the
fingerprint function, are independent of the size of the source code
contained in the structure M .

6.3 Decidability of subtype comparison

Our semantics requires a subtype check at unmarshall time to
compare the received type to the expected type. This check is non
trivial because of the variety of ways subtyping can be derived,
namely as a transitive chain of steps; each step may be an instance
of structural subtyping between record types, of subhashing from
pairs of hashes in the H relation, or of the passage from a hash to
its declared supertype.

We have an algorithm for checking subtyping, which we be-
lieve is terminating, sound, and complete, through we have not yet
proved this. While we would be delighted to successfully complete
this proof, the algorithm would be useful even if it were not com-
plete. Such a situation exists throughout language and proof tools,
for example the undecidable higher-order unification algorithm [8]
of the Twelf theorem prover, which is highly useful in practice.

A false negative in our subtype check is easy to handle: the un-
marshall rule would just raise Unmarfailure. In fairness, how-
ever, incompleteness would be frustrating for the programmer: un-
like in a theorem prover or compiler where a false negative can be
overcome by the user tweaking the code or adding hints, it is diffi-
cult in a distributed system for a failed unmarshall at one end of the
network to be debugged from the other. Proving the completeness
of our algorithm is thus important future work.

7. Future work
We now outline some of the principal areas of future research that
flow from the ideas presented in this paper.

7.1 Distributed parametricity

Coloured brackets demark abstraction boundaries originating from
the modules in user code. In our semantics we track the propaga-
tion of coloured brackets throughout the execution of a concurrent
composition of separately-compiled programs. We know that their
propagation is safe, as shown by the type preservation theorem,
thus allowing us to conclude informally that abstraction preserva-
tion holds.

Nonetheless, it remains an open problem to formally state an
abstraction preservation theorem in a distributed setting that would
be an analogue to Reynolds’ [11] parametricity result for a single
program. Ideally such a theorem would cover the two properties
we defined at the beginning of the paper. For the first, invariant
preservation, we want to state formally that any value successfully
unmarshalled at an abstract type satisfies the invariant properties
expected of the type. In other words, unmarshalling never circum-
vents the invariants guaranteed by the receiver’s abstractions. For
the second, secrecy, any two values of an abstract type that are
observationally congruent remain observationally congruent after
being transmitted and unmarshalled on another machine.

7.2 Integration with existing implementations

Two main implementations supporting abstraction-safe marshalling
and hash types currently exist: Acute, a stand-alone interpreter
with many experimental features (versioning, rebinding, thread
freezing), and Hashcaml, a smooth extension (for hashes and mar-
shalling) of Ocaml. A challenging task will be to integrate this
paper’s proposals in both.

Hashcaml [1] is a patch to Ocaml and thus supports most of
the latter’s features. In order to integrate our work with Ocaml,
we would need to adapt our subtyping technology to deal with the
existing Ocaml structures that already support subtyping, namely
objects and polymorphic variants. Both of these have complex
typing rules that would demand careful treatment.

The integration task would be easier in Acute [12], where sub-
typing is presently absent. This would be good setting to experi-
ment with Acute’s and our competing mechanism for module up-
grade (with! vs restricts) as well as the secrecy and authen-
tication issues discussed below.

7.3 Security

In section 4.4, we presented our unmarshalling rule. In the rule, the
receiver merges the incoming subhash relation with its own. This
policy of completely trusting the sender to transmit an invariant-
preserving subhash relation represents a potential security hole.
In response, our unmarshalling rule could be modified to accept
or reject any incoming subhash relation. The question therefore
arises: under which conditions should it do so? We could require
the sender to provide evidence of the wholesomeness of the sub-
hash relation. This evidence could be lightweight, e.g. a crypto-
graphically signed certificate attesting that the subhash relation’s
provenance is a trusted peer, or more powerful and heavy, e.g. an
oracle allowing the receiver to construct a formal proof of invariant
preservation for the subhash relation (à la proof carrying code).

In the same way, our current system assumes that all received
hashes are correct, i.e. the declared supertype actually corresponds
to the abstract type implementation (which remains hidden). We
also assume that a received value has the claimed type declared
by the marshalled construction. However, in these two cases,
any intruder can break the system by sending wrong hash-types
or ill-typed marshalled values. As in the previous paragraph, we
may consider adding various kinds of certificates to ensure we only
communicate with trusted peers or require proof witnesses from
untrusted ones.

Finally, secrecy as an abstraction property can be strengthened
by encrypting abstract values (perhaps using hashes as keys) in the
style of Pierce and Sumii [13].

Acknowledgments
We wish to thank our colleagues Andrew Appel, Jean-Jacques
Lévy, Gilles Peskine, Peter Sewell, and Francesco Zappa Nardelli
for fruitful discussions and useful comments on drafts of this paper.
We also thank Frank Pfenning for his detailed help concerning
our question about the Twelf literature. We are grateful to the
anonymous referees whose close reading led to many corrections
and improvements.

References
[1] J. Billings, P. Sewell, M. Shinwell, and R. Strniša. Type-safe

distributed programming for OCaml. Submitted for publication.
http://www.cl.cam.ac.uk/users/pes20/hashcaml/.

[2] L. Cardelli, J. E. Donahue, M. Jordan, B. Kalsow, and G. Nelson. The
Modula-3 type system. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages, pages
202–212, Austin, Texas, 1989.

[3] L. Cardelli and P. Wegner. On understanding types, data abstraction,
and polymorphism. ACM Computing Surveys, 17(4):471–522, 1985.

[4] P.-M. Deniélou and J. J. Leifer. Abstraction preservation and
subtyping in distributed languages. Technical report, INRIA
Rocquencourt, 2006. Available from http://pauillac.
inria.fr/˜denielou/.

[5] D. Grossman, G. Morrisett, and S. Zdancewic. Syntactic type
abstraction. ACM TOPLAS, 22(6):1037–1080, 2000.

[6] R. Harper and M. Lillibridge. A type-theoretic approach to higher-
order modules with sharing. In POPL, pages 123–137, 1994.

[7] J. J. Leifer, G. Peskine, P. Sewell, and K. Wansbrough. Global
abstraction-safe marshalling with hash types. In Proc. 8th
ICFP, 2003. Available from http://pauillac.inria.fr/
˜leifer/research.html.

[8] S. Michaylov and F. Pfenning. An empirical study of the runtime
behavior of higher-order logic programs. In D. Miller, editor, Pro-
ceedings of the Workshop on the λProlog Programming Language,
pages 257–271, Philadelphia, Pennsylvania, July 1992. University of
Pennsylvania. Available as Technical Report MS-CIS-92-86.

[9] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML.
MIT Press, 1990.

[10] G. Plotkin, M. Abadi, and L. Cardelli. Subtyping and parametricity.
In Proc. of 9th Ann. IEEE Symp. on Logic in Computer Science,
LICS’94, Paris, France, 4–7 July 1994, pages 310–319. IEEE
Computer Society Press, Los Alamitos, CA, 1994.

[11] J. C. Reynolds. Types, abstraction and parametric polymorphism. In
IFIP Congress, pages 513–523, 1983.

[12] P. Sewell, J. J. Leifer, K. Wansbrough, F. Zappa Nardelli, M. Allen-
Williams, P. Habouzit, and V. Vafeiadis. Acute: High-level
programming language design for distributed computation. In
Proceedings of ICFP 2005: International Conference on Functional
Programming (Tallinn), Sept. 2005. To appear.

[13] E. Sumii and B. C. Pierce. Logical relations for encryption. Journal
of Computer Security, 11(4):521–554, 2003. Extended abstract
appeared in 14th IEEE Computer Security Foundations Workshop,
pp. 256–269, 2001.

[14] N. Wirth. The programming language oberon. Software Practice and
Experience, 18(7), July 1988. The Language Report.

