Abstraction Preservation and Secure Sessions

in Distributed Languages

PhD defense of Pierre-Malo Deniélou
MOSCOVA Project (INRIA) MSR-INRIA Joint Centre
Advisors: Jean-Jacques Lévy and James Leifer
25/01/2009

Pierre—-Malo.Denieloulinria.fr
http://moscova.inria.fr/~denielou/these/

Pierre-Malo Deniélou (PhD Defense) 1/23

Pierre-Malo.Denielou@inria.fr
http://moscova.inria.fr/~denielou/these/

Distributed systems

» Alice A distributed system
);“g Independent programs that
- realise a global task through
network interactions
T
">

.

Zﬁ[

‘. e
Charlie

Pierre-Malo Deniélou (PhD Defense) 2/23

Distributed systems

Alice S
@ A distributed system
a:sg Independent programs that
: - realise a global task through
b o network interactions
k (P>
They need to agree 2
@ on data semantics v
Misunderstanding
‘g .
Charlie

Pierre-Malo Deniélou (PhD Defense) 2/23

Distributed systems

Alice S
@ A distributed system
&:i'g Independent programs that
: - realise a global task through
b o network interactions
k (P>

.

=

) ad

They need to agree

a
@ on data semantics
Misunderstanding
@ on protocols
Miscommunication | :
Charlie

Pierre-Malo Deniélou (PhD Defense) 2/23

Distributed systems

A distributed system

Independent programs that
realise a global task through
network interactions

.

= |

They need to agree There is little trust

) ad

@ on data semantics
Misunderstanding

@ on protocols
Miscommunication |

C‘harli’e

Pierre-Malo Deniélou (PhD Defense) 2/23

Distributed systems

Alice S
@ A distributed system
&:ik\\ Independent programs that
: - realise a global task through
b o network interactions
k >
They need to agree There is little trust
a
@ on data semantics ; @ Errors (Safety)
Misunderstanding : : Typing system
@ on protocols '
Miscommunication | :
Charlie

Pierre-Malo Deniélou (PhD Defense) 2/23

Distributed systems

Alice S
@ A distributed system
&:i'g: Independent programs that
- realise a global task through
b o network interactions
¢ >
They need to agree N There is little trust
@ on data semantics v @ Errors (Safety)
Misunderstanding : : Typing system
@ on protocols 3 @ Corruption (Security)
Miscommunication . - Cryptographic protocol
Charlie

Pierre-Malo Deniélou (PhD Defense) 2/23

Improving Distributed Programming

Different from sequential programming

@ Independent programs need to cooperate: safety.
@ Complicated interactive software: easier to generate/prove than to program/debug.
@ No control over the execution environment (peers, network): security.

Pierre-Malo Deniélou (PhD Defense) 3/23

Improving Distributed Programming

Different from sequential programming
@ Independent programs need to cooperate: safety.
@ Complicated interactive software: easier to generate/prove than to program/debug.
@ No control over the execution environment (peers, network): security.

y

@ Compilers and type systems are local.

@ Security and networking libraries are low-level, binary.

Pierre-Malo Deniélou (PhD Defense) 3/23

Improving Distributed Programming

Different from sequential programming
@ Independent programs need to cooperate: safety.
@ Complicated interactive software: easier to generate/prove than to program/debug.
@ No control over the execution environment (peers, network): security.

y

@ Compilers and type systems are local.

@ Security and networking libraries are low-level, binary.

Contribution I: Abstract Type Safety

@ How to enforce local semantics in
a distributed environment

Pierre-Malo Deniélou (PhD Defense) 3/23

Improving Distributed Programming

Different from sequential programming
@ Independent programs need to cooperate: safety.
@ Complicated interactive software: easier to generate/prove than to program/debug.
@ No control over the execution environment (peers, network): security.

y

@ Compilers and type systems are local.

@ Security and networking libraries are low-level, binary.

Contribution I: Abstract Type Safety Contribution II: Session Security
@ How to enforce local semantics in @ How to secure a distributed execution
a distributed environment despite compromised parties

Pierre-Malo Deniélou (PhD Defense) 3/23

Improving Distributed Programming

Different from sequential programming

@ Independent programs need to cooperate: safety.
@ Complicated interactive software: easier to generate/prove than to program/debug.
@ No control over the execution environment (peers, network): security.

.

@ Compilers and type systems are local.

@ Security and networking libraries are low-level, binary.

Contribution I: Abstract Type Safety Contribution II: Session Security
@ How to enforce local semantics in @ How to secure a distributed execution
a distributed environment despite compromised parties

Computer science = Engineering N Mathematics

@ industrial objects: prototyping @ logical objects: mathematical definition
@ experiments and measures: @ theorems and proofs:
experimental method formal method

Pierre-Malo Deniélou (PhD Defense)

Part |

Abstraction preservation and
subtyping

Abstract type preservation

Alice’s counter

module Counter =

struct sig
type t = int type t
let init = 0 ¢ val init : t

let incr x = x+1 val incr : t — t

let value x = x

val value : t — int
end end
Alice < Bob
1. Alice sends Counter.init JCounter:t,

Bob

Pierre-Malo Deniélou (PhD Defense)

5/23

Abstract type preservation

Alice’s counter ‘Bobscounter

module Counter = module Counter =

struct sig struct sig
type t = int type t type t = int type t
let init 0 ¢ val init : t let init = 0 val init : t
let incr x = x+1 val incr : t — t let incr x = x+1 val incr : t — t

let decr x = x-1 val decr : t — t
let value x = x val value : t — int let value x = x val value : t — int
end end end end

.
Alice — Bob

1. Alice sends Counter.init 2counter-t oy

Pierre-Malo Deniélou (PhD Defense) 5/23

Abstract type preservation
Alce's counter Bobscounter

module Counter =

module Counter =

struct sig struct sig
type t = int type t type t = int type t
let init 0 ¢ val init : t let init = 0 ¢ val init : t
let incr x = x+1 val incr : t — t let incr x = x+1 val incr : t — t
let decr x = x-1 val decr : t — t
let value x = x val value : t — int let value x = x val value : t — int
end end end end
Alice < Bob
B 0] O:Counter.t
1. Alice sends Counter.init —onmer-n, Bob
2.

Bob applies Counter.decr

Pierre-Malo Deniélou (PhD Defense) 5/23

Abstract type preservation
Alce's counter Bobscounter

module Counter =

module Counter =

struct sig struct sig
type t = int type t type t = int type t
let init 0 ¢ val init : t let init = 0 ¢ val init : t
let incr x = x+1 val incr : t — t let incr x = x+1 val incr : t — t
let decr x = x-1 val decr : t — t
let value x = x val value : t — int let value x = x val value : t — int
end end end end
Alice — Bob
1. Alice sends Counter.init 2C0Wtez-t pop
Bob applies Counter.decr
q —1:Counter.t
3. Alice ——=""°"'" Bob sends the result

Pierre-Malo Deniélou (PhD Defense) 5/23

Abstract type preservation
Alce's counter Bobscounter

module Counter = module Counter =
struct sig struct sig
type t = int type t type t = int type t
let init = 0 ¢ val init : t let init = 0 ¢ val init : t
let incr x = x+1 val incr : t — t let incr x = x+1 val incr : t — t
let decr x = x-1 val decr : t — t
let value x = x val value : t — int let value x = x val value t — int
end end end end
Alice — Bob
1. Alice sends Counter.init 2C0Wtez-t pop
2. Bob applies Counter.decr
q —1:Counter.t
3. Alice ——=""°"'" Bob sends the result
4. Alice applies Counter.value
w

Pierre-Malo Deniélou (PhD Defense) 5/23

Abstract type preservation

Alice’s counter

module Counter = module Counter =
struct sig struct sig
type t int type t type t int type t
let =0 ¢ val init : t let init = 0 ¢ val init : t
let incr x = x+1 val incr : t — t let incr x = x+1 val incr : t — t

let decr x = x-1 val decr : t — t
let value x = x val value : t — int let value x = x val value : t — int
end end end end

Alice < Bob

Qs 0N =

: . 0: .
Alice sends Counter.init Counter.t,

Alice
Alice applies Counter.value

Alice fails! (broken invariant)

—1:Counter.t
e

Bob

Bob applies Counter.decr
Bob sends the result

Pierre-Malo Deniélou (PhD Defense) 5/23

Abstract type preservation

Alice’s counter

module Counter

module Counter

struct sig struct sig
type t = int type t type t = int type t
let init = 0 val init : t let init = 0 ¢ val init : t
let incr x = x+1 val incr : t — t let incr x = x+1 val incr : t — t
let decr x = x-1 val decr : t — t
let value x = x val value : t — int let value x = x val value : t — int
end end end end
Alice — Bob
f . 0: .
1. Alice sends Counter.init — ——228tef:f, Bop
2. Bob applies Counter.decr
q —1:Counter.t
3. Alice ——=""°"'" Bob sends the result
4. Alice applies Counter.value
5. Alice fails! (broken invariant)
w

Abstract types refer to local modules.
Type safety requires more than comparing names.

Pierre-Malo Deniélou (PhD Defense)

@ different internal invariants
@ different concrete types

@ different dependencies
5/23

A solution using hashes and colour brackets

@ Leifer, Peskine, Sewell, Wansbrough:
“Global abstraction-safe marshalling with hash types”, ICFP 2003

@ ...used in Acute (ICFP 2005) and HashCaml ("ML 2006).

Idea: hash the source code of modules

@ We use the hash as a unique identifier for each abstract type.

@ Thus, the compiler replaces the local type name Counter.t by the global h .t
where h is the hash of Counter (recursively dealing with dependencies).

@ Each change yields a new hash.

@ We can easily compare abstract types dynamically at unmarshall time by a simple
equality check on hashes. Thus, type errors are detected at the earliest possible
moment.

@ Coloured brackets are used to track abstract values during evaluation.

Pierre-Malo Deniélou (PhD Defense) 6/23

Present contributions

Motivation: More flexibility
@ We want to exchange values between executables running different versions of

modules (upgrades, bug fixes, ...).
@ Compatibility after a module upgrade is not necessarily symmetric!

= We model this by a subtyping relation.

Our contributions:
We give a sound semantics for subtyping with hashing, coloured brackets and

marshalling.
@ Records and structural subtyping for concrete types

@ User-declared subtyping between abstract types
@ Partial abstract types (bounded existentials)

7/23

Pierre-Malo Deniélou (PhD Defense)

User-declared Subtyping

Alice’s counter

module CounterA =

module CounterB =

struct sig struct sig
type t = int type t type t = int type t
let init = 0 ¢ val init : t let init = 0 ¢ val init : t
let incr x = x+1 val incr : t — t let incr x = x+1 val incr : t — t
let decr x = x-1 val decr : t — t
let value x = x val value : t — int let value x = x val value : t — int
end end end end

The invariants of CounterA.t and CounterB.t are different but they are compatible

in one direction.

Problem: No way in general to infer the invariant compatibility, thus preventing
potentially useful and safe communications. Solution:

Bob’s counter

module CounterB extends CounterA =

Then we’ll only be able to use
CounterA.t <: CounterB.t.

Pierre-Malo Deniélou (PhD Defense) 8/23

Summary (1/2): final semantics

Type system (85 rules)
@ Singleton kinds (a la Harper & Lillibridge) and bounded kinds
@ Subtyping
@ Type equivalence
o ..

Operational semantics (30 rules)
@ Machines (compilation): H,m —¢ H', m’ (2 rules)
@ Expressions (run-time execution): H, e —. H', e (21 rules)

@ Networks (communication): n — n’ (7 rules)

Pierre-Malo Deniélou (PhD Defense) 9/23

Summary (2/2): Theorems

Abstraction preservation is a combination of two results.

Type Preservation

lf-" e: Tand H,e —. H',e then - ¢ : T. J
Typing Unicity

I+l e: ToandHY e: Ty, then ! Ty == T4 J
Progress

If - e : T then one of the following holds:
@ eis a value in the colour c, blocked on I/O, or an exception.
@ ereduces, i.e. there exist & and H' such that H,e —. H', &

Pierre-Malo Deniélou (PhD Defense) 10/23

Part Il

Compiler for secure sessions

Pierre-Malo Deniélou (PhD Defense)

Securing distributed languages

Uncertainty over the execution environment
The programmer has little control over:

@ the network

@ the remote peers

Pierre-Malo Deniélou (PhD Defense) 12/23

Securing distributed languages

Uncertainty over the execution environment

The programmer has little control over: -
@ the network Everyone is potentially malicious.

@ the remote peers

Pierre-Malo Deniélou (PhD Defense) 12/23

Securing distributed languages

Uncertainty over the execution environment

The programmer has little control over: -
@ the network Everyone is potentially malicious.

@ the remote peers

Designing a (correct) security protocol is hard

@ Involves low-level, error-prone coding below communication abstractions.
@ Depends on global message choreography.
@ Should handle compromised peers.

Pierre-Malo Deniélou (PhD Defense) 12/23

Securing distributed languages

Uncertainty over the execution environment

The programmer has little control over: -
@ the network Everyone is potentially malicious.

@ the remote peers

Designing a (correct) security protocol is hard

@ Involves low-level, error-prone coding below communication abstractions.
@ Depends on global message choreography.
@ Should handle compromised peers.

Our goal

@ To automatically generate taylored cryptographic protocols protecting against the

network and compromised peers;

@ To hide implementation details with a clear semantics and proofs of correctness

Pierre-Malo Deniélou (PhD Defense)

V.

12/23

Sessions (protocols, contracts, conversations, workflows, ...)

How do we specify a message flow between several roles?
@ They can be represented as global graphs;

@ Request ° Reply °

@ or as local processes (our concrete syntax).

session Rpc =
role ¢ : int =
send Request : string ;
recv Reply : int
role w : unit =
recv Request : string —
send Reply : int

Active area of research

@ Pi-calculus, web services, operating systems

@ Common strategy: type systems enforce protocol compliance
if every site program is well-typed, sessions follow their specification

Pierre-Malo Deniélou (PhD Defense) 13/23

Secure compilation of session abstractions

Contributions
@ Design of a high-level session language
@ Automated generation of a secure implementation from the specification

v

Results
@ Functional result: Well-typed programs play their role

@ Security theorem: A role using our generated implementation can
assume that remote peers play their role without having to trust them.

@ Session programming & examples
@ Security threats
Outline: @ Generated protocol
© Theorem
@ Performance evaluation

Pierre-Malo Deniélou (PhD Defense) 14/23

Architecture

SZmI' EIIIIIII-IIIIII-IIIIIIIIIIII-IIIE
A secure = Networking & c .
oncrete | =

session = Cryptography :

compiler

Session
declarations

Session
implementation |\

ML ML
Application Application
code code

Concrete
Model

Executableij—‘—‘

LN

An extension of ML
with sessions

ML compiler

Pierre-Malo Deniélou (PhD Defense) 15/23

Architecture

= Networking & -
1 Cryptography .

S2ml,
A secure
session
compiler

formally
verified code

Session
declarations

, Session
implementation

ML ML
Application Application
code code

ML compiler

LN

An extension of ML
with sessions

Pierre-Malo Deniélou (PhD Defense) 15/23

Architecture

H Networking &
1 Cryptography

S2ml,
A secure
session
compiler

Session

+ Session

declarations

ML
Application
code

R

with sessions

Pierre-Malo Deniélou (PhD Defense)

An extension of ML

implementation |\

ML
Application
code

Concrete

ML compiler

formally
verified code

Concrete
Model

Executable

15/23

Session expressiveness

@ Ws: 2 roles, 3 messages, 1 choice

Request

@ Wsn: 2 roles, 4 messages, 1 choice, 1 loop

Confirm

Pierre-Malo Deniélou (PhD Defense) 16/23

Programming with continuations

(+# Function for role w *)
type result_w = unit
type msg3 = {

File Rpc.mli

hRequest : (prins = string — msg4)}
and msgd =

Reply of (int * result_w)
val w : principal — msg3 — result_w

foool

Arbitrary ML code can be used to run the session and produce the message content.
Sample user file to play w’s role

Rpc.w "Bob"
{hRequest = function (_,x) — match x with "Cheese" — Reply (24, ())
| "Wine" — Reply (53, ()}

Pierre-Malo Deniélou (PhD Defense) 17/23

Threats against session integrity

Powerful Attacker model

@ can spy on transmitted messages @ can access the librairies
@ can join a session as any role (networking, crypto)
O cam il cssshns @ cannot forge signatures

Request Contract

Confirm

@ Message integrity (Offer by Reject) e Sgggglegntegnty o Regect @

o i’l";;f;ﬂ? ARl (O Sene UTE RS 210G @ Sender authentication (c could send

Confirmto o)

Pierre-Malo Deniélou (PhD Defense)

18/23

Protocol outline

Principles of our @ Each edge is implemented by a unique concrete message.
protocol generation @ \we want static message handling for efficiency.

Against replay attacks
@ between session executions: session nonces
@ between loop iterations: time stamps
@ at session initialisations: anti-replay caches

‘ Request . Forward . Reply .

Against session flow attacks J

@ Signatures of the entire message history (optimisations possible ...)

Pierre-Malo Deniélou (PhD Defense) 19/23

Visibility

Optimising the protocol
Signing and countersigning the full history
@ Using time stamps to avoid countersigning
@ Using local states to remember past achievements

Request Contract

Confirm

Execution paths: which signatures to convince the receiver?
@ Request-Contract-Reject-Abort
@ Request-Contract-Offer-Change-Offer-Change
@ Request-Contract- (Offer-Change) "—Reject—Abort

Visibility: at most one signature from each of the previous roles is enough.

Pierre-Malo Deniélou (PhD Defense) 20/23

Session integrity

Our formalism:
@ F+S is our high-level language where sessions are primitive;
@ F is our low-level language without sessions (ie ML);
@ FC F+S.

Theorem (Session integrity)
If LMg U O' may fail in F then LSUO may fail in F+S.

Intuition
@ L is the set of libraries.

@ Sis a set of session declarations and Mg their generated session
implementation.

@ Failure is a barb raised by the user code U.
@ U is the same code in F+S and F.
@ O cannot make U see an observable difference between F+S and F.

Pierre-Malo Deniélou (PhD Defense) 21/23

Evaluation

Performance of the code generation

Fichier | Appli- Graphes Compi-

Session s Réles .session | cation Graphe Locaux S.mli | S.ml lation
(loc) (loc) (loc) (loc) (loc) (loc) (s)

Single 2 5 21 8 12 19 247 1.26
Rpc 2 7 25 10 18 23 377 1.35
Forward 3 10 33 12 25 34 632 1.66
Auth 4 15 45 16 38 49 1070 1.86
Ws 2 7 33 12 24 25 481 1.36
Wsn 2 15 44 13 42 29 782 1.50
Wsne 2 19 45 15 48 31 881 1.90
Shopping 3 29 70 21 85 49 | 1780 2.43
Conf 3) 48 86 37 181 78 | 3451 3.32
Loi 6 101 189 57 310 141 7267 6.29

Performance of the generated code (10000 messages)

Authentication using signatures | MACs

Total execution time 93.92 s 1.77 s

Without verification 90.80 s 1.66 s
Without cryptography 143s
Unprotected 1.31s

Pierre-Malo Deniélou (PhD Defense) 22/23

Conclusion

I. Abstraction preservation
@ Design of a distributed language with abstract data types and subtyping.
@ Semantics to ensure abstract type safety.
@ Soundness, typing unicity and progress proofs.

[I. Compiler for secure session
@ Design of a high-level session language
@ Automated generation of a secure implementation from the specification
@ Generic proof of the security protocol correctness

Pierre-Malo Deniélou (PhD Defense) 23/23

Conclusion

I. Abstraction preservation
@ Design of a distributed language with abstract data types and subtyping.
@ Semantics to ensure abstract type safety.
@ Soundness, typing unicity and progress proofs.

[I. Compiler for secure session
@ Design of a high-level session language
@ Automated generation of a secure implementation from the specification
@ Generic proof of the security protocol correctness

Thank you!

Pierre-Malo Deniélou (PhD Defense) 23/23

	Introduction
	Abstraction preservation
	Hashes and coloured brackets
	Present contributions
	Summary

	Sessions
	Contributions
	Session programming and examples
	Security Protocol
	Theorem
	Performance evaluation

	Conclusion

