Camlpb - Reference Manual

version 5.00

Daniel de Rauglaudre
September 27, 2007

Copyright (© 2007 Institut National de Recherche en Informatique et Automatique
This document was generated by a shell script from the html documentation pages.

Contents

1 Introduction

1.1 Shell usage o
1.2 Parsing and Printing kits L
1.3 Extending syntax oL
1.4 Pretty printing L L e e
1.5 Note: the revised syntax L e e

2 Transitional and Strict modes

2.1 Which mode is installed 7

2.2 Selecting mode when compiling Camlpb
3 Parsing and Printing tools

3.1 Stream parsers o . e e e e e e e e e e

3.2 Extensible grammars L oL e e e e

3.3 Pretty module e

3.4 Extensible printers L. L L e e e

I Parsing tools

4 Stream parsers

4.1 Introduction L e e e
4.2 SYNGax o e e e e e
4.3 Streams e
4.3.1 Stream.from L e e
4.3.2 Stream.of list e
4.3.3 Stream.of string L e
4.3.4 Stream.of_channel
4.4 Semantics of parsers L L e e e
4.4.1 Parser e e e e e e e e e e e
4.4.2 Left factorization
4.4.3 Match with parser
4.4.4 Error messages i i
4.4.5 Stream pattern component
4.4.6 Letstatement L e e e e e e
4.4.7 Lookahead e
4.4.8 No error optimization
4.4.9 Position e e e e e e e e e e e e e e
4.4.10 Semantic action e e e
4.5 Remarks e e

U O s s W W

o

10
10
11

4.5.1 Simplicity vs Associativity

4.5.2 Lexing vs Parsing e
4.5.3 Lexer syntax vs Parser syntax oL o oL
4.5.4 Purely functional parsers L

5 Stream lexers

5.1 Introduction e e e
B.2 Syntax e e e
5.3 SemantiCs e e
5.3.1 Symbols e e
5.3.2 Specific eXpressions
5.3.3 Lookahead e
5.3.4 Semantic actionsof rules L
5.3.5 A complete example
5.3.6 Compiling e
5.3.7 How to display the generated code
Functional parsers
6.1 Syntax e e
6.2 Streams e e e e e e e e e
6.2.1 Fstream.from
6.2.2 Fstream.of list
6.2.3 Fstream.ofstring
6.2.4 Fstream.of channel e
6.3 Semantics of parsers L e
6.3.1 Fparser e
6.3.2 Error position
Extensible grammars
7.1 Getting started L
7.2 Syntax of the EXTEND statement
7.3 Semantics of the EXTEND statement
7.3.1 GLOBAL indicator e e e
7.3.2 Entries list e e
7.3.3 Symbols e
7.3.4 Rulesinsertion e
7.3.5 Semantic action e e e e e
7.4 The DELETE RULE statement it
7.5 Extensions FOLDO and FOLD1 e
7.6 Extensions SLISTO, SLIST1, SOPT and SFLAG
7.7 Grammar machinery e
7.7.1 Start and Continue
7.7.2 Associativity
7.7.3 Errors and recoveryo e e
7.7.4 Tokens starting rules Lo
7.7.5 Kind of grammar
7.8 The Grammar module
7.9 Interface with the lexer e
7.9.1 Token patterns L
7.9.2 The lexer record e e e e
7.9.3 Minimalist version L e e
7.10 Functorial interface L e

7.10.1 The lexer type o o e e e e
7.10.2 The functor parameter
7.10.3 The resulting grammar module Lo oL
7.10.4 GEXTEND and GDELETE.RULE
7.11 An example: arithmetic calculator

II Printing tools

8 Extensible printers

8.1 Getting started
8.2 Syntax of the EXTEND_PRINTER statement
8.3 Semantics of EXTEND_PRINTER
8.3.1 Printers definition list
8.3.2 Rulesinsertion
8.3.3 Semantic action
8.3.4 Printing context
8.4 The Eprinter module
8.5 Examples
8.5.1 Parser and Printer of expressions oo
8.5.2 Printing OCaml programs

Pretty print

9.1 Module description e
9.1.1 horiz_vertic e
9.1.2 sprintf
9.1.3 linelength e
9.2 Example e
9.3 Programming with Pretty
9.3.1 Hints e e
9.3.2 How to cancel a horizontal print 0o
9.4 Remarks L
9.4.1 Kernel e
9.4.2 Strings vs Channels
9.4.3 Strings or other types L
9.4.4 Why raising exceptions 7 L L L

IIT Language extensions

10 Locations

10.1 Definitions L
10.2 Building locations L e e
10.3 Raising with a location L
10.4 Other functions L

11 Syntax tree

11.1 Transitional and Strict modes L
11.2 Compatibility
11.3 Two quotations expanders L e e e e e
11.4 Syntax tree and Quotations in the twomodes

53

55
95
95
56
56
o7
o7
57
58
58
58
59

61
61
61
61
62
62
62
62
63
63
63
63
64
64

65

67
67
67
68
68

12 Syntax tree - transitional mode

12.1
12.2

12.3
12.4

Introduction L e
Location L e
12.2.1 In eXpressions o v v oo e e e e e
12.2.2 Inpatterns e e e e
Antiquotations L e
Nodes and Quotations e
12,41 exXPr . . o o e e e e e
12.4.2 patt e
12.4.3 Ctyp - o o o e e
12.4.4 modules... L e e e
12.4.5 classes... L e
12.4.6 other e e e

13 Syntax tree - strict mode

13.1
13.2

13.3

13.4

13.5

13.6

Introduction oL
Location oL
13.2.1 In exXpressions v o i e e e e e e
13.2.2 Inpatterns e e e
Antiquotations L.
Two kinds of antiquotations
13.4.1 Preliminary remarko L
13.4.2 Antiquoting e
13.4.3 Remarks o e e e e
Nodes and Quotations e
13.5.1 eXPr . . o o e e
13.5.2 patt e
13.5.3 ety . . o o e e e
13.5.4 modules... L e e
13.5.5 classes... L e e
13.5.6 other L
Nodes without quotations
13.6.1 type_var e e e e e e e
13.6.2 type_decl e e
13.6.3 classinfos

14 Syntax tree quotations in user syntax

14.1

Antiquotations L.

15 The Pcaml module

15.1

15.2

15.3
15.4
15.5
15.6

Language parsing e
15.1.1 Main parsing functions L. e
15.1.2 Grammaro e e e e e
15.1.3 Emntries. o o o e e e
Language printingo
15.2.1 Main printing functions
15.2.2 Printers L e e
Quotation managemento e
Extensible directives and optionso Lo
Equalities over syntax trees L e e e
Generalities e

73
73
74
74
74
75
75
76
i
78
78
80
81

83
83
84
84
84
85
85
85
86
86
86
87
93
96
99
106
110
111
112
112
112

115
115

16 Extensions of syntax

16.1
16.2
16.3

Entries
Syntax tree quotations L Lo e
An example : repeat.until Lo
16.3.1 Thecode e
16.3.2 Compilation L e
16.3.3 Testing o e e

17 Extensions of printing

17.1
17.2

17.3

17.4

Introduction L e
Principles e
17.2.1 Using module Pretty
17.2.2 Using EXTEND_PRINTER statement
17.2.3 Dangling else, bar, semicolon
17.2.4 By level o e e
The Prtools module e
17.3.1 Comments o e
17.3.2 Meta functions for lists L
17.3.3 Miscellaneous o e e e e
Example : repeat.until L
17.4.1 The code e e e
17.4.2 Compilation L
17.4.3 Testing oL

18 Quotations

18.1
18.2
18.3

18.4

18.5
18.6

18.7

19 The
19.1
19.2

Introduction
Quotation expander L. e
Defining a quotation L
18.3.1 By syntax tree e e
18.3.2 By string
18.3.3 Default quotation oL
Antiquotations L e
18.4.1 Example without antiquotationnode L oL
18.4.2 Example with antiquotationnode L L o
18.4.3 Inconclusion L
The Quotation module e
Predefined quotationso
18.6.1 g MLast.cmo e e e
18.6.2 q.ast.cno e e
18.6.3 q_phony.cno e e e
A full example: lambda terms
18.7.1 Lexer o e e e e
18.7.2 Parser e
18.7.3 Compilation and test

revised syntax

Modules, Structure and Signature items
Expressions and Patterns oL
19.2.1 Imperative constructions L Lo
19.2.2 Tuples and Lists e
19.2.3 Records e e
19.2.4 Trrefutable patterns

123
123
124
124
125
126
126

129
129
129
129
131
131
132
133
133
133
134
134
134
135
135

137
137
137
138
138
138
138
139
139
140
141
141
141
141
142
142
142
143
144
145

19.2.5 Constructions with matching 149

19.2.6 Mutables and Assignment 150

19.2.7 Miscellaneouso e e e e e 150

19.3 Types and Constructors e e e 151
19.4 Streams and Parsers 152
19.5 Classes and Objects 0 e e 153
19.6 Labels and Variants L e e e 154

20 Scheme and Lisp syntaxes 155
20.1 COmMMON v v v e e e e e e e e e e e e e e e e 155
20.2 Scheme syntax e 156
20.3 Lisp syntax oL 156
21 Macros 157
21.1 Added syntax e e 157
21.2 Added command options L. e e e 159
21.3 Semantics e e 159
21.4 Predefined macros e 161
22 Pragma directive 163
23 Extensible functions 165
23.1 Syntax e e e 165
23.2 SemantiCs e e e 165
IV Conclusion 167
24 Future work 169
24.1 pretty print in shorter syntax L Lo 169
24.2 rewritting pretty printer in Scheme syntax 169
24.3 printer for EXTEND_PRINTER e 169
24.4 extensible lexers L L e 169
24.5 utf-8 . . L 169

A Commands and Files 171
A.1 Parsing and Printing Kits 171
A1l Parsingkits 171

A1.2 Printing Kits 173

A.1.3 Quotations expanders 175

A2 Commands 175
A3 OCaml toplevel files e 176
A4 Library files L 176

B Library 177
B.1 Plocmodule e e 177
B.1.1 located exceptions 177

B.1.2 making locations L 177

B.1.3 getting locationinfo 178

B.1.4 combining locations 178

B.1.5 miscellaneous 178

B.1.6 pervasives e e e 179

B.2 Plexing module L e 179

B.2.1 lexer type o e 179

B.2.2 lexers from parsers or ocamllex L 180
B.2.3 function to build a stream and a location function 181
B.2.4 wuseful functions and values Lo 181
B.2.5 backward compatibilitieso Lo 181

B.3 Plexer module e 181
B.3.1 lexer e e 181
B.3.2 flags 182

B.4 Gramext module 183
B.4.1 grammar type. L e e 183
B.4.2 entry type o 183

B.5 Grammar module L e 185
B.5.1 main types and values e 186
B.5.2 printing grammar entrieso L L 187
B.5.3 clearing grammars and entries. oL L Lo o 187
B.5.4 scanentries 187
B.5.5 functorial interface 188
B.5.6 grammar flags 188

B.6 Extfold module 189
B.7 Extfun module 189
B.8 Eprinter module 189
B.9 Fstream module e 190
B.10 Pretty module e 191
B.11 Deprecated modules Stdpp and Token 191
C Camlp5 sources 193
C.1 Kernel e 193
C.2 Compatibility 193
C.3 Treestructure L e 194
C.4 Fast compilation from scratch Lo 195
C.5 Testing changes e 195
C.6 Before committing your changes 196
C.7 If you change the main parser L 197
C.8 Switching between transitional and strict modeo 0oL 197
D About Camlp5 199

Chapter 1

Introduction

Camlpb is a preprocessor and pretty-printer for OCaml programs. It also provides parsing and printing
tools.

As a preprocessor, it allows to:

e extend the syntax of OCaml,

e and even redefine the whole syntax of the language.
As a pretty printer, it allows to:

e display OCaml programs in an elegant way,
e convert from a syntax to another,

e check the results of syntax extensions.
Camlpb also provides some parsing and pretty printing tools:

e extensible grammars
e extensible printers
e stream parsers and lexers

e pretty print module

It works as a shell command and can also be used in the OCaml toplevel.

1.1 Shell usage

The main shell commands are:

e camlpbo : to treat files written in normal OCaml syntax,

e camlpbr : to treat files written in an original syntax named the revised syntaz.
These commands can be given as parameters of the option -pp of the OCaml compiler. Examples:

ocamlc -pp camlpb5o foo.ml
ocamlc -pp camlpbSr bar.ml

This way, the parsing is done by Camlp5. In case of syntax errors, the parsing fails with an error message
and the compilation is aborted. Otherwise, the OCaml compiler continues with the syntax tree provided by
Camlp5.

In the toplevel, it is possible to preprocess the input phrases by loading one of the files ”camlp5o0.cma” or
”camlpbr.cma”. The common usage is:

ocaml -I +camlpb camlpb5o.cma
ocaml -I +camlpb camlpbr.cma

1.2 Parsing and Printing kits

Parsing and printing extensions are OCaml object files, i.e. files with the extension ”.cmo” or ”.cma”. They
are the result of the compilation of OCaml source files containing what is necessary to do the parsing or
printing. These object files are named parsing and printing kits.

These files cannot be linked to produce executables because they generally call functions and use variables
defined only in Camlpb core, typically belonging to the module "Pcaml”. The kits are destinated to be
loaded by the Camlp5 commands, either through their command arguments or through directives in the
source files.

It is therefore important to compile the kits with the option ”-¢” of the OCaml compiler (i.e. just compilation,
not producing an executable) and with the option ”-I +camlp5” to inform the compiler to find module
interfaces in installed Camlp5 library.

In the OCaml toplevel, it is possible to use a kit by simply loading it with the directive ”#load”.

1.3 Extending syntax

A syntax extension is a Camlp5b parsing kit. There are two ways to use a syntax extension:

e Either by giving this object file as parameter to the Camlp5 command. For example:
ocamlc -pp "camlpb5o ./myext.cmo" foo.ml
e Or by adding the directive "#load” in the source file:
#load "./myext.cmo";;
and then compile it simply like this:
ocamlc -pp camlpbo foo.ml

Several syntax extensions can be used for a single file. The way to create one’s own syntax extensions is
explained in the present documentation.

10

1.4 Pretty printing

Like for syntax extensions, the pretty printing is defined or extended through Camlp5 printing kits. Some
pretty printing kits are provided by Camlp5, the main ones being:

e pr_o.cmo: to pretty print in normal syntax,

e pr_r.cmo: to pretty print in revised syntax.

Examples: if we have a file, foo.ml, written in normal syntax and and another one, bar.ml, written in
revised syntax, here are the commands to pretty print them in their own syntax:

camlpb5o pr_o.cmo foo.ml
camlpbr pr_r.cmo bar.ml

And how to convert them into the other syntax:

camlpbo pr_r.cmo foo.ml
camlpbr pr_o.cmo foo.ml

The way to create one’s own pretty printing extensions is explained in this document.

1.5 Note: the revised syntax

The revised syntax is a specific syntax whose aim is to resolve some syntax problems and inconsistencies of
the normal OCaml syntax. A chapter will explain the differences between the normal and the revised syntax.

All examples of this documentation are written in that revised syntax. Even if you don’t know it, it is not

difficult to understand. The same examples can be written in normal syntax. In case of problems, refer to
the chapter describing it.

11

12

Chapter 2

Transitional and Strict modes

Since version 5.00, Camlp5 has been able to be installed in two modes: the transitional mode and the strict
mode. When Camlp5 is installed, it works with one only of these modes (the two modes contain indeed
different definitions of some interfaces and are incompatible the one to the other). The user has to choose
in which mode he wants to use Camlp5.

This notion has been introduced to ensure backward compatibility of the Camlp5 syntax tree, together with
the usage of a new quotation kit ”q-ast.cmo”, which allows to use Camlpb syntax tree quotations in user
syntax (with all its possible extensions).

A short example of these syntax tree quotations:

If the syntax of the extensible grammars has been added, it is possible to write things like:
<:expr< EXTEND a: [[¢ =d -> e 1 1; END >>;

representing the syntax tree of this statement: this is not possible with the classical quotation kit
”qMLast.cmo” because all quotations must be there only in revised syntax and without syntax exten-
sions.

Here are the differences between the two modes:
Transitional

Compatibility
The syntax tree is fully compatible with the previous versions of Camlp5, no changes has to be
done in users’ programs.

Quotation kit ”q_ast.cmo”
The antiquotations are not available: when used, a syntax error message is displayed.

Strict

Compatibility

The syntax tree is different, users’ programs may have to be modified, but not necessarily.
Quotation kit ”q_ast.cmo”

All antiquotations are available.

In strict mode, better compatibility is assumed in programs using syntax tree quotations instead of syntax
tree nodes. A solution is therefore to use strict mode and change the usage of nodes into the usage of
quotations (which is backward compatible).

13

2.1 Which mode is installed ?

To know in which mode an installed version of Camlp5 is installed, type:

camlp5 -pmode

2.2 Selecting mode when compiling Camlp5

When compiling Camlp5 from its sources, the mode must be selected at configuration time, before doing
anything else. The configure must be run with one of these options:

./configure -strict
./configure -transitional

The default is ”transitional”, i.e. without option, the sources are compiled in transitional mode.

14

Chapter 3

Parsing and Printing tools

Camlpb provides two parsing tools:

e stream parsers

e extensible grammars

The first parsing tool, the stream parsers, is the elementary system. It is pure syntactic sugar, i.e. the code
is directly converted into basic OCaml statements: essentially functions, pattern matchings, try. A stream
parser is just a function. But the system does not manage associativity, nor parsing level. Left recursion
results on infinite loops, just like functions whose first action would be a call to itself.

The second parsing tool, the extensible grammars, are more sophisticated. A grammar written with them
is more readable, and look like grammars written with tools like ”yacc”. They take care of associativity, left
recursion, and level of parsing. They are dynamically extensible, what allows the syntax extensions what
Camlp) provides for OCaml syntax.

In both cases, the input data are streams.

Camlpb also provides:
e a pretty printing module
e extensible printers

The next sections give an overview of the parsing and printing tools.

3.1 Stream parsers

The stream parsers is a system of recursive descendant parsing. Streams are actually lazy lists. At each
step, the head of the list is compared against a stream pattern. There are two kinds of streams parsers:

e The imperative streams parsers, where the elements are removed from the stream as long as they are
parsed. Parsers return either:

— A value, in case of success,

— The exception ”Stream.Failure” when the parser does not apply and no elements have been
removed from the stream, indicating that, possibly, other parsers may apply,

15

— The exception ”Stream.Error” when the parser does not apply, but one or several elements have
been removed from the stream, indicating that nothing can to be done to make up the error.

e The purely functional stream parsers where the elements are not removed from the stream during the
parsing. These parsers return a value of type ”option”, i.e either:
— ”Some” a value and the remaining stream, in case of success,

— ”None”, in case of failure.
The differences are about:

e Syntax errors: in the imperative version, the location of the error is clear, it is at the current position
of the stream, and the system allows to provide a specific error message (typically, that some ”element”
was "expected”). On the other hand, in the functional version, the position is not clear since it returns
nothing and the initial stream is unaffected. The only solution to know where the error happened is to
analyze that stream to see how many elements have be unfrozen. No clear error message is available,
just ”syntax error” (but this could be improved).

e Power: in the imperative version, when a rule raises the exception ”Stream.Error”, the parsing cannot
continue. In the functional version, the parsing can continue by analyzing the next rule with the initial
unaffected stream: this is a limited backtrack.

e Neatness: functional streams are neater, just like functional programming is neater than imperative
programming.

The imperative parsers implement what is called ”predictive parsing”, i.e. recursive descendant parsing
without backtrack.

In the imperative version, there exists also lexers, a shorter syntax when the stream elements are of the
specific type 'char’.

3.2 Extensible grammars

Extensible grammars manipulate grammar entries. Grammar entries are abstract values internally containing
mutable stream parsers. When a grammar entry is created, its internal parser is empty, i.e. it always fails
when used. A specific syntactic construction, with the keyword EXTEND” allows to extend grammar entries
with new grammar rules.

In opposition to stream parsers, grammar entries manage associativity, left factorization, and levels. More-
over, these grammars allows to define optional calls, lists and lists with separators. However, they are not
functions and cannot have parameters.

Since the internal system is stream parsers, extensible grammars use recursive descendant parsing.

The parsers of the OCaml language in Camlpb are written with extensible grammars.

3.3 Pretty module

The "Pretty” module is an original tool allowing to control the displaying of lines. The user has to specify
two functions where:

e the data is printed in one only line

16

e the data is printed in several lines

The system first tries the first function. At any time, it the line overflows, i.e. if its size is greater than some
”line length” specified in the module interface, or if it contains newlines, the function is aborted and control
is given to the second function.

This is a basic, but powerful, system. It supposes that the programmer takes care of the current indentation,
and the beginning and the end of its lines.

The module will be extended in the future to hide the management of indendations and line continuations,

and by the supply of functions combinating the two cases above, in which the programmer can specify the
possible places where newlines can be inserted.

3.4 Extensible printers

The extensible printers are symmetric to the extensible grammars. The extensible grammars take syntax
rules and return syntax trees. The extensible printers are actually extensible functions taking syntax trees
as parameters and returning the pretty printed statements in strings.

The extensible printers can have printing levels, just like grammars have parsing levels, and it is possible to
take the associativity into account by provided functions to call either the current level or the next level.

The printers of the OCaml language are written with extensible printers.

17

18

Part 1

Parsing tools

19

20

Chapter 4

Stream parsers

We describe here the syntax and the semantics of the parsers of streams of Camlp5. Streams are kinds of
lazy lists. The parsers of these streams use recursive descendent method without backtracking, which is the
most natural one in functional languages. In particular, parsers are normal functions.

Notice that the parsers have existed in OCaml since many years (the beginning of the 90ies), but some new
features have been added in 2007 (lookahead, ”"no error” optimization, let..in statement and left factorization)
in Camlpb distribution. This chapter describes them also.

4.1 Introduction

Parsers apply to values of type ”Stream.t” defined in the module ”Stream” of the standard library of OCaml.
Like the type ”list”, the type ”Stream.t” has a type parameter, indicating the type of its elements. They
differ from the lists that they are lazy (the elements are evaluated as long as the parser need them for its
actions), and imperative (parsers deletes their first elements when they take their parsing decisions): notice
that purely functional parsers exist in Camlp5, where the corresponding streams are lazy and functional, the
analyzed elements remaining in the initial stream and the semantic action returning the resulting stream
together with the normal result, which allow natural limited backtrack but have the drawback that it is not
easy to find the position of parsing errors when they happen.

Parsers of lazy+imperative streams, which are described here, use a method named ”recursive descendent”:
they look at the first element, they decide what to do in function of its value, and continue the parsing with
the remaining elements. Parsers can call other parsers, and can be recursive, like normal functions.

Actually, parsers are just pure syntactic sugar. When writing a parser in the syntax of the parser, Camlpb
transforms them into normal call to functions, use of patterns matchings and try..with statements. The
pretty printer of Camlp5b, by default, displays this expanded result, without syntax of parsers. A pretty
printing kit, when added, can rebuild the parsers in their initial syntax and display it.

4.2 Syntax

The syntax of the parsers, when loading "pa_rp.cmo” (or already included in the command ”camlp5r”), is
the following:

expression ::= parser
| match-with-parser
parser ::= "parser" pos-opt "[" parser-cases "]"

21

| "parser" pos-opt parser-case

match-with-parser ::= "match" expression "with" parser
parser-cases ::= parser-cases parser-case
| <nothing>

"[:" stream-pattern ":]" pos-opt "->" expression
stream-patt-comp

parser-case ::
stream-pattern ::

stream-patt-comp ";" stream-patt-cont
"let" LIDENT "=" expression "in" stream-pattern
<nothing>
stream-patt-cont ::= stream-patt-comp-err
stream-patt-comp-err ";" stream-patt-cont
"let" LIDENT "=" expression "in" stream-patt-cont

stream-patt-comp-err ::= stream-patt-comp
stream-patt-comp "?" expression
stream-patt-comp "!"

"M pattern

"¢" pattern "when" expression
"?=" lookaheads

pattern "=" expression
pattern

lookaheads "|" lookahead
lookahead

"[" patterns "]"

patterns pattern

pattern

pattern

<nothing>

stream-patt-comp ::

lookaheads ::

lookahead ::
patterns ::

pos-opt ::

4.3 Streams

The parsers are functions taking streams as parameter. Streams are are values of type "Stream.t a” for
some type "a”. It is possible to build streams using the functions defined in the module ”Stream”:

4.3.1 Stream.from

”?Stream.from f” returns a stream built from the function ”£”. To create a new stream element, the function
7£” is called with the current stream count, starting with zero. The user function ”"£” must return either
”Some <value>” for a value or "None” to specify the end of the stream.

4.3.2 Stream.of_list

Return a stream built from the list in the same order.

4.3.3 Stream.of _string

Return a stream of the characters of the string parameter.

4.3.4 Stream.of_channel

Return a stream of the characters read from the input channel parameter.

22

4.4 Semantics of parsers

4.4.1 Parser

) M e

A parser, defined with the syntax ”parser” above, is of type "Stream.t a -> b” where "a” is the type of
the elements of the streams and ”b” the type of the result. The parser cases are tested in the order they are
defined until one of them applies. The result is the semantic action of the parser case which applies. If no
parser case applies, the exception ”Stream.Failure” is raised.

When testing a parser case, if the first stream pattern component matches, all remaining stream pattern
components of the stream pattern must match also. If one does not match, the parser raises the exception
”Stream.Error” which has a parameter of type string: by default, this string is the empty string, but if
the stream pattern component which does not match is followed by a question mark and an expression, this
expression is evaluated and given as parameter to ”Stream.Error”.

In short, a parser can return with three ways:

e A normal result, of type ”b” for a parser of type "Stream.t a -> b”.
e Raising the exception "Stream.Failure”.

e Raising the exception "Stream.Error”.

Fundamentally, the exception ”Stream.Failure” means ”this parser does not apply and no element have
been removed from the initial stream”. This is a normal case when parsing: the parser locally fails, but the
parsing can continue.

Conversely, the exception ”"Stream.Error” means that ”this parser encountered a syntax error”. In this
case, the parsing definitively fails.

4.4.2 Left factorization

In parsers, consecutive rules starting with the same components are left factorized. It means that they
are transformed into one only rule starting with the common path, and continuing with a call to a parser
separating the two cases. The order is kept, except that the possible empty rule is inserted at the end.

For example, the parser:
parser

[[: ‘If; el = expr; ‘Then; e2 = expr; ‘Else; e3 = expr :] -> f el e2 e3
| [: ‘If; el expr; ‘Then; e2 expr :] -> g el e2]

is transformed into:

parser
[: ‘If; el = expr; ‘Then; e2 = expr;
a=

parser
[[: ‘Else; e3 = expr :] -> f el e2 e3
| [: :] >gele2] :] ->a

The version where rules are inverted:

23

parser
[[: ‘If; el
| [: ‘If; el

expr; ‘Then; e2 = expr :] -> g el e2
expr; ‘Then; e2 = expr; ‘Else; e3 = expr :] -> f el e2 e3]

is transformed into the same parser.
Notice that:

e Only consecutive rules are left factorized. In the following parser:

parser

[[: ‘If; el = expr; ‘Then; e2 = expr; ‘Else; e3 = expr :] ->
| [: a=Db :] > a

| [: ‘If; el = expr; ‘Then; e2 = expr :] -> ...]

the two rules starting with ”If” are not left factorized, and the second ”If” rule will never work.

e The components which are not identical are not factorized. In the following parser:

parser
[[: ‘If; el = expr; ‘Then; e2 = expr; ‘Else; e3 = expr :] ->
| [: ‘If; e4 = expr; ‘Then; e2 = expr :] -> ...]

only the first component, ”If” is factorized, the second one being different because of different patterns

(77e177 a,nd ki e477).

4.4.3 Match with parser

The syntax "match expression with parser” allows to match a stream against a parser. It is, for ”parser”,

the equivalent of ”match expression with” for ”fun”. The same way we could say:
match expression with ...

could be considered as an equivalent to:
(fun ...) expression

we could consider that:
match expression with parser ...

is an equivalent to:

(parser ...) expression

4.4.4 Error messages

A ”Stream.Error” exception is raised when a stream pattern component does not match and that it is not
the first one of the parser case. This exception has a parameter of type string, useful to specify the error
message. By default, this is the empty string. To specify an error message, add a question mark and an
expression after the stream pattern component. A typical error message is ”that stream pattern component

)

expected”. Example with the parser of ”if..then..else..” above:

24

parser
[: ‘If; el = expr 7 "expression expected after ’if’";

‘Then 7 "’then’ expected";

e2 = expr 7?7 "expression expected after ’then’";

a =
parser
[[: ‘Else; e3 = expr 7 "expression expected" :] -> f el e2 e3
| [: :] >gele2] :] ->a

Notice that the expression after the question mark is evaluated only in case of syntax error. Therefore, it
can be a complicated call to a complicated function without slowing down the normal parsing.

4.4.5 Stream pattern component

In a stream pattern (starting with ” [:” and ending with 7 :1”), the stream pattern components are separated
with the semicolon character. There are three cases of stream pattern components with some sub-cases for
some of them, and an extra syntax can be used with a ”let..in” construction. The three cases are:

e A direct test of one or several stream elements (called terminal symbol), in three ways:

1. The character ”backquote” followed by a pattern, meaning: if the stream starts with an element
which is matched by this pattern, the stream pattern component matches, and the stream element
is removed from the stream.

2. The character ”backquote” followed by a pattern, the keyword ”when” and an expression of type
”bool”, meaning: if the stream starts with an element which is matched by this pattern and if
the evaluation of the expression is ”True”, the stream pattern component matches, and the first
element of the stream is removed.

3. The character ”question mark” followed by the character ”equal” (new feature 2007) and a looka-
head expression (see further), meaning: if the lookahead applies, the stream pattern component
matches. The lookahead may unfreeze one or several elements on the stream, but does not remove
them.

e A pattern followed by the "equal” sign and an expression of type ”Stream.t x -> y” for some types
M &)

x” and ”y”. This expression is called a non terminal symbol. It means: call the expression (which
is a parser) with the current stream. If this sub-parser:

1. Returns an element, the pattern is bound to this result and the next stream pattern component
is tested.

2. Raises the exception ”Stream.Failure”, there are two cases:
— if the stream pattern component is the first one of the stream case, the current parser also
fails with the exception ”Stream.Failure”.
— if the stream pattern component is not the first one of the stream case, the current parser
fails with the exception ”Stream.Error”.

In this second case:

— If the stream pattern component is followed by a ”question mark” and an expression (which
must be of type ”string”), the expression is evaluated and given as parameter of the exception
”Stream.Error”.

— If the expression is followed by an ”exclamation mark” (new feature 2007), the test and con-
version from "Stream.Failure” to "Stream.Error” is not done, and the parser just raises
”Stream.Failure” again. This is an optimization which must be assumed by the program-
mer, in general when he knows that the sub-parser called never raises ”Stream.Failure” (for

25

example if the called parser ends with a parser case containing an empty stream pattern).
See "no error optionization” below.

— Otherwise the exception parameter is the empty string.
e A pattern, which is bound to the current stream.

Notice that patterns are bound immediately and can be used in the next stream pattern component.

4.4.6 Let statement

Between stream pattern components, it is possible to use the ”let..in” construction (new feature 2007). This
is not considered as a real stream pattern component, in the fact that is is not tested against the exception
”Stream.Failure” it may raise. It can be useful for intermediate computation. In particular, it is used
internally by the lexers (see chapter about lexers as character stream parsers).

Example of use, when an expression have to be used several times (in the example, ”d a”, which is bound
to the variable ”¢”):

parser
[: a=Db;
let ¢c = d a in
e =

parser
[[:f=g:]1->hc
[[:] >c]] -—>e

4.4.7 Lookahead

The lookahead feature allows to look at several terminals in the stream without removing them, in order to
take decisions when more than one terminal is necessary.

For example, when parsing the normal syntax of the OCaml language, there is a problem, in recursing
descendent parsing, for the cases where to treat and differentiate the following inputs:

(-x+1)
)

The first case is treated in a rule, telling: ”a left parenthesis, followed by an expression, and a right paren-
thesis”. The second one is ”a left parenthesis, an operator, a right parenthesis”. If programming it like this
(left factorizing the first parenthesis):

parser
[: ‘Lparen;
e=

parser
[[: e = expr; ‘Rparen :] -> e
| [: ‘Minus; ‘Rparen :] -> minus_op] :] -> e

this does not work if the input is ” (-)” because the rule "e = expr” accepts the minus sign as expression
start, removing it from the input stream and fails as parsing error, while encountering the right parenthesis.

Conversely, writing it this way:

26

parser
[: ‘Lparen;
e =
parser
[[: ‘Minus; ‘Rparen :] -> minus_op
| [: e = expr; ‘Rparen :] > e] :] -> e

does not help, because if the input is ” (-x+1)” the rule above starting with ” ‘Minus” is accepted and the
exception "Stream.Error” is raised while encountering the variable ”x” since a right parenthesis is expected.

In general, this kind of situation is resolved by a left factorization of the parser cases (see the section
”Semantics” above), but it is not possible in this case. The solution is to test whether the character after
the minus sign is a right parenthesis:

parser

[: ‘Lparen;
e=

parser

[[: 7= [_ Rparen]; ‘Minus; ‘Rparen :] -> minus_op
| [: e = expr; ‘Rparen :] -> e] :] -> e

It is possible to put several lists of patterns separated by a vertical bar in the lookahead construction, but
with a limitation (due to the implementation): all lists of patterns must have the same number of elements.

4.4.8 No error optimization

The "no error optimization” is a new feature 2007. This is the fact to end a stream pattern component
of kind "non-terminal” ("pattern” ”"equal” ”expression”) by the character ”exclamation mark”. Like said
above, this inhibits the transformation of the exception ”Stream.Failure”, possibly raised by the called
parser, into the exception ”Stream.Error”.

The code:

Il
o’
(@]

]
Q,
—

|
v
[0}

parser [: a
is equivalent to:

parser [: a :] > let c=ds in e

]
o’
2]

One interest of the first syntax is that it shows to readers that ”d” is indeed a sub-parser. In the second
syntax, it is called in the semantic action, which makes the parser case not no clear, as far as readability is
concerned.

If the stream pattern component is the last one of the stream pattern, this allow possible tail recursion done
by the OCaml compiler, in the following case:

parser [: a=Db; c=d ! :] ->c¢

since it is equivalent (with the fact that ”c” is at the same time the pattern of the last case and the expression
of the parser case semantic action:

parser [: a =Db; s :] ->d s
The call to ”d s” can be a tail recursive call. Without the use of the ”exclamation mark” in the rule, the

equivalent code is:

27

parser [: a =Db; s :] ->
try d s with [Stream.Failure -> raise (Stream.Error "") 1]

which is not tail recursive (because the ”try..with” construction pushes a context), preventing the compiler
to optimize its code. It can have some importance when many recursive calls happen, since it can overflow

the OCaml stack.

4.4.9 Position

The optional ”pattern” before and after a stream pattern is bound to the current stream count. Indeed,
streams internally contain the count of its elements. At the beginning the count is zero. When an element
is removed, the count is incremented. The example:

parser [: a=Db :] ep > ¢

is equivalent to:

parser [: a = Db; s :] -> let ep = Stream.count s in c

There is not direct syntax equivalent to the optional pattern at beginning of the stream pattern:
parser bp [: a=b :] -> ¢

These optional patterns allow to dispose of the stream count at the beginning and at the end of the parser
case, allowing to compute locations of the rule in the source. In particular, if the stream is a stream of
characters, these counts are the source location in number of characters.

4.4.10 Semantic action

In a parser case, after the stream pattern, there is an "arrow” and an expression, called the ”semantic
action”. If the parser case is matched the parser returns with the evaluated expression whose environment
contains all values bound in the stream pattern.

4.5 Remarks

4.5.1 Simplicity vs Associativity

This parsing technology has the advantage to be simple to use and to understand. But is supposes to
sometimes left factorize the rules. Moreover, it does not treat the associativity of operators. For example, if
you try to write a parser like this (to compute arithmetic expressions):

value rec expr =
parser
[[: el = expr; ‘’+’; e2 = expr :] -> el + e2
| [: ¢C’0°..°9” as c) :] -> Char.code ¢ - Char.code ’0’]

this would endless loop, exactly like if you wrote a code starting like:

value rec expr e =
let el = expr e in

28

A solution to that is to treat the associavity "by hand”, by reading a sub-expression, then looping with a
parser case parsing the operator and another sub-expression, and so on.

Another solution is to previously write parsing ”combinators”. Indeed, parsers being normal functions, it is
possible to make a function which takes a parser as parameter and returning a parser using it. For example,
left and right associativity parsing combinators:

value rec left_assoc op elem
let rec op_elem x =

parser
[[: t =op; y=elem; r = op_elem (t xy) :] >r
I] > x]

in

parser [: x = elem; r = op_elem x :] -> r

value rec right_assoc op elem =
let rec op_elem x =

parser
[[: t =op; y=elem; r =op_elemy :] ->tzxr
| [:1 > x1]

in

parser [: x = elem; r = op_elem x :] > r

which can be used, e.g. like this:

value expr =
List.fold_right (fun op elem -> op elem)
[left_assoc (parser [: “’+’ :] > fun xy -> x +. y);
left_assoc (parser [: “’*’ :] -> fun x y -> x *. y);
right_assoc (parser [: ’77 :] -> fun x y => x ** y)]
(parser [: “(’0°..°97 as c¢) :] -> float (Char.code ¢ - Char.code ’0’))

and tested, e.g. in the toplevel, like that:
expr (Stream.of_string "27372+1");

The same way, it is possible to parser non-context free grammars, by programming parsers returning other
parsers.

A third solution, to resolve the problem of associativity, is to use the grammars of Camlp5, which have the
other advantage that they are extensible.

4.5.2 Lexing vs Parsing

In general, while analyzing a language, there are two levels:

e The level where the input, considered as a stream of characters, is read to make a stream of tokens (for
example "words”, if it is a human language, or punctuation). This level is generally called ”lexing”.

e The level where the input is a stream of tokens where grammar rules are parsed. This level is generally
called ”parsing”.

29

The ”parser” construction described here can be used for both, thanks to the polymorphism of OCaml:

e The lexing level is a ”parser” of streams of characters returning tokens.

e The parsing level is a "parser” of streams of tokens returning syntax trees.

By comparison, the programs ”lex” and ”yacc” use two different technologies. With ”parser”s, it is possible
to use the same one for both.

4.5.3 Lexer syntax vs Parser syntax

For ”lexers”, i.e. for the specific case of parsers when the input is a stream of characters, it is possible to use
a shorter syntax. See the chapter on lexers. They have another syntax, shorter and adapted for the specific
type ”char”. But they still are internally parsers of streams with the same semantics.

4.5.4 Purely functional parsers

This system of parsers are not purely functional in the sense that the stream structure is imperative: while
parsing, the stream advances and the already parsed terminals disappear from the stream structure. This
is useful because it is not necessary to return the remaining stream together with the normal result. And it
is the reason why there is this "Stream.Error" exception: when it happens, it means that some terminals
have been consummed from the stream, definitively lost, and that therefore it is no more possible to try
other parser cases.

An alternative of that is using purely functional parsers using a new stream type, lazy but not destructive.
Their advantage is that they use a limited backtrack: the case of ”if..then..else..” and the shorter ”if..then..”
work without having to left factorize the parser cases, and there is no need to lookahead. They have no
equivalent to the exception "Stream.Error”: when all cases are tested, and have failed, the parsers return
the value ”"None”. Their drawback is that, when a parsing error happens, it is not easily possible to know the
location of the error in the input, since the initial stream has not been modified: the system would indicate
a failure at the first character of the first line: this is a general drawback of backtracking parsers. See the
solutions found to this problem in the chapter about purely functional parsers.

30

Chapter 5

Stream lexers

The file "pa_lex.cmo” is a Camlpd syntax extension kit for parsers of streams of the type ’char’. This
syntax is shorter and more readable than its equivalent version written with classical stream parsers. But,
like classical parsers, they use recursive descendant parsing. They are also pure syntax sugar, and each lexer
written with this syntax can be written using normal parsers syntax.

5.1 Introduction

Classical parsers in OCaml apply to streams of any type of values. For the specific type ”"char”, it has
been possible to shorten encoding in several ways, in particular by using strings to group several characters
together, and by hidding the management of a ”lexing buffer”, a data structure recording the matched
characters.

Let us take an example. The following function parses an identifier, composed of letters, digits, underscores,
quotes and utf-8 bytes, and record the result in a buffer. In classical parsers syntax, this could be written
like this:

value rec ident buf =
parser
[[: ‘(’A’..’Z’ | ’q2..0z? | ’°02..°9° | ;_; |) | 7\12877\2557

as c); buf = ident (B.add c buf) ! :] -> buf
| [: :] -> buf]

With the new syntax, it is possible to write it as:
value rec ident = lexer ["A..Za..z0..9_’\128..\255" ident! | 1;

The two codes are strictly equivalent, but the lexer version is easier to write and understand, and is much
shorter.

5.2 Syntax
When loading the syntax extension pa_lex.cmo, the OCaml syntax is extended as follows:
expression ::= lexer
lexer ::= "lexer" "[" rules "]"

rules ::= rules rule

31

| <nothing>

rule ::= symbols ["->" action]
symbols ::= symbols symbol err
<nothing>
symbol ::= "_" no-record-opt

STRING no-record-opt
simple-expression

neo=n ||[|| lookaheads n]n
|I[|I rules |I:||I

no-record-opt ::= "/"
<nothing>
simple-expression ::= LIDENT
CHAR
"(" <expression> ")"

lookahead-sequence
lookahead-symbols

STRING

lookahead-symbols lookahead-symbol
lookahead-symbol

CHAR

lookahead-sequence ::
lookahead-symbols :

[

[

[

[

[

|

|

[
lookaheads ::= lookaheads "|" lookahead-sequence

[

[

|

lookahead-symbol ::=

|

[

[

err ::= "?7" simple-expression
nyn
<nothing>
action ::= expression

The identifiers ”STRING”, ”CHAR” and "LIDENT” above represent the OCaml tokens corresponding to string,
character and lowercase identifier (identifier starting with a lowercase character).

Moreover, together with that syntax extension, another extension is added the entry expression, typically
for the semantics actions of the "1lexer” statement above, but not only. It is:

expression ::= "$" "add" STRING
| n $ n.n buf n
| ll$ll n emptyll
| n $ n.n pos n

Remark: the identifiers 7add”, "buf’, "empty” and ”"pos” do not become keywords (they are not reserved
words) but just identifiers. On the contrary, the identifier ”1exer”, which introduces the syntax, is a new
keyword and cannot be used as variable identifier any more.

5.3 Semantics

A lexer defined in the syntax above is a shortcut version of a parser applied to the specific case of streams
of characters. It could be written with a normal parser. The proposed syntax is much shorter, easier to use
and to understand, and silently takes care of the lexing buffer for the programmer. The lexing buffers are
data structures, which are passed as parameters to called lexers and returned by them.

Our lexers are of the type:

B.t -> Stream.t char -> u

32

9945477

where "u” is a type which depends on what the lexer returns. If there is no semantic action (since it it
optional), this type is automatically "B.t”.

”B” is a module which must be defined by the user. It has to contain the lexing buffer type "t” and some
variables and functions:

e empty: the empty lexing buffer
e add: the way to add a character to a lexing buffer

e get: the way to get a string from the lexing buffer

A possible implementation, using "1ist char” as lexing buffer type ("B.t”), recording the characters at
top of the list (therefore creating a list in reverse order) could be:

(* tool function, converting a reversed list of char into a string *)
value rev_implode cl =

let s = String.create (List.length cl) in

loop (String.length s - 1) cl where rec loop i =

fun
[[c :: cl] -> do { s.[i] := c; loop (i - 1) cl }
| O ->s]

)

(* the lexing buffer module *)
module B =
struct
type t = list char;
value empty = [];
value add ¢ 1 = [c :: 1];
value get = rev_implode;
end

)

A lexer is a function with two parameters: the first one is the lexing buffer itself, and the second one the
stream. When called, it tries to match the stream against its first rule. If it fails, it tries its second rule, and
so on, up to its last rule. If the last rule fails, the lexer fails by raising the exception ”Stream.Failure”.
All of this is the usual behaviour of stream parsers.

In a rule, when a character is matched, it is inserted into the lexing buffer, except if the "no record” feature
is used (see further).

Rules which have no semantic action return the lexing buffer itself.

5.3.1 Symbols
The different kinds or symbols in a rule are:
e The token ”"underscore”, which represents any character. Fails only if the stream is empty.

e A string which represent a matching of any character in the string. Notice that it is a choice between
all the characters, not the sequence of these characters. To indicate a sequence, you have to use several
symbols, the ones behind the others. Character ranges can be inserted using the characters ”..”. For
example, to specify a match of any letter or digit, you can write "A..Za..z0..9”. Conversely, the

33

beginning of a comment in the OCaml language has to be written: "(" "x" not "(x" which would
mean "the character left parenthesis or the character star”.

e An expression corresponding to a call to another lexer, which takes the buffer as first parameter and
has to return another lexing buffer with all characters found in the stream catened to the lexing buffer.

e The sequence ”7=" introducing lookahead characters.

e A rule, recursively, between brackets, inlining a lexer.

In the first two cases (namely, underscore and string), the symbol can be optionally followed by the character
7slash” specifying that the found symbol must not be added into the lexing buffer. By default, it is. Useful,
for example, when writing a lexer parsing strings, when the initial double quote and final double quote have
not to be part of the string itself.

Moreover, a symbol can be followed by an optional error indicator, which can be:

e The character ? (question mark) followed by a string expression, telling that, if there is a syntax error
at this point (i.e. the symbol is not matched although the beginning of the rule was), the exception
Stream.Error is raised with that string as parameter. Without this indicator, it is raised with the
empty string. This is the same behaviour than with classical stream parsers.

e The character ! (exclamation mark), which is just an indicator to let the syntax expander optimize
the code. If the programmer is sure that the symbol never fails (i.e. never raises Stream.Failure),
in particular if this symbol recognizes the empty rule, he can add this exclamation mark. If it is used
correctly (the compiler cannot check it), the behaviour is identical as without the !, except that the
code is shorter and faster, and can sometimes be tail recursive. If the indication is not correct, the
behaviour of the lexer is undefined. This feature exists also in classical stream parsers (it is a new
feature added in 2007).

5.3.2 Specific expressions

When loading this syntax extension, the entry <expression>, at level labelled ”simple” of the OCaml
language is extended with the following rules:

e $add followed by a string, specifing that the programmer wants to add all characters of the string in
the lexing buffer. It returns the new lexing buffer. It corresponds to an iteration of calls to B.add with
all characters of the string with the current lexing buffer as initial parameter.

e $buf which returns the lexing buffer converted into string.
e $empty which returns an empty lexing buffer.

e $pos which return the current position in the stream in number of characters (starting at zero).

5.3.3 Lookahead

Lookahead is useful in some cases, when factorization of rules is impossible. To understand how it is useful,
a first remark must be done, about the usual behaviour of Camlp5 stream parsers.

Stream parsers (including these lexers) use a limited parsing algorithm, in a way that when the first symbol
of a rule is matched, all the following symbols of the same rule must apply, otherwise it is a syntax error.
There is no backtrack. In most of the cases, left factorization of rules resolve conflicting problems. For
example, in parsers of tokens (which is not our case here, since we parse only characters), when one writes a

34

parser to recognize both the typicall grammar rules ”if..then..else” and the shorter ”if..then..”, the solution
is to write a rule starting with ”if..then..” followed with a call to a parser recognizing ”else..” or nothing.

Sometimes, however, this left factorization is not possible. A lookahead of the stream to check the presence
of some elements (these element being characters, if we are using this ”lexer” syntax) might be necessary
to decide whether or not it is a good idea to start the rule. This lookahead feature may unfreeze several
characters from the input stream but without removing them.

Syntactically, a lookahead starts with 7= and is followed by one or several lookahead sequences separated by
the vertical bar |, the whole list being enclosed by braces.

If there are several lookaheads, they must all be of the same size (contain the same number of characters).

If the lookahead sequence is just a string, it corresponds to all characters of this string in the order (which
is different for strings outside lookahead sequences, representing a choice of all characters).

Examples of lookaheads:

7= L0222 1\ L]
7= [negn | N]

The first line above matches a stream whose second character is a quote or a stream whose first character is
a backslash (real example in the lexer of OCaml, in the library of Camlp5, named ”plexer.ml”). The second
line matches a stream starting with the two characters < and < or starting with the two characters < and :
(this is another example in the same file).

5.3.4 Semantic actions of rules

By default, the result of a "lexer” is the current lexing buffer, which is of type ”B.t”. But it is possible to
return other values, by adding ”->” at end of rules followed by the expression you want to return, like in
usual pattern matching in OCaml.

An interesting result, for example, could be the string corresponding to the characters of the lexing buffer.
This can be obtained by returning the value ”$buf”.

5.3.5 A complete example

A complete example can be seen in the sources of Camlp5, file ”lib/plexer.ml”. This is the lexer of OCaml,
either "normal” or "revised” syntax.

5.3.6 Compiling
To compile a file containing lexers, just load pa_lex.cmo using one of the following methods:

e Either by adding pa_lex.cmo among the Camlp5 options. See the Camlpb manual page or documen-
tation.

e Or by adding #load "pa_lex.cmo"; anywhere in the file, before the usages of this ”lexer” syntax.

35

5.3.7 How to display the generated code

You can see the generated code, for a file ”bar.ml” containing lexers, by typing in a command line:
camlpbr pa_lex.cmo pr_r.cmo bar.ml
To see the equivalent code with stream parsers, use:

camlpbr pa_lex.cmo pr_r.cmo pr_rp.cmo bar.ml

36

Chapter 6

Functional parsers

Purely functional parsers are an alternative of stream parsers where the used stream type is a lazy non-
destructive type : these streams are lazy values, like in classical stream parsers, but the values are not
removed as long as the parsing advances. To make them work, the parsers of purely functional streams
return, not the simple values, but a value of type option : "Node” meaning ”mo match” (the equivalent of
the exception "Parse.Failure” of normal streams) and ”Some (r, s)” meaning ”the result is r and the
remaining stream is s”.

6.1 Syntax

The syntax of purely functional parsers, when loading ” pa_fstream.cmo”, is the following;:

"fparser" pos-opt parser-case
"match" expression "with" fparser
parser-cases parser-case

<nothing>

"[:" stream-pattern ":]" pos-opt "->" expression
"[:" ":]" pos-opt "->" expression
stream-patt-comp

stream-patt-comp ";" stream-pattern
"M pattern

pattern "=" expression

pattern

pattern

<nothing>

expression ::= fparser
| match-with-fparser
fparser ::= "fparser" pos-opt "[" parser-cases "]"
[

match-with-fparser ::
parser-cases ::

parser-case ::
stream-pattern ::

stream-patt-comp ::

pos-opt ::

Notice that, in difference with classical parsers, there is no difference, in a stream pattern, between the first
stream pattern component and the other ones. In particular, there is not this syntax ”question mark” and
expression optionnally ending those components. Moreover, the ”lookahead” case is not necessary, we see
further why. On the contrary, the syntaxes ”pattern when” and ”let..in” inside stream patterns we see in
classical parsers are just not implemented.

37

6.2 Streams

The functional parsers are functions taking as parameters functional streams, which are values of type
"Fstream.t a” for some type ”7a”. It is possible to build functional streams using the functions defined in
the module "Fstream”:

6.2.1 Fstream.from

"Fstream.from f” returns a stream built from the function ”7f”. To create a new stream element, the
function ”£” is called with the current stream count, starting with zero. The user function ”£” must return
either "Some <value>” for a value or ”None” to specify the end of the stream.

6.2.2 Fstream.of_list

Return a stream built from the list in the same order.

6.2.3 Fstream.of _string

Return a stream of the characters of the string parameter.

6.2.4 Fstream.of_channel

Return a stream of the characters read from the input channel parameter.

6.3 Semantics of parsers

6.3.1 Fparser

The purely functional parsers act like classical parsers, with a recursive descent algorithm, except that:

e If the first stream pattern component matches the beginning of the stream, there is no error if the
following stream patterns components do not match: the control simply passes to the next parser case
with the initial stream.

e If the semantic actions are of type ”t”, the result of the parser is of type "option (t * Fstream.t)”,
not just ”t” like in classical parsers. If a stream pattern matches, the semantic action is evaluated,
giving some result ”e” and the result of the parser is "Some (e, strm)” where ”strm” is the remaining
stream.

e If no parser case matches, the result of the parser is "None”.

6.3.2 Error position

A difficulty, with purely functional parsers, is how to find the position of the syntax error, when the input
is wrong. Since the system tries all parsers cases before returning "None”, and that the initial stream is not
affected, it is not possible to directly find where the error happened. This is a problem for parsing using
backtracking (here, it is limited backtracking, but the problem is the same).

The solution is to use the function ”"Fstream.count unfrozen” applied to the initial stream. Like its name
says, it returns the number of unfrozen elements of the stream, which is exactly the longuest match found. If
the input is a stream of characters, the return of this function is exactly the position in number of characters
from the beginning of the stream.

38

However, it is not possible to know directly which rule failed and therefore it is not possible, like in classical
parsers, to specify and get clear error messages. Future versions of purely functional parsers may propose
solutions to resolve this problem.

Notice that, if using that method, it is not possible to reuse the same stream to call another parser, and

hope to get the right position of the error, if another error happens, since it may test less terminals than the
first parser. Use a fresh stream in this case, if possible.

39

40

Chapter 7

Extensible grammars

This chapter describes the syntax and semantics of the extensible grammars of Camlp5.

The extensible grammars are the most advanced parsing tool of Camlp5. They apply to streams of characters
using a lexer which has to be previously defined by the programmer. In Camlp5, the syntax of the OCaml
language is defined with extensible grammars, which makes Camlp5 a bootstrapped system (it compiles its
own features by itself).

7.1 Getting started

The extensible grammars are a system to build grammar entries which can be extended dynamically. A
grammar entry is an abstract value internally containing a stream parser. The type of a grammar entry is
"Grammar.Entry.e t" where "t" is the type of the values returned by the grammar entry.

To start with extensible grammars, it is necessary to build a grammar, a value of type ”Grammar.g”, using
the function ”Grammar.gcreate”:
value g = Grammar.gcreate lexer;

where "1lexer” is a lexer previously defined. See the section explaining the interface with lexers. In a first
time, it is possible to use a lexer of the module "Plexer” provided by Camlp5:

value g = Grammar.gcreate (Plexer.gmake ());

Each grammar entry is associated with a grammar. Only grammar entries of the same grammar can call
each other. To create a grammar entry, one has to use the function ”Grammar.Entry.create” with takes
the grammar as first parameter and a name as second parameter. This name is used in case of syntax errors.
For example:

value exp = Grammar.Entry.create g "expression";

To apply a grammar entry, the function ”Grammar.Entry.parse” can be used. Its first parameter is the
grammar entry, the second one a stream of characters:

Grammar.Entry.parse exp (Stream.of_string "hello");
But if you experiment this, since the entry was just created without any rules, you receive an error message:
Stream.Error "entry [expression] is empty"

To add grammar rules to the grammar entry, it is necessary to extend it, using a specific syntactic statement:
”EXTEND”.

41

7.2 Syntax of the EXTEND statement

The "EXTEND” statement is added in the expressions of the OCaml language when the syntax extension kit
"pa_extend.cmo” is loaded. Its syntax is:

expression ::= extend
extend ::= "EXTEND" extend-body "END"
extend-body ::= global-opt entries
global-opt ::= "GLOBAL" ":" entry-names ";"
<nothing>

entry-names ::= entry-name entry-names

entry-name

entry ::= entry-name ":" position-opt "[" levels "]"
position-opt ::= "FIRST"
n LAST"

"BEFORE" label
"AFTER" label
"LEVEL" label

<nothing>
levels ::= level "|" levels
level
level ::= label-opt assoc-opt "[" rules "]"
label-opt ::= label
<nothing>
assoc-opt ::= "LEFTA"
"RIGHTA"
"NONA"
<nothing>
rules ::= rule "|" rules
rule
rule ::= psymbols-opt "->" expression
psymbols-opt
psymbols-opt ::= psymbols
<nothing>
psymbols ::= psymbol ";" psymbols
psymbol
psymbol ::= symbol
pattern "=" symbol
symbol ::= keyword
token

token string

entry-name

entry-name "LEVEL" label
"SELF"

"NEXT"

"LISTO" symbol

"LISTO" symbol "SEP" symbol
"LIST1" symbol

"LIST1" symbol "SEP" symbol
"OPT" symbol

"FLAG" symbol

"V" symbol opt-strings

42

n I:II rules II] n

|
| "(" symbol ")"
opt-strings ::= string opt-strings
| <nothing>
keyword ::= string
token ::= uident
label ::= string
entry-name ::= qualid
qualid ::= qualid "." qualid
| uident
| lident
uident ::= ’A°-’Z’ ident
lident ::= (’a’-’z’ | ’_’ | utf8-byte) ident
ident ::= ident-char*
ident-char ::= (’a’-’a’ | ’A’>-’Z> | °0°-°9° | >_> | ?’? | utf8-byte)
utf8-byte ::= ’\128°-’\255’

Other statements, ”GEXTEND”, ”DELETE_RULE”, "GDELETE RULE” are also defined by the same syntax exten-
sion kit. See further.

In the description above, ony "EXTEND” and "END” are new keywords (reserved words which cannot be used
in variables, constructors or module names). The other strings (e.g. ”GLOBAL”, ”LEVEL”, ”LIST0”, LEFTA”,
etc.) are not reserved.

7.3 Semantics of the EXTEND statement

The EXTEND statement starts with the "EXTEND” keyword and ends with the "END” keyword.

7.3.1 GLOBAL indicator

After the first keyword, it is possible to see the identifier ”GLOBAL” followed by a colon, a list of entries names
and a semicolon. It says that these entries correspond to visible (previously defined) entry variables, in the
context of the EXTEND statement, the other ones being locally and silently defined inside.

e If an entry, which is extended in the EXTEND statement, is in the GLOBAL list, but is not defined in
the context of the EXTEND statement, the OCaml compiler will fail with the error ”unbound value”.

e If there is no GLOBAL indicator, and an entry, which is extended in the EXTEND statement, is not
defined in the contex of the EXTEND statement, the OCaml compiler will also fail with the error
”unbound value”.

Example:

value exp = Grammar.Entry.create g "exp";
EXTEND

GLOBAL: exp;

exp: [[x = foo; y =bar] 1;

foo: [["foo"] 1;

bar: [["bar"] 1;
END;

43

The entry "exp” is an existing variable (defined by value exp = ...). On the other hand, the entries ”foo”
and "bar” have not been defined. Because of the GLOBAL indicator, the system define them locally.

Without the GLOBAL indicator, the three entries would have been considered as global variables, therefore
the OCaml compiler would say ”unbound variable” under the first undefined entry, ”foo”.

7.3.2 Entries list

Then the list of entries extensions follow. An entry extension starts with the entry name followed by a colon.
An entry may have several levels corresponding to several stream parsers which call the ones the others (see
further).

Optional position

After the colon, it is possible to specify a where to insert the defined levels:

e The identifier "FIRST” (resp. "LAST”) indicates that the level must be inserted before (resp. after) all
possibly existing levels of the entry. They become their first (resp. last) levels.

e The identifier "BEFORE” (resp. ”AFTER”) followed by a level label (a string) indicates that the levels
must be inserted before (resp. after) that level, if it exists. If it does not exist, the extend statement
fails at run time.

e The identifier "LEVEL” followed by a level label indicates that the first level defined in the extend
statement must be inserted at the given level, extending and modifying it. The other levels defined in
the statement are inserted after this level, and before the possible levels following this level. If there is
no level with this label, the extend statement fails at run time.

e By default, if the entry has no level, the levels defined in the statement are inserted in the entry.
Otherwise the first defined level is inserted at the first level of the entry, extending or modifying it.

The other levels are inserted afterwards (before the possible second level which may previously exist
in the entry).

Levels

After the optional ”position”, the level list follow. The levels are separated by vertical bars, the whole list
being between brackets.

A level starts with an optional label, which corresponds to its name. This label is useful to specify this
level in case of future extensions, using the position (see previous section) or for possible direct calls to this
specific level.

The level continues with an optional associativity indicator, which can be:

e LEFTA for left associativity (default),
e RIGHTA for right associativity,

e NONA for no associativity.

44

Rules

At last, the grammar rule list appear. The rules are separated by vertical bars, the whole list being brackets.

A rule looks like a match case in the "match” statement or a parser case in the "parser” statement: a list
of psymbols (see next paragraph) separated by semicolons, followed by a right arrow and an expression, the
semantic action. Actually, the right arrow and expression are optional: in this case, it is equivalent to an
expression which would be the unit ” ()” constructor.

A psymbol is either a pattern, followed with the equal sign and a symbol, or by a symbol alone. It corresponds
to a test of this symbol, whose value is bound to the pattern if any.

7.3.3 Symbols

A symbol is an item in a grammar rule. It is either:

a keyword (a string): the input must match this keyword,

a token name (an identifier starting with an uppercase character), optionally followed by a string:
the input must match this token (any value if no string, or that string if a string follows the token
name), the list of the available tokens depending on the associated lexer (the list of tokens available
with ”Plexer.gmake ()” is: LIDENT, UIDENT, TILDEIDENT, TILDEIDENTCOLON, QUESTION-
IDENT, INT, INT_L, INT_L, INT_n, FLOAT, CHAR, STRING, QUOTATION, ANTIQUOT and EOI,
other lexers may propose other lists of tokens),

an entry name, which correspond to a call to this entry,

an entry name followed by the identifier "LEVEL” and a level label, which correspond to the call to this
entry at that level,

the identifier ”SELF” which is a recursive call to the present entry, according to the associativity (i.e.
it may be a call at the current level, to the next level, or to the top level of the entry): ”SELF” is
equivalent to the name of the entry itself,

the identifier "NEXT”, which is a call to the next level of the current entry,

a left brace, followed by a list of rules separated by vertical bars, and a right brace: equivalent to a
call to an entry, with these rules, inlined,

a meta symbol (see further),

a symbol between parentheses.

The syntactic analysis follow the list of symbols. If it fails, depending on the first items of the rule (see the
section about the kind of grammars recognized):

the parsing may fail by raising the exception ”"Stream.Error”

the parsing may continue with the next rule.

45

Meta symbols
Extra symbols exist, allowing to manipulate lists or optional symbols. They are:
e LISTO followed by a symbol: this is a list of this symbol, possibly empty,

e LISTO followed by a symbol, SEP and another symbol: this is a list, possibly empty, of the first symbol
separated by the second one,

e LIST1 followed by a symbol: this is a list of this symbol, with at least one element,

e LISTO followed by a symbol, SEP and another symbol: this is a list, with at least one element, of the
first symbol separated by the second one,

e OPT followed by a symbol: equivalent to ”this symbol or nothing” returning a value of type ”option”.

e FLAG followed by a symbol: equivalent to ”this symbol or nothing”, returning a boolean.

The V meta symbol

The V meta symbol is destinated to allow antiquotations while using the syntax tree quotation kit q_ast. cmo.

It works only in strict mode. In transitional mode, it is just equivalent to its symbol parameter.
Antiquotation kind

The antiquotation kind is the optional identifier between the starting ”$” (dollar) and the ”:” (colon) in a

quotation of syntax tree (see the chapter syntax tree).

The optional list of strings following the ”V” meta symbol and its symbol parameter gives the allowed
antiquotations kinds.

By default, this string list, i.e. the available antiquotation kinds, is:
e ["flag"] for FLAG
e ["1ist"] for LISTO and LIST1
e ["opt"] for OPT
For example, the symbol:
V (FLAG "rec"

is like ”FLAG” while normally parsing, allowing to parse the keyword ”"rec”. While using it in quotations,
also allows the parse the keyword "rec” but, moreover, the antiquotation "$flag:..$” where 7..” is an
expression or a pattern depending on the position of the quotation.

There are also default antiquotations kinds for the tokens used in the OCaml language predefined parsers
"pa_r.cmo” (revised syntax) and "pa_o.cmo” (normal syntax), actually all parsers using the provided lexer
"Plexer” (see the chapter Library). They are:

e ["chr"] for CHAR
["flo"] for FLOAT

["int"] for INT

["int32"] for INT.I
["int64"] for INT_L

46

e ["nativeint"] for INT_n

["1id"] for LIDENT

["str"] for STRING
["uid"] for UIDENT

It is also possible to use the ”V” meta symbol over non-terminals (grammars entries), but there is no default
antiquotation kind. For example, while parsing a quotation, the symbol:

V foo "bar" "oops"

corresponds to either a call to the grammar entry ”foo”, or to the antiquotations ”$bar: .. .$” or "$oops:...$".
Type
The type of the value returned by a V meta symbol is:

e in transitional mode, the type of its symbol parameter,

e in strict mode, "Ploc.vala t”, where ”t” is its symbol parameter.

In strict mode, if the symbol parameter is found, whose value is, say, ”"x”, the result is "Ploc.VaVal x”. If an
antiquotation is found the result is "Ploc.VaAnt s” where ”s” is some string containing the antiquotation
text and some other internal information.

7.3.4 Rules insertion

Remember that "EXTEND” is a statement, not a declaration: the rules are added in the entries at run time.
Each rule is internally inserted in a tree, allowing the left factorization of the rule. For example, with this
list of rules (borrowed from the Camlp5 sources):

"method"; "private"; "virtual"; 1 = label; ":"; t = poly_type
"method"; "virtual"; "private"; 1 = label; ":"; t = poly_type
"method"; "virtual"; 1 = label; ":"; t = poly_type

"method"; "private"; 1 = label; ":"; t = poly_type; "="; e = expr
"method"; "private"; 1 = label; sb = fun_binding

"method"; 1 = label; ":"; t = poly_type; "="; e = expr

"method"; 1 = label; sb = fun_binding

the rules are inserted in a tree and the result looks like:

"method"
|-- "private"
| |-- "virtual"
| | |-- label
| | [—= "
| | |-- poly_type
| |-- label
| [-= "
| | |-- poly_type
| | [-— "=t
| | |-- expr
| |-- fun_binding
|-- "virtual"
|

|-- "private"

47

| -- label

|
|
| |-- poly_type
| -- label
| [—= "o
| |-- poly_type
|-- label
[-— "
| |-- poly_type
| [-— "=t
| |-- expr

|-- fun_binding
This tree is built as long as rules are inserted. When used, by applying the function ”Grammar .Entry.parse”
to the current entry, the input is matched with that tree, starting from the tree root, descending on it as

long as the parsing advances.

There is a different tree by entry level.

7.3.5 Semantic action

The semantic action, i.e. the expression following the right arrow in rules, contain in its environment:

e the variables bound by the patterns of the symbols found in the rules,

e the specific variable ”1oc” which contain the location of the whole rule in the source.

The location is an abstract type defined in the module "Ploc” of Camlp5.

It is possible to change the name of this variable by using the option ”-loc” of Camlp5. For example,
compiling a file like this:

camlpbr -loc foobar file.ml

the variable name, for the location will be "foobar” instead of "1oc”.

7.4 The DELETE RULE statement

The "DELETE RULE” statement is also added in the expressions of the OCaml language when the syntax
extension kit "pa_extend.cmo” is loaded. Its syntax is:

expression ::= delete-rule
delete-rule ::= "DELETE_RULE" delete-rule-body "END"
delete-rule-body ::= entry-name ":" symbols
symbols ::= symbol symbols
| symbol

See the syntax of the EXTEND statement for the meaning of the syntax entries not defined above.

The entry is scanned for a rule matching the giving symbol list. When found, the rule is removed. If no rule
is found, the exception "Not_found” is raised.

48

7.5 Extensions FOLDO and FOLD1

When loading ”pa_extfold.cmo” after ”pa_extend.cmo”, the entry ”symbol” of the EXTEND statement is
extended with what is named the fold iterators, like this:

symbol ::= "FOLDO" simple_expr simple_expr symbol
| "FOLD1" simple_expr simple_expr symbol
| "FOLDO" simple_expr simple_expr symbol "SEP" symbol
| "FOLD1" simple_expr simple_expr symbol "SEP" symbol
simple_expr ::= expr (level "simple")
Like their equivalent with the lists iterators: ”LIST0”, "LIST1”, "LISTOSEP”, "LIST1SEP”, they read a
sequence of symbols, possibly with the separators, but instead of building the list of these symbols, apply a
fold function to each symbol, starting at the second ”expr” (which must be a expression node) and continuing
with the first ”expr” (which must be a function taking two expressions and returing a new expression).

The list iterators can be seen almost as a specific case of these fold iterators where the initial ”expr” would
be:

<:expr< [] >>
and the fold function would be:

fun el e2 -> <:expr< [el :: $e28 1 >>
except that, implemented like that, they would return the list in reverse order.
Actually, a program using them can be written with the lists iterators with the semantic action applying the
function "List.fold left” to the returned list, except that with the fold iterators, this operation is done
as long as the symbols are read on the input, no intermediate list being built.
Example, file ”sum.ml”:

#load "pa_extend.cmo";

#load "pa_extfold.cmo";

#load "q_MLast.cmo";
let loc = Ploc.dummy in

EXTEND
Pcaml .expr:
[["sum";
e =
FOLDO (fun el e2 -> <:expr< $e2$ + el >>) <:expr< 0 >>
Pcaml.expr SEP ";";
"end" -> e]]
END;

which can be compiled like this:
ocamlc -pp camlpbr -I +camlpb -c sum.ml

and tested:

49

ocaml -I +camlp5 camlpbr.cma sum.cmo
Objective Caml version ...

Camlp5 Parsing version ...

sum 3;4;5 end;
- : int = 12

7.6 Extensions SLISTO, SLIST1, SOPT and SFLAG

The parsing kit ”pa_extend m.cmo” adds the specific iterators ”SLIST0”, "SLIST1”, ”SOPT” and ”SFLAG”.
They are used in the file ?q_MLast.ml”. They allow to generate rules for antiquotations of kind ”list” and
7 Opt” .

They are not supposed to be used by the programmer.

For information:

The symbol ”SLISTO symb” is equivalent to the rule symbol:

a_list -> a

a
a = LISTO symb -> Qast.List a]

[
|
Same for the other specific iterators.

The entry "a_list” and the constructor ”Qast.List” are locally defined in ”q_MLast.ml”. This system
allows the updating of the source file ”q_MLast.ml” (syntax tree quotations, with antiquotations, in revised
syntax) from the file "pa_r.ml” (revised syntax). These grammars are close the one to the other, except
that ”q-MLast.ml” can parse antiquotations, what is done by replacing the list iterators by these specific
iterators. This operation is done through the shell script ”mk_q_-MLast.sh” in the "meta” directory of the
Camlpb sources.

7.7 Grammar machinery

We explain here the detail of the mechanism of the parsing of an entry.

7.7.1 Start and Continue

At each entry level, the rules are separated into two trees:

e The tree of the rules not starting with the current entry name nor by ”SELF”.

e The tree of the rules starting with the current entry name or by the identifier ”SELF”, this symbol not
being included in the tree.

They determine two functions:

e The function named ”start”, analyzing the first tree.

e The function named ”continue”, taking, as parameter, a value previously parsed, and analyzing the
second tree.

50

A call to an entry, using ”Grammar .Entry.parse” correspond to a call to the ”start” function of the first
level of the entry.

The ”start” function tries its associated tree. If it works, it calls the ”continue” function of the same level,
giving the result of "start” as parameter. If this ”continue” function fails, this parameter is simply returned.
If the ”start” function fails, the ”start” function of the next level is tested. If there is no more levels, the
parsing fails.

The ”continue” function first tries the ”continue” function of the next level. If it fails, or if it is the last
level, it tries its associated tree, then calls itself again, giving the result as parameter. If its associated tree
fails, it returns its extra parameter.

7.7.2 Associativity

While testing the tree, there is a special case for rules ending with SELF or with the current entry name.
For this last symbol, there is a call to the "start” function: of the current level if the level is right associative,
or of the next level otherwise.

There is no behaviour difference between left and non associative, because, in case of syntax error, the system
attempts, anyway, to recover the error by applying the ”continue” function of the previous symbol (if this
symbol is a call to an entry).

When a SELF or the current entry name is encountered in the middle of the rule (i.e. if it is not the last
symbol), there is a call to the "start” function of the first level of the current entry.

Example. Let us consider the following grammar:

EXTEND
expr:
"minus" LEFTA
[x = SELF; "-"; y = SELF -> x -. y]
| "power" RIGHTA
[x = SELF; "#x"; y = SELF -> x **x y]
| "simple"
["("; x = SELF; ")" > x
| x = INT -> float_of_int x]]

END

The left ”SELF”s of the two levels "minus” and ”power” correspond to a call to the next level. In the level
”minus”, the right ”SELF” also, and the left associativity is treated by the fact that the ”continue” function
is called (starting with the keyword ”-” since the left ”SELF” is not part of the tree). On the other hand, for
the level ”power”, the right ”SELF” corresponds to a call to the current level, i.e. the level "power” again.
At end, the "SELF” between parentheses of the level ”simple” correspond to a call to the first level, namely
”minus” in this grammar.

7.7.3 Errors and recovery

Like for stream parsers, two exceptions may happen: ”Stream.Failure” or ”Stream.Error”. The first one
indicates that the parsing just could not start. The second one indicates that the parsing started but failed
further.

51

In stream parsers, when the first symbol of a rule has been accepted, all the symbols of the same rule must
be accepted, otherwise the exception ”Stream.Error” is raised.

Here, in extensible grammars, unlike stream parsers, before the ”Stream.Error” exception, the system at-
tempts to recover the error by the following trick: if the previous symbol of the rule was a call to another
entry, the system calls the ”continue” function of that entry, which may resolve the problem.

In extensible grammars, the exceptions are encapsulated with the exception ”Ploc.Exc” giving the location
of the error together with the exception itself.

7.7.4 'Tokens starting rules

Another improvement (than the error recovery) is the fact that, when a rule starts with several tokens
and/or keywords, all these tokens and keywords are tested in one time, and the possible ” Stream.Error” may
happen, only from the symbol following them on, if any.

7.7.5 Kind of grammar

The kind of grammar is predictive parsing grammar, i.e. recursive descent parsing without backtrack. But
with some nuances, due to the improvements (error recovery and token starting rules) indicated in the
previous sections.

7.8 The Grammar module

See its section in the chapter ”Library”.

7.9 Interface with the lexer

To create a grammar, the function ”Grammar . gcreate” must be called, with a lexer as parameter.

A simple solution, as possible lexer, is the predefined lexer built by "Plexer.gmake ()7, lexer used for the
OCaml grammar of Camlp5. In this case, you can just put it as parameter of ”Grammar.gcreate” and it is
not necessary to read this section.

The section first introduces the notion of ”token patterns” which are the way the tokens and keywords symbols

in the EXTEND statement are represented. Then follow the description of the type of the parameter of
”Grammar . gcreate”.

7.9.1 Token patterns
A token pattern is a value of the type defined like this:
type pattern = (string * string);
This type represents values of the token and keywords symbols in the grammar rules.
For a token symbol in the grammar rules, the first string is the token constructor name (starting with an
uppercase character), the second string indicates whether the match is ”any” (the empty string) or some

specific value of the token (an non-empty string).

For a keyword symbol, the first string is empty and the second string is the keyword itself.

52

For example, given this grammar rule:
"for"; i = LIDENT; "="; el = SELF; "to"; e2 = SELF

the different symbols and keywords are represented by the following couples of strings:
e the keyword "for” is represented by ("", "for"),
e the keyword ”=" by ("", "="),
e the keyword "to” by ("", "to")),
e and the token symbol LIDENT by ("LIDENT", "").

The symbol UIDENT "Foo" in a rule would be represented by the token pattern:
("UIDENT", "Foo")

Notice that the symbol ”SELF” is a specific symbol of the EXTEND syntax: it does not correspond to a token
pattern and is represented differently. A token constructor name must not belong to the specific symbols:
SELF, NEXT, LISTO0, LIST1, OPT and FLAG.

7.9.2 The lexer record

The type of the parameter of the function ”Grammar . gcreate” is ”1lexer”, defined in the module "Plexing”.
It is a record type with the following fields:

tok_func
It is the lexer itself. Its type is:
Stream.t char -> (Stream.t (string * string) * location_function);

The lexer takes a character stream as parameter and must answer a couple of: a token stream, the tokens
being represented by a couple of strings, and a location function.

The location function is a function taking, as parameter, a integer corresponding to a token number in the
stream (starting from zero), and returning the location of this token in the source. It is important to get
the good locations in the semantic actions of the grammar rules.

Notice that, despite the lexer takes a character stream as parameter, it is not mandatory to use the stream
parsers technology to write the lexer. What is important is that it does the job.

tok_using
It is a function of type:
pattern -> unit

The parameter of this function is the representation of a token symbol or a keyword symbol in grammar
rules. See the section about token patterns.

This function is called for each token symbol and each keyword encountered in the grammar rules of the
EXTEND statement. Its goal is to allow the lexer to check that the tokens and keywords do respect the

53

lexer rules. It checks that the tokens exist and are not mispelled. It can be also used to enter the keywords
in the lexer keyword tables.

Setting it as the function that does nothing is possible, but the check of correctness of tokens is not done.

In case or error, the function must raise the exception "Plexing.Error” with an error message as parameter.

tok_removing

It is a function of type:
pattern -> unit

It is possibly called by the DELETE_RULE statement for tokens and keywords no more used in the grammar.
The grammar system maintains a number of usages of all tokens and keywords and call this function only
when this number reaches zero. This can be interesting for keywords: the lexer can remove them from its
tables.

tok_match

It is a function of type:
pattern -> ((string * string) -> unit)

The function tells how a token of the input stream is matched against a token pattern. Both are represented
by a couple of strings.

This function takes a token pattern as parameter and return a function matching a token, returning the
matched string or raising the exception ”"Stream.Failure” if the token does not match.

Notice that, for efficiency, it is necessary to write this function as a match of token patterns returning, for
each case, the function which matches the token, not a function matching the token pattern and the token
together and returning a string for each case.

An acceptable function is provided in the module "Plexing” and is named ”default_match”. Its code looks
like this:

value default_match =
fun
[(p_con, "") ->
fun (con, prm) -> if con = p_con then prm else raise Stream.Failure
| (p_con, p_prm) ->
fun (con, prm) ->
if con = p_con \&\& prm = p_prm then prm else raise Stream.Failure]

tok_text

It is a function of type:

pattern -> string

54

Destinated to error messages, it takes a token pattern as parameter and return the string giving its name.

It is possible to use the predefined function ”lexer_text” of the Plexing module. This function just returns
the name of the token pattern constructor and its parameter if any.

For example, with this default function, the token symbol IDENT would be written as IDENT in error
message (e.g. 7IDENT expected”). The "text” function may decide to print it differently, e.g., as ”identifier”.

tok_comm

It is a mutable field of type:
option (list location)

It asks the lexer (the lexer function should do it) to record the locations of the comments in the program.
Setting this field to ”None” indicates that the lexer must not record them. Setting it to ”Some [|” indicated
that the lexer must put the comments location list in the field, which is mutable.

7.9.3 Minimalist version

If a lexer have been written, named ”lexer”, here is the minimalist version of the value suitable as parameter
to ”Grammar.gcreate”:

{Plexing.tok_func = lexer;

Plexing.tok_using _ = (); Plexing.tok_removing _ = ();
Plexing.tok_match = Plexing.default_match;
Plexing.tok_text = Plexing.lexer_text;
Plexing.tok_comm = None}

7.10 Functorial interface

The normal interface for grammars described in the previous sections has two drawbacks:

o First, the type of tokens of the lexers must be ” (string * string)”

e Second, since the entry type has no parameter to specify the grammar it is bound to, there is no static
check that entries are compatible, i.e. belong to the same grammar. The check is done at run time.

The functorial interface resolve these two problems. The functor takes a module as parameter where the
token type has to be defined, together with the lexer returning streams of tokens of this type. The resulting
module define entries compatible the ones to the other, and this is controlled by the OCaml type checker.

The syntax extension must be done with the statement GEXTEND, instead of EXTEND, and deletion by
GDELETE_RULE instead of DELETE_RULE.

7.10.1 The lexer type

In the section about the interface with the lexer, we presented the "Plexing.lexer” type as a record without
type parameter. Actually, this type is defined as:

95

type lexer ’te =
{ tok_func : lexer_func ’te;
tok_using : pattern -> unit;
tok_removing : pattern -> unit;
tok_match : pattern -> ’te -> string;
tok_text : pattern -> string;
tok_comm : mutable option (list location) }

>

where the type parameter is the type of the token, which can be any type, different from ” (string *
string)”, providing the lexer function (tok_func) returns a stream of this token type and the match
function (tok-match) indicates how to match values of this token type against the token patterns (which
remain defined as ” (string * string)”).

Here is an example of an user token type and the associated match function:

type mytoken =
[Ident of string
| Int of int
| Comma | Equal
| Keyw of string]

value mymatch =

fun
[("IDENT", "") ->
fun [Ident s -> s | _ -> raise Stream.Failure]
| ("INT", "") ->
fun [Int i -> string_of_int i | _ -> raise Stream.Failure]
I e
fun [Comma -> "" | _ -> raise Stream.Failure]
[, =) >
fun [Equal -> "" | _ -> raise Stream.Failure]
[", s) =
fun
[Keyw k -> if k = s then "" else raise Stream.Failure

| _ -> raise Stream.Failure]
_ > raise (Plexing.Error "bad token in match function")]

7.10.2 The functor parameter

The type of the functor parameter is defined as:

module type GLexerType =
sig
type te = ’x;
value lexer : Plexing.lexer te;
end;

The token type must be specified (type "te”) and the lexer also, with the interface for lexers, of the lexer

type defined above, the record fields being described in the section ”interface with the lexer”, but with a
general token type.

56

7.10.3 The resulting grammar module

Once a module of type ”"GLexerType” has been built (previous section, it is possible to create a grammar
module by applying the functor ”Grammar .GMake”. For example:

module MyGram = Grammar.GMake MyLexer;

Notice that the function "Entry.parse” of this resulting module does not take a character stream as pa-
rameter, but a value of type ”"parsable”. This function is equivalent to the function ”parse_parsable” of
the non functorial interface. In short, the parsing of some character stream ”cs” by some entry ”e” of the
example grammar above, must be done by:

MyGram.Entry.parse e (MyGram.parsable cs)
instead of:

MyGram.Entry.parse e cs

7.10.4 GEXTEND and GDELETE _RULE

The ”GEXTEND” and ”GDELETE_RULE” statements are also added in the expressions of the OCaml language
when the syntax extension kit ”pa_extend.cmo” is loaded. They have to be used for grammars defined with
the functorial interface. Their syntax are:

expression ::= gextend
| gdelete-rule

gdelete-rule ::= "GDELETE_RULE" gdelete-rule-body "END"

gextend ::= "GEXTEND" gextend-body "END"
gextend-body ::= grammar-module-name extend-body
gdelete-rule-body ::= grammar-module-name delete-rule-body
grammar-module-name ::= qualid

See the syntax of the EXTEND statement for the meaning of the syntax entries not defined above.

7.11 An example: arithmetic calculator

Here is a small calculator of expressions. They are given as parameters of the command.

File ”calc.ml”:

#load "pa_extend.cmo";

value g = Grammar.gcreate (Plexer.gmake ());
value e = Grammar.Entry.create g "expression";

EXTEND
e:

[lx=e "";y=e>x+y
l x=e; "";y=e->x-y]

| [x=e; "*"; y=e >x *y
| x=e; "/"; y=e >x/y]

| [x = INT -> int_of_string x
I ||(||; X = e; n)n _>X]]

o7

)

END;
open Printf;

for i = 1 to Array.length Sys.argv - 1 do {
let r = Grammar.Entry.parse e (Stream.of_string Sys.argv.(i)) in
printf "¥s = %d\n" Sys.argv.(i) r;
flush stdout;

3

The link needs the library ”gramlib.cma” provided with Camlp5:
ocamlc -pp camlpbr -I +camlp5 gramlib.cma test/calc.ml -o calc
Examples:

$./calc ’239%4649’

239x4649 = 1111111
$./calc ’(47+2)/3’
(47+2)/3 = 16

o8

Part 11

Printing tools

99

60

Chapter 8

Extensible printers

This chapter describes the syntax and semantics of the extensible printers of Camlp5.

Symmetric to the extensible grammars, the extensible printers allow to define and extend printers of data
or programs. A specific statement "EXTEND_PRINTER” allow to define these extensions.

8.1 Getting started

A printer is a value of type "Eprinter.t a” where ”a” is the type of the item to be printed. When applied,
a printer return a string, representing the printed item.

To create a printer, one has to use the function "Eprinter.make” with, as parameter, the name of the
printer, (used in error messages). A printer is created empty, i.e. it fails if it is applied.

Like grammar entries, printers may have several levels. When the function "Eprinter.apply” is applied to
a printer, the first level is called. The function "Eprinter.apply_level” allows to call a printer at some
specific level possibly different from the first one. When a level does not match any value of the printed
item, the next level is tested. If there is no more levels, the printer fails.

In semantic actions of printers, functions are provided to recursively call the current level and the next level.
Moreover, a printing context variable is also given, giving the current indentation, what has to be printed

before in the same line and what has to be printed after in the same line (it is not mandatory to use them).

The extension of printers can ben done with the "EXTEND_PRINTER” statement added by the parsing kit
"pa_extprint.cmo”.

8.2 Syntax of the EXTEND PRINTER statement

expression ::= extend-statement
extend-statement ::= "EXTEND_PRINTER" extend-body "END"
extend-body ::= extend-printers
extend-printers ::= extend-printer extend-printers
| <nothing>
extend-printer ::= printer-name ":" position-opt "[" levels "]"
position-opt ::= "FIRST"
"LAST"

"BEFORE" label

61

"AFTER" label
"LEVEL" label

|
|
| <nothing>
levels ::= level "|" levels
| level
level ::= label-opt "[" rules "]"
label-opt ::= label
| <nothing>
rules ::= rule "|" rules
| rule
rule ::= pattern "->" expression
printer-name ::= qualid
qualid ::= qualid "." qualid
| uident
| lident
uident ::= ’A’-’Z’ ident
lident ::= (’a’-’z’ | ’_’ | utf8-byte) ident
ident ::= ident-char*
ident-char ::= (’a’-’a’ | *A’-"Z° | °0°-°9> | >_2> | ??’ | utf8-byte)
utf8-byte ::= ’\128°-’\255’

8.3 Semantics of EXTEND PRINTER

8.3.1 Printers definition list

All printers are extended according to their corresponding definitions which start with an optional ” position”
and follow with the ”levels” definition.

Optional position

After the colon, it is possible to specify a where to insert the defined levels:

e The identifier "FIRST” (resp. "LAST”) indicates that the level must be inserted before (resp. after) all
possibly existing levels of the entry. They become their first (resp. last) levels.

e The identifier "BEFORE” (resp. ”AFTER”) followed by a level label (a string) indicates that the levels
must be inserted before (resp. after) that level, if it exists. If it does not exist, the extend statement
fails at run time.

e The identifier "LEVEL” followed by a level label indicates that the first level defined in the extend
statement must be inserted at the given level, extending and modifying it. The other levels defined in
the statement are inserted after this level, and before the possible levels following this level. If there is
no level with this label, the extend statement fails at run time.

e By default, if the entry has no level, the levels defined in the statement are inserted in the entry.
Otherwise the first defined level is inserted at the first level of the entry, extending or modifying it.
The other levels are inserted afterwards (before the possible second level which may previously exist
in the entry).

Levels

After the optional ”position”, the level list follow. The levels are separated by vertical bars, the whole list
being between brackets.

62

A level starts with an optional label, which corresponds to its name. This label is useful to specify this
level in case of future extensions, using the position (see previous section) or for possible direct calls to this
specific level.

Rules

A level is a list of rules separated by vertical bars, the whole list beiing between brackets.

A rule is an usual pattern association (in a function or in the "match” statement), i.e. a pattern, an arrow
and an expression. The expression is the semantic action which must be of type "string”.

8.3.2 Rules insertion

The rules are sorted by their patterns, according to the rules of the extensible functions.

8.3.3 Semantic action

The semantic action, i.e. the expression following the right arrow in rules, contain in its environment the
variables bound by the pattern and three more variables:

e The variable ” curr” which is a function which can be called to recursively call the printer to the current
level,

e The variable "next” which is a function which can be called to call the printer to the next level,
e The variable "pc” which contains the printing context (see further), of type "pr_context”.
The variables ”curr” and "next” are of type:
pr_context -> t -> string
where ”t” is the type of the printer (i.e. the type of its patterns).

The variable ”curr”, "next” and ”pc” have predefined names and can hide the possible identifiers having
the same names in the pattern or in the environment of the "EXTEND _PRINTER” statement.

8.3.4 Printing context
All semantic actions use a printing context in the variable "pc”. Its type is defined as:

type pr_context =
{ ind : int;
bef : string;
aft : string;
dang : string }
The fields are:

e 7ind” : the current indendation

e "bef” : what has to be printed before, in the same line

e 7aft” : what has to be printed after, in the same line

e ”dang” : the dangling token to know whether parentheses are necessary

Notice that the printing context variable is just a convenience for the programmer of the printer, he is not
obliged to use it.

63

8.4 The Eprinter module

See its section in the chapter ”Librabry”.

8.5 Examples

8.5.1 Parser and Printer of expressions

This example illustrates the symmetry between parsers and printers. A simple type of expressions is defined.
A parser converts a string to a value of this type, and a printer converts a value of this type to a string.

In the printer, there is no use of the "pc” parameter and no use of the "Pretty” module. The strings are
printed in one only line.

Here is the source (file ”foo.m1”):

#load "pa_extend.cmo";
#load "pa_extprint.cmo";

open Printf;

type expr =
[Op of string and expr and expr
| Int of int

| Var of string]

’

value g = Grammar.gcreate (Plexer.gmake ());
value pa_e = Grammar.Entry.create g "expr";
value pr_e = Eprinter.make "expr";

EXTEND
pa_e:
[[x =SELF; "+"; y = SELF -> Op "+" x y
| x = SELF; "-"; y = SELF -> Op "-" x y]
| [x =SELF; "x"; y = SELF -> Op "*" x y
| x = SELF; "/"; y = SELF -> Op "/" x y]
| [x =1INT -> Int (int_of_string x)
| x = LIDENT -> Var x
| "("; x = SELF; ")" ->x]]
END;

EXTEND_PRINTER

pr_e:
[[Op "+" x y => sprintf "%s + %s" (curr pc x) (next pc y)

| Op "-" x y —-> sprintf "¥%s - %s" (curr pc x) (next pc y)]
| [Op "*" x y -> sprintf "Y%s * %s" (curr pc x) (next pc y)

| Op "/" x y -> sprintf "%s / %s" (curr pc x) (next pc y)]
| [Int x -> string_of_int x

| Var x -> x

| x => sprintf "(%s)" (Eprinter.apply pr_e pc x) 1]

64

)

END;

value parse s = Grammar.Entry.parse pa_e (Stream.of_string s);

value print e = Eprinter.apply pr_e Eprinter.empty_pc e;

if Sys.interactive.val then ()
else print_endline (print (parse Sys.argv.(1)));

Remark the use of ”curr” and "next” while printing operators. Because of left associativity, the first operand
uses ”"curr” and the second operand uses "next”. For right associativity operators, they should be inverted.
For no associativity, both should use "next”.

The last line of the file allows to use it either in OCaml toplevel or as standalone program, taking the string
to be printed as parameter. It can be compiled this way:

ocamlc -pp camlpbr -I +camlpb gramlib.cma foo.ml
Examples of use (notice the redundant parentheses automatically removed by the printing algorithm):

$./a.out "(3 * x) + (2 / y)"
3*xx+2/y

$./a.out "(x+y)*(x-y)"
x+y) *x (x-y)

$./a.out "x +y - z"

X+y-z

$./a.out "(x +y) - z"
X+y-z

$./a.out "x + (y - 2)"
x+ (y - 2)

8.5.2 Printing OCaml programs

Complete examples of usage of extensible printers are the printers in syntaxes and extended syntaxes provided
by Camlpb in the pretty printing kits:

e pr_r.cmo: pretty print in revised syntax
e pr_o.cmo: pretty print in normal syntax
e pr_rp.cmo: also pretty print the parsers in revised syntax

e pr_op.cmo: also pretty print the parsers in normal syntax

See the chapter entitled ”Printing programs”.

65

66

Chapter 9

Pretty print

A pretty print system is provided in the library module Pretty. It allows to pretty print data or programs.
The Pretty module contains:

e The function ”horiz_vertic” to specify how data has to be printed.
e The function ”sprintf” to format strings.

e The variable ”line_length” which is a reference specifying the maximum lines lengths.

9.1 Module description

9.1.1 horiz_vertic

The function ”horiz_vertic” takes two functions as parameters. When called, it calls its first function. If that
function fails with some internal error that the function ”sprintf” below may raise, the second function is
called.

The type of "horiz_vertic” is:

(unit -> ’a) -> (unit -> ’a) -> ’a

the horizontal function

The first function is said to be the ”horizontal” function. It tries to pretty print the data on a single line.
In the context of this function, if the strings built by the function ”sprintf” (see below) contain newlines or
have lengths greater than ”line_length”, the function fails (with a internal exception local to the module).

the vertical function

In case of failure of the ”horizontal function”, the second function of ”horiz_vertic”, the ”vertical” function,
is called. In the context of that function, the ”sprintf” function behaves like the normal ”sprintf” function
of the OCaml library module ” Print{”.

9.1.2 sprintf

The function ”sprintf” works like its equivalent in the module "Printf” of the OCaml library, and takes the
same parameters. Its difference is that if it is called in the context of the first function (the ”horizontal”
function) of the function "horiz_vertic” (above), all strings built by ”sprintf” are checked for newlines or

67

length greater than the maximum line length. If it is the case, the ”sprintf” function fails, and the horizontal
function fails also.

If ”sprintf” is not in the context of the horizontal function, it behaves like the usual ”sprintf” function.

9.1.3 line_length

The variable ”line_length” is a reference holding the maximum line length of lines printed horizontally. Its
default is 78. This can be changed by the user before using ”horiz_vertic”.

9.2 Example

Suppose you want to pretty print the XML code "<1i>something</1i>". If the ”something” is short, you
want to see:

something</1i>
If the ”something” has several lines, you want to see that:

something
</1i>

A possible implementation is:

open Pretty;
horiz_vertic
(fun () -> sprintf "something</1i>")
(fun () -> sprintf "<1i>\n something\n</1i>");

Notice that the ”sprintf” above is the one of the library Pretty.

Notice also that, in a program displaying XML code, this ”"something” may contain other XML tags, and is
therefore generally the result of other pretty printing functions, and the program should rather look like:

horiz_vertic
(fun () -> sprintf "<1i>Ys</1li>" (print something))
(fun () -> sprintf "<1i>\n %s\n</1i>" (print something))

Parts of this ”something” can be printed horizontally and other vertically using other calls to ”horiz_vertic”
in the user function ”print” above. But it is important to remark that if they are called in the context of
the first function parameter of ”horiz_vertic” above, only horizontal functions are accepted: the first failing
”horizontal” function triggers the failure of the horizontal pretty printing.

9.3 Programming with Pretty
9.3.1 Hints

Just start with a call to "horiz_vertic”.

As its first function, use ”sprintf” just to concat the strings without putting any newlines or indentations,
just using e.g. spaces to separate pieces of data.

68

As its second function, wonder how you want your data to be cut. At the cutting point or points, add
newlines. Notice that you probably need to give the current indentation string as parameter of the called
functions because they need to be taken into account in the called ”horizontal” functions.

In the example below, don’t put the indentation in the sprintf function but give it as parameter of your
7print” function:

horiz_vertic
(fun () -> sprintf "<1i>Ys</1i>" (print "" something))
(fun () -> sprintf "<1i>\n%s\n</1i>" (print " " something))

Now, the ”print” function could look like, supposing you print other things with ”other” of the current
indentation and ”things” with a new shifted one:

value print ind something =
horiz_vertic
(fun () -> sprintf "Ysother things..." ind)
(fun () -> sprintf "Ysother\n)s things..." ind ind);

Supposing than ”other” and ”things” are the result of two other functions ”print_other” and ” print_things”,
your program could look like:

value print ind (x, y) =
horiz_vertic
(fun () -> sprintf "Ys%s %s" ind (print_other 0 x) (print_things 0 y))
(fun () -> sprintf "%s\n%s" (print_other ind x) (print_things (ind =~ " ") y));

9.3.2 How to cancel a horizontal print

If you want to prevent a pretty printing function to be called in an horizontal context, constraining the
pretty print to be on several lines in the calling function, just do:

horiz_vertic
(fun () -> sprintf "\n")
(fun () -> ... (x your normal pretty print *))

In this case, the horizontal print always fails, due to the newline character in the sprintf format.

9.4 Remarks

9.4.1 Kernel

The module ”Pretty” is supposed to be a basic, a "kernel” module to pretty print data. It supposes that
the user takes care himself of the indentation. Programs using ”Pretty” are not as short as the ones using
?Format” of the OCaml library, but are more flexible. Later, it is planed to find a way to extend ”Pretty”
with functions allowing to use a short syntax similar to the ”@” convention of the function ”printf’ of
”Format”, and taking care of the indentation for the user, resulting on shorter programs.

9.4.2 Strings vs Channels

In ”Pretty”, the pretty print is done only on strings, not on files. To pretty print on files, just built the strings
and print them afterwards with the usual output functions. Notice that OCaml allocates and frees strings
very fast, and if pretty printed values are not huge, which is generally the case, it is not a real problem,
memory sizes these days being much more than enough for this job.

69

9.4.3 Strings or other types

The "horiz_vertic” function can return values of other types than ”string”. For example, if you are interested
only in the result of horizontal context and not on the vertical one, it is perfectly correct to write:

horiz_vertic
(fun () -> Some (sprintf "I hold on a single line")
(fun () -> None)

9.4.4 'Why raising exceptions ?

One could ask why this pretty print system has to raise internal exceptions. Why not simply write the pretty
printing program like this:

1. first build the data horizontally (without newlines)
2. if the string length is lower than the maximum line length, return it
3. if not, build the string by adding newlines in the specific places

This method works but is generally very slow (exponential in time). Because while printing horizontally,
many unuseful strings are built. If, for example, the final printed data holds on 50 lines, tenth of lines may
be build and build again unusefully before the overflowing is tested.

70

Part 111

Language extensions

71

72

Chapter 10

Locations

The location is a concept often used in Camlp5, bound to know where the errors occur in the source. The
basic type is "Ploc.t” which is an abstract type.

10.1 Definitions

A location is internally a couple of source positions: the beginning and the end of an element in the source
(file or interactive). A located element can be a character (the end is just the beginning plus one), a token,
or a longer sequence generally corresponding to a grammar rule.

A position is a count of characters since the beginning of the file, starting at zero. When a couple of positions
define a location, the first position is the position of the first character of the element, and the last position is
the first character not part of the element. The location length is the difference between those two numbers.
Notice that the position corresponds exactly to the character count in the streams of characters.

In the extensible grammars, a variable with the specific name ”1loc” is predefined in all semantic actions: it
is the location of the associated rule. Since the syntax tree quotations generate nodes with ”loc” as location

part, this allow to generate grammars without having to think about source locations.

It is possible to change the name ”1loc” into another name, through the parameter ”-loc” of the Camlpb
commands.

Remark: the reason why the type "location” is abstract is that in future versions, it may contain other

informations, such as the associated comments, the type (for expressions nodes), things like that, without
having to change the already written programs.

10.2 Building locations

Tools are provided in the module "Ploc” to manage locations.

First, "Ploc.dummy” is a dummy location used when the element does not correspond to any source, or if
the programmer does not want to busy about locations.

The function ”"Ploc.make” builds a location from three parameters:

e the line number, starting at 1

73

e the position of the first column of the line

e a couple of positions of the location: the first one belonging to the given line, the second one being
able to belong to another line, further.

If the line number is not known, it is possible to use the function "Ploc.make unlined” taking only the
couple of positions of the location. In this case, error messages may indicate the first line and a big count
of characters from this line (actually from the beginning of the file). With a good text editor, it is possible,
anyway to find the good location, anyway.

If the location is built with "Ploc.make unlined”, and if your program displays a source location itself, it
is possible to use the function "Ploc.from file” which takes the file name and the location as parameters
and return, by reading that file, the line number, and the character positions of the location.

10.3 Raising with a location

The function "Ploc.raise” allows to raise an exception together with a location. It is the case of all
exceptions raised in the extensible grammars. The raised exception is "Ploc.Exc” with two parameters: the
location and the exception itself.

Notice that "raise_with loc” just reraises the exception if it is already the exception ”"Exc_located”,
ignoring then the new given location.

A good usage to print exceptions possibly enclosed by "Exc_located” is to write the "try..with” statement
like this:

try ... with exn ->

let exn =
match exn with
[Ploc.Exc loc exn -> do { ... print the location ...; exn }
| _ -> exn]

in

match exn with

...print the exception which is *not* located...

10.4 Other functions
Some other functions are provided:

Ploc.first_pos

returns the first position (an integer) of the location.

Ploc.last_pos
returns the last position (an integer) of the location (position of the first character not belonging to
the element.

Ploc.linemnb

returns the line number of the location or -1 if the location does not contain a line number (i.e. built
by "Ploc.make unlined”).

74

Ploc.bol_pos
returns the position of the beginning of the line of the location. It is zero if the location does not
contain a line number (i.e. built by ”Ploc.make unlined”).

And still other ones used in Camlp5 sources:

Ploc.encl

"Ploc.encl locl loc2” returns the location starting at the smallest begin of "1oc1” and "1loc2” and
ending at their greatest end.. In simple words, it is the location enclosing ”1oc1” and ”"1loc2” and all
what is between them.

Ploc.shift

”Ploc.shift sh loc” returns the location ”loc” shifted with ”sh” characters. The line number is
not recomputed.

Ploc.sub

"Ploc.sub loc sh len” is the location "loc” shifted with ”sh” characters and with length ”len”.
The previous ending position of the location is lost.

”Ploc.after”

"Ploc.after loc sh len” is the location just after "1loc” (i.e. starting at the end position of ”1loc”),
shifted with ”sh” characters, and of length ”"len”.

75

76

Chapter 11

Syntax tree

In Camlp5, one often uses syntax trees. For example, in grammars of the language (semantic actions), in
pretty printing (as patterns), in optimizing syntax code (typically streams parsers). Syntax trees are mainly
defined by sum types, one for each kind of tree: ”expr” for expressions, "patt” for patterns, "ctyp” for
types, "str_item” for structure items, and so on. Each node corresponds to a possible value of this type.

11.1 Transitional and Strict modes

Since version 5.00 of Camlpb, the definition of the syntax tree has been different according to the mode
Camlp) has been installed:

e In transitional mode, this definition is the same than in the previous Camlp5 versions.

e In strict mode, many constructors parameters have a type enclosed by the predefined type "Ploc.vala”.

The advantage of the transitional mode is that the abstract syntax tree is fully compatible with previous
versions of Camlp5b. Its drawback is that when using the syntax tree quotations in user syntax, it is not
possible to use antiquotations, which is a worrying limitation.

In strict mode, the abstract syntax is not compatible with versions of Camlp5 previous to 5.00. Most of the
parameters of the constructor are enclosed with the type "Ploc.vala” whose aim is to allow nodes to be

either of the type argument, or an antiquotation. In this mode, the syntax tree quotations in user syntax
can be used, with the same power than the previous syntax tree quotations provided by Camlp5.

11.2 Compatibility

Since there is a problem of compatibility in strict mode, a good solution, for the programmer, is to always
use syntax trees using quotations, which has been backward compatible. See the chapter about syntax tree
in strict mode.
For example, if the program made a value of the syntax tree of the ”let” statement, like this:

ExLet loc rf pel e

If strict mode, to be equivalent, this expression should be rewritten like this:

ExLet loc (Ploc.VaVal rf) (Ploc.VaVal pel) e

7

where ”Ploc.VaVal” is a value of the type "vala” defined in the module Ploc (see its section ”pervasives”).

This necessary conversion is a drawback if the programmer wants that his programs remain compilable with
previous versions of Camlp5.

The recommended solution is to always write this code with quotations, namely, in this example, like this:
<:expr< let $flag:rf$ $list:pel$ in e >>

The quotation expanders ensure that, in strict mode, the variable "rf” is still of type "bool”, and that the
variable "pel” of type "1ist (patt * expr)”, by enclosing them around "Ploc.VaVal.

In transitional mode, it is equivalent to the first form above. In strict mode, it is equivalent to the second
form. And the previous versions of Camlp5 also recognizes this form.

11.3 Two quotations expanders

Camlpb provides two quotations expanders of syntax trees: "q MLast.cmo” and ”q-ast.cmo”.
Both allow to write syntax trees in concrete syntax like explained in the previous section.

The first one, ”q_MLast.cmo” requires that the contents of the quotation be in revised syntax without any
syntax extension (even not the stream parsers). It works in transitional and in strict modes.

The second one, "q_ast.cmo” requires that the contents of the quotation be in the current user syntax

(normal, revised, lisp, scheme, or other) and can accept all the syntax extensions he added to compile his
program. But it fully work only in strict mode. In transitional mode, the antiquotations are not available.

11.4 Syntax tree and Quotations in the two modes

For the detail of the syntax tree and the quotations forms, see the chapters about the syntax tree in transi-
tional mode and the syntax tree in strict mode.

78

Chapter 12

Syntax tree - transitional mode

This chapter presents the Camlpb syntax tree when Camlpb is installed in transitional mode.

12.1 Introduction

This syntax tree is defined in the module "MLast” provided by Camlp5. Each node corresponds to a syntactic
entity of the corresponding type.

For example, the syntax tree of the statement ”if” can be written:
MLast.ExIfe loc el e2 e3

where ”1oc” is the location in the source, and "el1”, ”e2” and ”e3” are respectively the expression after the
7if”, the one after the "then” and the one after the "else”.

If a program needs to manipulate syntax trees, it can use the nodes defined in the module "MLast”. It
supposes to know how the concrete syntax is transformed in to this abstract syntax.jp;,

However, a simpler solution is to use one of the quotation kit "q MLast.cmo”. It proposes quotations which
represent the abstract syntax (the nodes of the module ”"MLast”) into concrete syntax with antiquotations
to bind variables inside. The example above can be written:

<:expr< if el then $e2$ else $e3$ >>

This representation is very interesting when one wants to manipulate complicated syntax trees. Here is an
example taken from the Camlpb sources themselves:

<:expr<
match try Some f with [Stream.Failure -> None] with
[Some p -> e
| _ -> raise (Stream.Error $e2$)]

>>

This example was in a position of a pattern. In abstract syntax, it should have been written:

MLast.ExMat _
(MLast.ExTry _ (MLast.ExApp _ (MLast.ExUid _ "Some") f)
[(MLast.PaAcc _ (MLast.PaUid _ "Stream") (MLast.PaUid _ "Failure"),
None, MLast.ExUid _ "None")])
[(MLast.PaApp _ (MLast.PaUid _ "Some") p, None, e);

79

(MLast.PaAny _, None,
MLast.ExApp _ (MLast.ExLid _ "raise")
(MLast.ExApp _
(MLast .ExAcc
e2))]

(MLast .ExUid _ "Stream") (MLast.ExUid _ "Error"))

Which is less readable and much more complicated to build and update.

Instead of thinking of "a syntax tree”, the programmer has to think of ”a piece of program”.

12.2 Location

In all syntax tree nodes, the first parameter is the source location of the node.

12.2.1 In expressions

When a quotation is in the context of an expression, the location parameter is "1oc” in the node and in all
its possible sub-nodes. Example: if we consider the quotation:

<:sig_item< value foo : int -> bool >>
This quotation, in a context of an expression, is equivalent to:

MLast.SgVal loc "foo"
(MLast.TyArr loc (MLast.TyLid loc "int") (MLast.TyLid loc "bool"));

The name ”1oc” is predefined. However, it is possible to change it, using the argument ”-1oc” of the Camlp5
shell commands.

Consequently, if there is no variable ”1oc” defined in the context of the quotation, or if it is not of the good
type, a semantic error occur in the OCaml compiler (”Unbound value loc”).

Note that in the extensible grammars, the variable ”"1oc” is bound, in all semantic actions, to the location
of the rule.

If the created node has no location, the Note that in the extensible grammars, the variable "1oc” is bound,
in all semantic actions, to the location of the rule.

If the created node has no location, the programmer can define a variable named ”1loc” equal to "Ploc . dummy”.

12.2.2 In patterns

When a quotation is in the context of a pattern, the location parameter of all nodes and possible sub-nodes
is set to the wildcard (”_”). The same example above:

<:sig_item< value foo : int -> bool >>
is equivalent, in a pattern, to:

MLast.SgVal _ "foo"
(MLast.TyArr _ (MLast.TyLid _ "int") (MLast.TyLid _ "int"))

80

12.3 Antiquotations

The expressions or patterns between dollar ($) characters are called antiquotations. In opposition to quo-
tations which has its own syntax rules, the antiquotation is an area in the syntax of the enclosing context
(expression or pattern). See the chapter about quotations.

If a quotation is in the context of an expression, the antiquotation must be an expression. It could be any
expression, including function calls. Examples:

value f e el = <:expr< [e :: $loop False el$] >>;
value patt_list p pl = <:patt< ($list:[p::pll$) >>;

If a quotation is in the context of an pattern, the antiquotation is a pattern. Any pattern is possible,
including the wildcard character (”_”). Examples:
fun [<:expr< $lid:op$ $_$ $_
match p with [<:patt< $_$ |

>> => op]

$ $_8
$ | $_$ >> -> Some p]

12.4 Nodes and Quotations

This section describes all nodes defined in the module "MLast” of Camlp5 and how to write them with
quotations. Notice that, inside quotations, one is not restricted to these elementary cases, but any complex
value can be used, resulting on possibly complex combined nodes.
Variables names give information of their types:

e ¢, el e2, e3: expr

e p, pl, p2, p3: patt

e t,tl, t2, e3: ctyp

e s: string

e b: bool

e me, mel, me2: module_expr

e mt, mtl, mt2: module_type

e le: list expr

e 1p: list patt

e 1t: list ctyp

e 1s: list string

e 1se: list (string * expr)

e 1pe: list (patt * expr)

e 1lpp: list (patt * patt)

e lpoee: list (patt * option expr * expr)

e op: option patt

e lcstri: list class_str_item

e lcsigi: list class_sig_item

81

12.4.1

expr

Expressions of the language.

Node <:expr< ... >> Comment

ExAcc loc el e2 el . $e28 dot

ExAnt loc e $anti:e$ antiquotation (1)
ExApp loc el e2 el $e2% application
ExAre loc el e2 $e1$. ($e28) array access
ExArr loc le [l $list:1e$ |] array

ExAsr loc e assert e assert

ExAss loc el e2 el := $e23 assignment
ExBae loc e le e .{ $les } big array access
ExChr loc s $chr:s$ character constant
ExCoe loc e (Some t1) t2 (e : $t1$:> $t29%) coercion

ExCoe loc e None t2 (e :> $t2%) coercion

ExFlo loc s $flo:s$ float constant
ExFor loc s el e2 b le for s = el $to:b$ $e2$ do { $list:1le$ } | for

ExFun loc lopee fun [$list:1lpoee$] function (2)
ExIfe loc el e2 e3 if $e1$ then $e2$ else $e3$ if

ExInt loc s "" $int:s$ integer constant
ExInt loc s "1" $int32:s$ integer 32 bits
ExInt loc s "L" $int64:s$ integer 64 bits
ExInt loc s "n" $nativeint:s$ native integer
ExLab loc s Nomne ~ s label

ExLab loc s (Some e) ~ s ¢ e label

ExLaz loc e lazy e lazy

ExLet loc b 1lpe e let $flag:b$ $list:1lpe$ in e let binding
ExLid loc s $1id:s$ lowercase identifier
ExLmd loc s me e let module s = me in e let module
ExMat loc e lpoee match e with [$list:1lpoee$] match (2)
ExNew loc ls new $list:1s$ new

ExObj loc op lecstri object $opt:op$ $list:lcstri$ end object expression
Ex01b loc s None 7 s option label
Ex01b loc s (Some e) 7?7 s : e option label
ExOvr loc lse {< $1se$ >} override

ExRec loc lpe None { $list:1pe$ } record

ExRec loc lpe (Some e) { (e) with $list:1lpe$ } record

ExSeq loc le do { $list:1le$ } sequence

ExSnd loc e s e # s method call
ExSte loc el e2 $e1$. [$e23%] string element
ExStr loc s $str:s$ string

ExTry loc e lpoee try e with [$list:1lpoee$] try (2)

ExTup loc le ($list:1e$) t-uple

ExTyc loc e t (e : 3t type constraint
ExUid loc s $uid:s$ uppercase identifier
ExVrn loc s ¢ s variant

ExWhi loc e le while e do { $list:le$ } while

82

(1) Node used in the quotation expanders to tells at conversion to OCaml compiler syntax tree time, that
all locations of the sub-tree is correcty located in the quotation. By default, in quotations, the locations of
all generated nodes are the location of the whole quotation. This node allows to make an exception to this
rule, since we know that the antiquotation belongs to the universe of the enclosing program. See the chapter
about quotations and, in particular, its section about antiquotations.

(2) The variable "lpoee” found in ”function”, "match” and ”try” statements correspond to a list of ” (patt

* option expr * expr)” where the "option expr” is the ”when” optionally following the pattern:
p—>e

is represented by:
(p, None, e)

and
p when el -> e

is represented by:

(p, Some el, e)

12.4.2 patt

Patterns of the language.

Node <:patt< ... >> Comment

PaAcc loc pl p2 $p1$. $p2¢$ dot

PaAli loc pl p2 ($p1$ as $p2%) alias

PaAnt loc p $anti:p$ antiquotation (1)
PaAny loc - wildcard

PaApp loc pl p2 $p1$ $p2¢% application
PaArr loc lp [l $1list:1p$ 1] array

PaChr loc s $chr:s$ character

PaInt loc sl s2 $int:s$ integer

PaFlo loc s $flo:s$ float

Palab loc s None ~ s label

Palab loc s (Some p) ~ s : p label

PaLid loc s $1id:s$ lowercase identifier
Pa0lb loc s None 7?7 s option label
Pa0lb loc s (Some (p, None)) 7 s : (p) option label
Pa0lb loc s (Some (p, Some e)) | 7 s : (p = e) | option label
PaOrp loc pl p2 $p1$ | $p2$ or

PaRng loc pl p2 $p1$.. $p28% range

PaRec loc lpp None { $list:1pp$ } record

PaStr loc s $str:s$ string

PaTup loc 1lp ($list:1p$) t-uple

PaTyc loc p t (p : $tH type constraint
PaTyp loc 1ls # $list:1s$ type pattern
PaUid loc s $uid:s$ uppercase identifier
PaVrn loc s ¢ s variant

83

(1) Node used to specify an antiquotation area, like for the equivalent node in expressions. See above.

12.4.3 ctyp

Type expressions of the language.

Node <:ctyp< ... >> Comment
TyAcc loc t1 t2 $t1$. $t2% dot
TyAli loc t1 t2 $t1$ as $t2% alias
TyAny loc - wildcard
TyApp loc t1 t2 $t1$ $t28 application
TyArr loc tl1 t2 $t1$ > $t2$ arrow
TyCls loc 1ls # $list:1s$ class
TyLab loc s t ~ s ;. t label
TyLid loc s $1id:s$ lowercase identifier
TyMan loc t1 t2 $t1$ == $t2¢ manifest
TyObj loc lst False < $list:1st$ > object
TyObj loc 1lst True < $list:1st$.. > object
TyObj loc 1lst b < $list:1st$ $flag:b$ > object (general)
Ty0lb loc s t 7 s : t option label
TyPol loc 1ls t ' $list:1s$. t polymorph
TyQuo loc s > $s% variable
TyRec loc 1llsbt { $list:11sbt$ } record
TySum loc 1llslt [$1list:11s1t$] sum
TyTup loc 1t ($list:1t$) t-uple
TyUid loc s $uid:s$ uppercase identifier
TyVrn loc lpv None [= $1list:1pv$] variant
TyVrn loc lpv (Some None) [> $1list:1pv$] variant
TyVrn loc lpv (Some (Some []1)) [< $1list:1pv$] variant
TyVrn loc lpv (Some (Some 1ls)) | [< $list:1lpv$ > $list:1s$] | variant
12.4.4 modules...
str_item
Structure items, i.e. phrases in a ”.ml” file or "struct”s elements.
Node <:str_item< ... >> Comment
StCls loc lcd class $list:1lcd$ class declaration
StClt loc lcdt class type $list:1lctd$ class type declaration
StDcl loc 1lstri declare $list:1lstri$ end declare
StDir loc s None # s directive
StDir loc s (Some e) # s e directive
StDir loc s oe # s $opt:oe$ directive (general)
StExc loc s 1t [] exception s of $list:1t$ exception
StExc loc s 1t 1s exception s of $list:1t$ = $1list:1s$ | exception
StExp loc e $exp:e$ expression

84

loc
loc
loc

StExt
StInc
StMod
StMty
StOpn
StTyp
StUse
StVal

loc
loc
loc
loc
loc

st ls

me

b lsme

s mt
1s
1td

s lstrib
b lpe

external s : t = $list:1s$
include me
module $flag:b$ $list:lsme$
module type s = mt
open $list:1s$
type $list:1td$
...internal use...
value $flag:b$ $list:1pe$

external
include
module
module type
open

type declaration
(1)

value

(1) Node internally used to specify a different file name applying to the whole subtree. This is generated
by the directive "use” and used when converting to the OCaml syntax tree which needs the file name in its

location type.

sig_item

Signature items, i.e. phrases in a ”.mli” file or ”sig”s elements.
) 1%

Node <:sig item< ... >> Comment
SgCls loc lcd class $list:1lcd$ class
SgClt loc lct class type $list:1lct$ class type
SgDcl loc lsigi declare $list:1sigi$ end declare
SgDir loc s None # s directive
SgDhir loc s (Some e) # $s3$ $es directive
SgDir loc s oe # s $opt:oe$ directive (general)
SgExc loc s [] exception s exception
SgExc loc s 1t exception s of $list:1t$ exception
SgExt loc s t 1s external s : t = $list:1s$ | external
SgInc loc me include me include
SgMod loc b lsmt module $flag:b$ $list:1lsmt$ module
SgMty loc s mt module type s = mt module type
SgOpn loc 1s open $list:1s$ open
SgTyp loc 1td type $list:1td$ type declaration
SgUse loc s lstrib ...internal use... (1)
SgVal loc s t value s : t value

(1) Same remark as for ”str_item” above.

module_expr
Node <:module_expr< ... >> Comment
MeAcc loc mel me2 mel . 3Pme2$ dot
MeApp loc mel me2 mel $me2$ application
MeFun loc s mt me | functor (s : mt) -> me | functor
MeStr loc lstri struct $list:1lstri$ end struct
MeTyc loc me mt (me : mt) module type constraint
MeUid loc s $uid:s$ uppercase identifier

85

module_type

Node <:module_type< ... >> Comment

MtAcc loc mtl mt2 $mt1$. $mt2$ dot

MtApp loc mtl mt2 $mt1$ $mt2$ application

MtFun loc s mtl mt2 | functor (s : $mti1$) -> $mt2$ | functor

MtLid loc s $1id:s$ lowercase identifier

MtQuo loc s > s abstract

MtSig loc lsigi sig $list:1sigi$ end signature

MtUid loc s $uid:s$ uppercase identifier

MtWit loc mt lwc mt with $list:1lwc$ with construction
12.4.5 classes...

class_expr

Node <:class_expr< ... >> Comment

CeApp loc ce e ce e application

CeCon loc 1s 1t $list:1s$ [$list:1t$] constructor

CeFun loc p ce fun p -> ce function

Celet loc b lpe ce let $flag:b$ $list:1lpe$ in ce | let binding

CeStr loc po lcstri | object $opt:op$ $list:1lcstri$ end | object

CeTyc loc ce ct (ce @ $ctd) class type constraint

class_type

Node <:class_type< ... >> Comment
CtCon loc 1s 1t $1list:1s$ [$list:1t$] constructor
CtFun loc t ct [t 1 —> ct arrow
CtSig loc pt None lcsigi_item object $list:1lcsigi$ end object
CtSig loc pt (Some t) lcsigi_item object (t) $list:lcsigi$ end object
CtSig loc pt ot lcsigi_item object $opt:ot$ $list:lcsigi$ end | object (general)

class_str_item

Node <:class_str_item< ... >> | Comment

CrCtr loc t1 t2 type $t1$ = $t2$ type constraint
CrDcl loc lcstri declare $list:1lcstri$ end declaration list
CrInh loc ce None inherit ce inheritance

CrInh loc ce (Some s) inherit ce as s inheritance

CrInh loc ce os inherit ce $opt:s$ inheritance (general)

86

CrIni loc e initializer e initialization
CrMth loc s False e None method s = e method
CrMth loc s False e (Some t) method s : t = e method
CrMth loc s True e None method private s = e method
CrMth loc s True e (Some t) method private s : t = e method
CrMth loc s b e ot method $flag:b$ s $opt:ot$ = e | method (general)
CrVal loc s False e value s = e value
CrVal loc s True e value mutable s = e value
CrVal loc s b e value $flag:b$ s = e value (general)
CrVir loc s False t method virtual s : t virtual method
CrVir loc s True t method virtual private s : t | virtual method
CrVir loc s b t method virtual $flag:b$ s : t | virtual method (general)
class_sig_item

Node <:class._sig-item< ... >> | Comment

CgCtr loc tl t2 type $t1$ = $t2$ type constraint

CgDcl loc lcsigi declare $list:lcsigi$ end declare

CgInh loc ct inherit ct inheritance

CgMth loc s False t method s : t method

CgMth loc s True t method private s : t method

CgMth loc s b t method $flag:b$ s : t method (general)

CgVal loc s False t value s : t value

CgVal loc s True t value mutable s : t value

CgVal loc s b t value $flag:b$ s : t value (general)

CgVir loc s False t method virtual s : t method virtual

CgVir loc s True t method virtual private s : t | method virtual

CgVir loc s b t method virtual $flag:b$ s : t | method virtual (general)
12.4.6 other
with_constr
”With” possibly following a module type.

Node <:with_const< ... >> Comment

WcTyp loc s 1tv False t type s $list:1tv$ = t with type

WcTyp loc s 1tv True t type s $list:1tv$ = private t | with type

WcTyp loc s 1tv b t type s $list:1tv$ = $flag:b$ t | with type (general)

WcMod loc 1s me module $list:1s$ = Pme$ with module

poly_variant

Polymorphic variants.

87

Node <:polyvariant< ... >> Comment
PvTag s False [] ¢ i constructor
PvTag s True 1t ¢ i of & $list:1t$ constructor

PvTag s b 1t
PvInh t

¢ i of $flag:b$ $list:1t$
t

constructor (general)
type

88

Chapter 13

Syntax tree - strict mode

This chapter presents the Camlpb syntax tree when Camlpb is installed in strict mode.

13.1 Introduction

This syntax tree is defined in the module "MLast” provided by Camlp5. Each node corresponds to a syntactic
entity of the corresponding type.

For example, the syntax tree of the statement ”if” can be written:
MLast.ExIfe loc el e2 e3

where ”1oc” is the location in the source, and "el1”, ”e2” and ”e3” are respectively the expression after the
7if”, the one after the "then” and the one after the "else”.

If a program needs to manipulate syntax trees, it can use the nodes defined in the module "MLast”. It
supposes to know how the concrete syntax is transformed in to this abstract syntax.

However, a simpler solution is to use one of the quotation kits ”"qMLast.cmo” or "q-ast.cmo”. Both propose
quotations which represent the abstract syntax (the nodes of the module "MLast”) into concrete syntax with
antiquotations to bind variables inside. The example above can be written:

<:expr< if el then $e2$ else $e3$ >>

This representation is very interesting when one wants to manipulate complicated syntax trees. Here is an
example taken from the Camlpb sources themselves:

<:expr<
match try Some f with [Stream.Failure -> None] with
[Some p -> e
| _ -> raise (Stream.Error $e2$)]

>>

This example was in a position of a pattern. In abstract syntax, it should have been written:

MLast.ExMat _
(MLast.ExTry _ (MLast.ExApp _ (MLast.ExUid _ (Ploc.VaVal "Some")) f)
(Ploc.VaVal

[(MLast .PaAcc (MLast.PaUid _ (Ploc.VaVal "Stream"))

89

(MLast.PaUid _ (Ploc.VaVal "Failure")),
Ploc.VaVal None, MLast.ExUid _ (Ploc.VaVal "None"))]1))
(Ploc.VaVal
[(MLast.PaApp _ (MLast.PaUid _ (Ploc.VaVal "Some")) p,
Ploc.VaVal None, e);
(MLast.PaAny _, Ploc.VaVal None,
MLast.ExApp _ (MLast.ExLid _ (Ploc.VaVal "raise"))
(MLast.ExApp _
(MLast.ExAcc _ (MLast.ExUid _ (Ploc.VaVal "Stream"))
(MLast.ExUid _ (Ploc.VaVal "Error")))
e2))])

Which is less readable and much more complicated to build and update.

Instead of thinking of ”a syntax tree”, the programmer has to think of ”a piece of program”.

13.2 Location

In all syntax tree nodes, the first parameter is the source location of the node.

13.2.1 In expressions

When a quotation is in the context of an expression, the location parameter is "1oc” in the node and in all
its possible sub-nodes. Example: if we consider the quotation:

<:sig_item< value foo : int -> bool >>
This quotation, in a context of an expression, is equivalent to:

MLast.SgVal loc (Ploc.VaVal "foo")
(MLast.TyArr loc (MLast.TyLid loc (Ploc.VaVal "int"))
(MLast.TyLid loc (Ploc.VaVal "bool")));

The name ”"1oc” is predefined. However, it is possible to change it, using the argument ”-1oc” of the Camlpb

shell commands.

Consequently, if there is no variable ”1oc” defined in the context of the quotation, or if it is not of the good
type, a semantic error occur in the OCaml compiler (”Unbound value loc”).

Note that in the extensible grammars, the variable ”1oc” is bound, in all semantic actions, to the location
of the rule.

If the created node has no location, the programmer can define a variable named ”1oc” equal to "Ploc . dummy”.

13.2.2 In patterns

When a quotation is in the context of a pattern, the location parameter of all nodes and possible sub-nodes
is set to the wildcard (”_”). The same example above:

<:sig_item< value foo : int -> bool >>
is equivalent, in a pattern, to:

MLast.SgVal _ (Ploc.VaVal "foo")
(MLast.TyArr _ (MLast.TyLid _ (Ploc.VaVal "int"))
(MLast.TyLid _ (Ploc.VaVal "bool")))

90

13.3 Antiquotations

The expressions or patterns between dollar ($) characters are called antiquotations. In opposition to quo-
tations which has its own syntax rules, the antiquotation is an area in the syntax of the enclosing context
(expression or pattern). See the chapter about quotations.

If a quotation is in the context of an expression, the antiquotation must be an expression. It could be any
expression, including function calls. Examples:

value f e el = <:expr< [e :: $loop False el$] >>;
value patt_list p pl = <:patt< ($list:[p::pll$) >>;

If a quotation is in the context of an pattern, the antiquotation is a pattern. Any pattern is possible,
including the wildcard character (”_”). Examples:

fun [<:expr< $lid:op$ $_
match p with [<:patt< $_

>> > op]

$ 3.8
$ | $_$ >> -> Some p]

13.4 Two kinds of antiquotations

13.4.1 Preliminary remark

In strict mode, we remark that most constructors defined of the module "MLast” are of type "Ploc.vala”.
This type is defined like this:

type vala ’a =
[VaAnt of string
| VaVal of ’a]

)

The type argument is the real type of the node. For example, a value of type "bool” in transitional mode
is frequently represented by a value of type "Ploc.vala bool”.

The first case of the type "vala” corresponds to an antiquotation in the concrete syntax. The second case
to a normal syntax situation, without antiquotation.

Example: in the ”let” statement, the fact that it is "rec” or not is represented by a boolean. This boolean
is, in the syntax tree, encapsulated with the type "Ploc.vala”. The syntax tree of the two following lines:

let x =y in z
let rec x =y in z

start with, respectively:

MLast.ExLet loc (Ploc.VaVal False)
(* and so on *)

and:

MLast.ExLet loc (Ploc.VaVal True)
(* and so on *)

The case "Ploc.VaAnt s” is internally used by the parsers and by the quotation kit ”q_ast.cmo” to record
antiquotation strings representing the expression or the patterns having this value. For example, in this
”let” statement:

91

MLast.ExLet loc (Ploc.VaAnt s)
(* and so on *)

The contents of this ”s” is internally handled. For information, it contains the antiquotation string (kind
included) together with representation of the location of the antiquotation in the quotation. See the next
section.

13.4.2 Antiquoting

To antiquotate the fact that the ”let” is with or without rec (a flag of type boolean), there are two ways.

direct antiquoting

The first way, hidding the type "Ploc.val”, can be written with the antiquotation kind ”flag”:
<:expr< let $flag:rf$ x = y in z >>
This corresponds to the syntax tree:

MLast.ExLet loc (Ploc.VaVal rf)
(* and so on *)

And, therefore, the type of the variable "rf” is simply "bool”.

general antiquoting

” N

The second way, introducing variables of type "Ploc.vala” can be written a kind prefixed by ”_”, namely
here 7 _flag”:

<:expr< let $_flag:rf$ x = y in z >>
In that case, it corresponds to the syntax tree:

MLast.ExLet loc rf
(* and so on *)

And, therefore, the type of the variable "rf” is now "Ploc.vala bool”.

13.4.3 Remarks

The first form of antiquotation ensures the compatibility with previous versions of Camlp5. The syntax tree
is not the same, but the bound variables keep the same type.

All antiquotations kinds have these two forms: one with some name (e.g. ”flag”) and one with the same

bR

name prefixed by 7a” (e.g. "aflag”).

13.5 Nodes and Quotations

This section describes all nodes defined in the module "MLast” of Camlp5 and how to write them with
quotations. Notice that, inside quotations, one is not restricted to these elementary cases, but any complex
value can be used, resulting on possibly complex combined nodes.

The quotation forms are described here in revised syntax (like the rest of this document). In reality, it
depends on which quotation kit is loaded:

92

e If "q MLast.cmo” is used, the revised syntax is mandatory: the quotations must be in that syntax
without any extension.

e If g ast.cmo” is used, the quotation syntax must be in the current user syntax with all extensions
added to compile the file.

Last remark: in the following tables, the variables names give information of their types. The details can be
found in the distributed source file "mLast.m1i”.

e e, el e2, e3: expr

e p, pl, p2, p3: patt

e t tl, t2, e3: ctyp

e s: string

e b: bool

e me, mel, me2: module_expr
e mt, mtl, mt2: module_type
e le: list expr

e 1p: list patt

e 1t: list ctyp

e 1s: list string

e 1se: list (string * expr)

e 1pe: list (patt * expr)

e 1pp: list (patt * patt)

e lpoee: list (patt * option expr * expr)
e op: option patt

e lcstri: list class_str_item

e lcsigi: list class_sig_item

13.5.1 expr

Expressions of the language.

- access

<:expr< el . $e23% >>
MLast.ExAcc loc el e2

- antiquotation (1)

<:expr< $anti:e$ >>
MLast.ExAnt loc e

93

application
<:expr< el $e2% >>
MLast.ExApp loc el e2
array access
<:expr< $e1$.($e2$) >>
MLast.ExAre loc el e2
array

<:expr< [| $list:le$ |1 >>
MLast.ExArr loc (Ploc.VaVal le)

<:expr< [| $_list:le$ [] >>
MLast.ExArr loc le
assert
<:expr< assert e >>
MLast.ExAsr loc e
assignment
<:expr< el := $e23% >>
MLast.ExAss loc el e2
big array access

<:expr< e .{ $list:le$ } >>
MLast.ExBae loc e (Ploc.VaVal le)

<:expr< e .{ $_list:le$ } >>
MLast.ExBae loc e le
character constant

<:expr< $chr:s$ >>
MLast.ExChr loc (Ploc.VaVal s)

<:expr< $_chr:s$ >>
MLast.ExChr loc s
coercion with type constraint

<:expr< (e : $t1$:> $t28) >>
MLast.ExCoe loc e (Some t1) t2

coercion without type constraint
<:expr< (e :> $t2%) >>
MLast.ExCoe loc e None t2

float constant

<:expr< $flo:s$ >>
MLast.ExFlo loc (Ploc.VaVal s)

<:expr< $_flo:s$ >>
MLast.ExFlo loc s

94

- for

<:expr< for $1lid:s$ = el $to:b$ $e2$ do { $list:1le$ } >>
MLast.ExFor loc (Ploc.VaVal s) el e2 (Ploc.VaVal b) (Ploc.VaVal le)

<:expr< for $.1id:s$ = $e1$ $ to:b$ $e2$ do { $_.list:1le$ } >>
MLast.ExFor loc s el e2 b le
- function

<:expr< fun [$list:1lpwe$] >>
MLast.ExFun loc (Ploc.VaVal lpwe)

<:expr< fun [$ list:lpwe$] >>
MLast.ExFun loc lpwe

- if
<:expr< if el then $e2$ else $e3$ >>
MLast.ExIfe loc el e2 e3

- integer constant

<:expr< $int:s$ >>
MLast.ExInt loc (Ploc.VaVal s) ""

<:expr< $_int:s$ >>
MLast.ExInt loc s ""

- integer 32 bits

<:expr< $int32:s$ >>
MLast.ExInt loc (Ploc.VaVal s) "1"

<:expr< $.int32:s$ >>
MLast.ExInt loc s "1"

- integer 64 bits

<:expr< $int64:s$ >>
MLast.ExInt loc (Ploc.VaVal s) "L"

<:expr< $_int64:s$ >>
MLast.ExInt loc s "L"
- native integer

<:expr< $nativeint:s$ >>
MLast.ExInt loc (Ploc.VaVal s) "n"

<:expr< $nativeint:s$ >>
MLast.ExInt loc s "n"

- label

<:expr< “s >>
MLast.ExLab loc (Ploc.VaVal s) None

95

<:expr< “$_:s$ >>
MLast.ExLab loc s None

<:expr< “s: e >>
MLast.ExLab loc (Ploc.VaVal s) (Some e)

<:expr< “$_:s$: Se >>
MLast.ExLab loc s (Some e)
- lazy
<:expr< lazy e >>
MLast.ExLaz loc e
- let binding

<:expr< let $flag:b$ $list:1pe$ in e >>
MLast.ExLet loc (Ploc.VaVal b) (Ploc.VaVal lpe) e

<:expr< let $_flag:b$ $_list:1pe$ in e >>
MLast.ExLet loc b 1lpe e

- lowercase identifier

<:expr< $lid:s$ >>
MLast.ExLid loc (Ploc.VaVal s)

<:expr< $.1lid:s$ >>
MLast.ExLid loc s

let module

<:expr< let module $uid:s$ = me in e >>
MLast.ExLmd loc (Ploc.VaVal s) me e

<:expr< let module $_uid:s$ = me in e >>
MLast.ExLmd loc s me e
- match

<:expr< match e with [$list:1lpwe$] >>
MLast.ExMat loc e (Ploc.VaVal lpwe)

<:expr< match e with [$_list:1lpwe$ 1 >>
MLast.ExMat loc e lpwe
- new

<:expr< new $list:1s$ >>
MLast.ExNew loc (Ploc.VaVal 1s)

<:expr< new $_list:ls$ >>
MLast.ExNew loc 1ls

object expression

<:expr< object $opt:op$ $list:lcstri$ end >>
MLast.Ex0Obj loc (Ploc.VaVal op) (Ploc.VaVal lcstri)

96

<:expr< object $_opt:op$ $_list:lcstri$ end >>
MLast.ExObj loc op lcstri

- option label
<:expr< 7s >>

MLast.Ex01b loc (Ploc.VaVal s) None

<:expr< 7$_:s$ >>
MLast.Ex0lb loc s None

<:expr< 7s: Se >>
MLast.Ex01lb loc (Ploc.VaVal s) (Some e)

<:expr< ?7$_:s$: $ed >>

MLast.Ex01b loc s (Some e)
- override

<:expr< {< $list:lse$ >} >>

MLast.ExOvr loc (Ploc.VaVal 1lse)

<:expr< {< $_list:1lse$ >} >>
MLast.ExOvr loc lse
- record
<:expr< { $list:1lpe$ } >>
MLast.ExRec loc (Ploc.VaVal 1lpe) None

<:expr< { $_list:lpe$ } >>
MLast.ExRec loc lpe None

<:expr< { (e) with $list:lpe$ } >>
MLast.ExRec loc (Ploc.VaVal 1lpe) (Some e)

<:expr< { (e) with $_list:1pe$ } >>
MLast.ExRec loc lpe (Some e)

- sequence
<:expr< do { $list:le$ } >>
MLast.ExSeq loc (Ploc.VaVal le)

<:expr< do { $_list:le$ } >>
MLast.ExSeq loc 1le

- send

<:expr< e # $1lid:s$ >>
MLast.ExSnd loc e (Ploc.VaVal s)

<:expr< e # $_1id:s$ >>
MLast.ExSnd loc e s

97

- string element
<:expr< $e1$.[$e2$ 1 >>
MLast.ExSte loc el e2

- string
<:expr< $str:s$ >>

MLast.ExStr loc (Ploc.VaVal s)

<:expr< $_str:s$ >>
MLast.ExStr loc s
- try
<:expr< try e with [$list:1lpwe$] >>
MLast.ExTry loc e (Ploc.VaVal lpwe)

<:expr< try e with [$ list:lpwe$] >>
MLast.ExTry loc e lpwe
- t-uple
<:expr< ($list:1le$) >>
MLast.ExTup loc (Ploc.VaVal le)

<:expr< ($_list:1le$) >>
MLast.ExTup loc le

- type constraint
<:expr< (e : t) >>
MLast.ExTyc loc e t

- uppercase identifier
<:expr< $uid:s$ >>

MLast.ExUid loc (Ploc.VaVal s)

<:expr< $_uid:s$ >>

MLast.ExUid loc s
- variant

<:expr< ‘s >>

MLast.ExVrn loc (Ploc.VaVal s)

<:expr< ‘$_:s$ >>
MLast.ExVrn loc s

- while

<:expr< while e do { $list:le$ } >>
MLast.ExWhi loc e (Ploc.VaVal le)

<:expr< while e do { $_list:le$ } >>
MLast.ExWhi loc e le

98

- extra node (2)

no representation ...
MLast.ExXtr loc s oe

(1) Node used in the quotation expanders to tells at conversion to OCaml compiler syntax tree time, that
all locations of the sub-tree is correcty located in the quotation. By default, in quotations, the locations of
all generated nodes are the location of the whole quotation. This node allows to make an exception to this
rule, since we know that the antiquotation belongs to the universe of the enclosing program. See the chapter
about quotations and, in particular, its section about antiquotations.

(2) Extra node internally used by the quotation kit ”q_ast.cmo” to build antiquotations of expressions.

13.5.2 patt

Patterns of the language.

- access
<:patt< $p1$. $p2% >>
MLast.PaAcc loc pl p2

- alias

<:patt< ($p1$ as $p2%) >>
MLast.PaAli loc pl p2

antiquotation (1)
<:patt< $anti:p$ >>
MLast.PaAnt loc p
- any
<:patt< _ >>
MLast.PaAny loc
- application
<:patt< $p1$ $p2% >>
MLast.PaApp loc pl p2
- array
<:patt< [| $list:1p$] >>
MLast.PaArr loc (Ploc.VaVal 1p)

<:patt< [| $_1list:1p$ [] >>
MLast.PaArr loc 1lp

character

<:patt< $chr:s$ >>
MLast.PaChr loc (Ploc.VaVal s)

<:patt< $_chr:s$ >>
MLast.PaChr loc s

99

integer constant

<:patt< $int:s$ >>
MLast.PaInt loc (Ploc.VaVal

<:patt< $_int:s$ >>
MLast.PaInt loc s ""

integer 32 bits

<:patt< $int32:s$ >>
MLast.PaInt loc (Ploc.VaVal

<:patt< $.int32:s$ >>
MLast.PaInt loc s "1"

integer 64 bits

<:patt< $int64:s$ >>
MLast.PaInt loc (Ploc.VaVal

<:patt< $_int:s$ >>
MLast.PaInt loc s "L"

native integer

<:patt< $nativeint:s$ >>
MLast.PaInt loc (Ploc.VaVal

<:patt< $nativeint:s$ >>
MLast.PaInt loc s "n"

float

<:patt< $flo:s$ >>
MLast.PaFlo loc (Ploc.VaVal

<:patt< $_flo:s$ >>
MLast.PaFlo loc s

- label

<:patt< “s >>
MLast.PalLab loc (Ploc.VaVal

<:patt< “$_:s$ >>
MLast.PalLab loc s None

<:patt< “s: p >>
MLast.PalLab loc (Ploc.VaVal

<:patt< “$_s$: p >>
MLast.Palab loc s (Some p)

- lowercase identifier

s)

s)

s)

s)

s)

s)

s)

Illll

IILII

None

(Some p)

100

<:patt< $lid:s$ >>
MLast.PalLid loc (Ploc.VaVal s)

<:patt< $_1lid:s$ >>
MLast.Palid loc s
- option label

<:patt< ?7s >>
MLast.Pa0Olb loc (Ploc.VaVal s) None

<:patt< 7$_:s$ >>
MLast.PaOlb loc s None

<:patt< 7s: (p) >
MLast.Pa0lb loc (Ploc.VaVal s) (Some (p, Ploc.VaVal None))

<:patt< 7$_:s$: ($p%) >>
MLast.Pa0lb loc s (Some (p, Ploc.VaVal None))

<:patt< ?8s$: ($p$ = e) >>
MLast.Pa0lb loc (Ploc.VaVal s) (Some (p, Ploc.VaVal (Some e)))

<:patt< ?$_:s$: (p = e) >>
MLast.PaOlb loc s (Some (p, Ploc.VaVal (Some e)))

<:patt< pi | $p2% >>
MLast.PaOrp loc pl p2

- range
<:patt< $p1$.. $p2$ >>
MLast.PaRng loc pl p2

- record

<:patt< { $list:1pp$ } >>
MLast.PaRec loc (Ploc.VaVal lpp)

<:patt< { $_list:1pp$ } >>
MLast.PaRec loc lpp

string

<:patt< $str:s$ >>
MLast.PaStr loc (Ploc.VaVal s)

<:patt< $_str:s$ >>
MLast.PaStr loc s

- t-uple

<:patt< ($list:1p$) >>
MLast.PaTup loc (Ploc.VaVal 1p)

<:patt< ($_list:1p$) >>
MLast.PaTup loc 1lp

101

- type constraint

<:patt< (p : t) >>
MLast.PaTyc loc p t

type pattern

<:patt< # $list:1s$ >>
MLast.PaTyp loc (Ploc.VaVal 1s)

<:patt< # $_list:1s$ >>
MLast.PaTyp loc 1s

- uppercase identifier

<:patt< $uid:s$ >>
MLast.PaUid loc (Ploc.VaVal s)

<:patt< $_uid:s$ >>
MLast.PaUid loc s

variant

<:patt< ¢ s >>
MLast.PaVrn loc (Ploc.VaVal s)

<:patt< ¢ $_:s$ >>
MLast.PaVrn loc s

extra node (2)

no representation ...
MLast.PaXtr loc s op

(1) Node used to specify an antiquotation area, like for the equivalent node in expressions. See above.
(2) Extra node internally used by the quotation kit ”q_ast.cmo” to build antiquotations of patterns.

13.5.3 ctyp

Type expressions of the language.

access

<:ctyp< $t1$. $t2$ >>
MLast.TyAcc loc t1 t2

- alias
<:ctyp< $t1$ as $t2¢$ >>
MLast.TyAli loc t1 t2

- any

<:ctyp< - >>
MLast.TyAny loc

application

<:ctyp< $ti1$ $t2$ >>
MLast.TyApp loc t1 t2

102

- arrow
<:ctyp< $t1$ -> $t2¢ >>
MLast.TyArr loc t1 t2

- class

<:ctyp< # $list:1s$ >>
MLast.TyCls loc (Ploc.VaVal 1s)

<:ctyp< # $_1list:1s$ >>
MLast.TyCls loc 1s
- label

<:ctyp< “s: t >>
MLast.TyLab loc (Ploc.VaVal s) t

<:ctyp< “$-:s$: t >>
MLast.TyLab loc s t
- lowercase identifier

<:ctyp< $lid:s$ >>
MLast.TyLid loc (Ploc.VaVal s)

<:ctyp< $.1lid:s$ >>
MLast.TyLid loc s

- manifest
<:ctyp< $t1$ == $t2¢% >>
MLast.TyMan loc t1 t2

- object

<:ctyp< < $list:1lst$ > >>
MLast.Ty0Obj loc (Ploc.VaVal 1st) (Ploc.VaVal False)

<:ctyp< < $_list:1lst$ > >>
MLast.TyObj loc 1lst (Ploc.VaVal False)

<:ctyp< < $list:1lst$.. > >>
MLast.Ty0Obj loc (Ploc.VaVal 1st) (Ploc.VaVal True)

<:ctyp< < $.list:1lst$.. > >>
MLast.TyObj loc 1lst (Ploc.VaVal True)

<:ctyp< < $list:1lst$ $flag:b$ > >>
MLast.TyObj loc (Ploc.VaVal 1st) (Ploc.VaVal b)

<:ctyp< < $._list:1lst$ $_flag:b$ > >>
MLast.Ty0Obj loc 1lst b

- option label

<:ctyp< 7s: t >>
MLast.Ty0lb loc (Ploc.VaVal s) t

103

<:ctyp< 7$_:s$: t >>
MLast.Ty0lb loc s t

polymorph
<:ctyp< ! $list:1s$. t >>
MLast.TyPol loc (Ploc.VaVal 1s) t

<:ctyp< ! $_list:1s$. t >>
MLast.TyPol loc 1s t

- variable
<:ctyp< ’ s >>
MLast.TyQuo loc (Ploc.VaVal s)

<:ctyp< ’ $_:s$% >>
MLast.TyQuo loc s

record
<:ctyp< { $list:1lsbt$ } >>
MLast.TyRec loc (Ploc.VaVal 1lsbt)

<:ctyp< { $.list:11lsbt$ } >>
MLast.TyRec loc 1llsbt

- sum

<:ctyp< [$1list:11s1t$ 1 >>
MLast.TySum loc (Ploc.VaVal 11slt)

<:ctyp< [$.1ist:11s1t$] >>
MLast.TySum loc 1llslt

t-uple
<:ctyp< ($list:1t$) >>
MLast.TyTup loc (Ploc.VaVal 1t)

<:ctyp< ($_list:1t$) >>
MLast.TyTup loc 1t

uppercase identifier

<:ctyp< $uid:s$ >>
MLast.TyUid loc (Ploc.VaVal s)

<:ctyp< $_uid:s$ >>
MLast.TyUid loc s

- variant

<:ctyp< [= $list:1pv$ 1 >>
MLast.TyVrn loc (Ploc.VaVal 1lpv) None

<:ctyp< [= $_list:1pv$ 1 >>

104

MLast.TyVrn loc 1lpv None

<:ctyp< [> $list:1pv$ 1 >>
MLast.TyVrn loc (Ploc.VaVal 1lpv) (Some None)

<:ctyp< [> $_list:1pv$ 1 >>
MLast.TyVrn loc lpv (Some None)

<:ctyp< [< $list:1pv$ 1 >>
MLast.TyVrn loc (Ploc.VaVal 1pv) (Some(Some (Ploc.VaVal [])))

<:ctyp< [< $_list:1pv$ 1 >>
MLast.TyVrn loc lpv (Some (Some (Ploc.VaVal [])))

<:ctyp< [< $list:1pv$ > $list:1s$] >>
MLast.TyVrn loc (Ploc.VaVal 1lpv) (Some (Some (Ploc.VaVal 1s)))

<:ctyp< [< $_list:1pv$ > $_list:1s$] >>
MLast.TyVrn loc lpv (Some (Some 1s))

- extra node (1)

no representation ...
MLast.TyXtr loc s ot

(1) Extra node internally used by the quotation kit ”q-ast.cmo” to build antiquotations of types.

13.5.4 modules...
str_item
Structure items, i.e. phrases in a ”.ml” file or ”struct”s elements.

- class declaration

<:str_item< class $list:1lcd$ >>
MLast.StCls loc (Ploc.VaVal lcd)

<:str_item< class $_list:1lcd$ >>
MLast.StCls loc lcd
- class type declaration

<:str_item< class type $list:lctd$ >>
MLast.StClt loc (Ploc.VaVal lctd)

<:str_item< class type $_list:1lctd$ >>
MLast.StClt loc lctd

- declare

<:str_item< declare $list:1stri$ end >>
MLast.StDcl loc (Ploc.VaVal lstri)

<:str_item< declare $_list:1lstri$ end >>
MLast.StDcl loc 1lstri

105

- directive

<:str_item<
MLast.StDir

<:str_item<
MLast.StDir

<:str_item<
MLast.StDir

<:str_item<
MLast.StDir

<:str_item<
MLast.StDir

<:str_item<
MLast.StDir

- exception

<:str_item<
MLast.StExc

<:str_item<
MLast.StExc

<:str_item<
MLast.StExc

<:str_item<
MLast.StExc

expression

<:str_item<
MLast.StExp

external

<:str_item<
MLast.StExt

<:str_item<
MLast.StExt

include

<:str_item<
MLast.StInc

module

<:str_item<
MLast.StMod

s >>
loc (Ploc.VaVal s) (Ploc.VaVal None)

$_:s% >>
loc s (Ploc.VaVal None)

s e >>
loc (Ploc.VaVal s) (Ploc.VaVal (Some e))

$_:5% e >>
loc s (Ploc.VaVal (Some e))

s Sopt:oe$ >>
loc (Ploc.VaVal s) (Ploc.VaVal oe)

$_:s$ $_opt:oe$ >>
loc s oe
exception s of $list:1t$ >>

loc (Ploc.VaVal s) (Ploc.VaVal 1t) (Ploc.VaVal [])

exception $_:s$ of $_list:1t$ >>
loc s 1t (Ploc.VaVval [])

exception s of $list:1t$ = $list:1s$ >>
loc (Ploc.VaVal s) (Ploc.VaVal 1t) (Ploc.VaVal 1ls)

exception $_:s$ of $ list:1t$ = $_list:1s$ >>

loc s 1t 1s

$exp:e$ >>
loc e

external s : t = $list:1s$ >>
loc (Ploc.VaVal s) t (Ploc.VaVal 1ls)
external $_:s$: t = $_list:1s$ >>
loc s t 1s

include me >>
loc me

module $flag:b$ $list:1lsme$ >>
loc (Ploc.VaVal b) (Ploc.VaVal lsme)

106

<:str_item< module $_flag:b$ $_list:lsme$ >>
MLast.StMod loc b lsme
- module type

<:str_item< module type s = mt >>
MLast.StMty loc (Ploc.VaVal s) mt

<:str_item< module type $_:s$ = mt >>
MLast.StMty loc s mt
- open

<:str_item< open $list:1s$ >>
MLast.StOpn loc (Ploc.VaVal 1s)

<:str_item< open $_list:1s$ >>
MLast.StOpn loc 1s
- type declaration

<:str_item< type $list:1td$ >>
MLast.StTyp loc (Ploc.VaVal 1td)

<:str_item< type $_list:1td$ >>
MLast.StTyp loc 1td

- use (1)
<:str_item< ...intermal use... >>
MLast.StUse loc s 1lstrib

- value

<:str_item< value $flag:b$ $list:1lpe$ >>
MLast.StVal loc (Ploc.VaVal b) (Ploc.VaVal lpe)

<:str_item< value $ flag:b$ $_list:1lpe$ >>
MLast.StVal loc b 1lpe
- extra node (2)
no representation ...

MLast.StXtr loc s ot

(1) Node internally used to specify a different file name applying to the whole subtree. This is generated
by the directive "use” and used when converting to the OCaml syntax tree which needs the file name in its
location type.

(2) Extra node internally used by the quotation kit ”q_ast.cmo” to build antiquotations of structure items.

sig_item

Signature items, i.e. phrases in a ”.mli” file or ”sig”s elements.

- class

<:sig item< class $list:1lcd$ >>
MLast.SgCls loc (Ploc.VaVal lcd)

<:sig item< class $_list:lcd$ >>
MLast.SgCls loc lcd

107

- class type

<:sig item< class type $list:1lct$ >>
MLast.SgClt loc (Ploc.VaVal lct)

<:sig item< class type $_list:1lct$ >>
MLast.SgClt loc lct
- declare

<:sig item< declare $list:1lsigi$ end >>
MLast.SgDcl loc (Ploc.VaVal 1lsigi)

<:sig item< declare $_list:1sigi$ end >>
MLast.SgDcl loc 1lsigi
- directive

<:sig item< # s >>
MLast.SgDir loc (Ploc.VaVal s) (Ploc.VaVal None)

<:sig item< # $_:s$ >>
MLast.SgDir loc s (Ploc.VaVal None)

<:sig_item< # s e >>
MLast.SgDir loc (Ploc.VaVal s) (Ploc.VaVal (Some e))

<:sig item< # $_:s$ e >>
MLast.SgDir loc s (Ploc.VaVal (Some e))

<:sig_item< # s $opt:oe$ >>
MLast.SgDir loc (Ploc.VaVal s) (Ploc.VaVal oe)

<:sig item< # $_:s$ $_opt:oe$ >>
MLast.SgDir loc s oe
- exception

<:sig item< exception s >>
MLast.SgExc loc (Ploc.VaVal s) (Ploc.VaVal [])

<:sig item< exception $_:s$ >>
MLast.SgExc loc s (Ploc.VaVal [])

<:sig item< exception s of $list:1t$ >>
MLast.SgExc loc (Ploc.VaVal s) (Ploc.VaVal 1t)

<:sig item< exception $_:s$ of $_list:1t$ >>
MLast.SgExc loc s 1t

- external

<:sig item< external s : t = $list:1s$ >>
MLast.SgExt loc (Ploc.VaVal s) t (Ploc.VaVal 1s)

<:sig item< external $_:s$: t = $_list:1s$ >>
MLast.SgExt loc s t 1s

108

- include
<:sig item< include me >>
MLast.SgInc loc me

- module

<:sig item< module $flag:b$ $list:1lsmt$ >>
MLast.SgMod loc (Ploc.VaVal b) (Ploc.VaVal lsmt)

<:sig item< module $_flag:b$ $_list:lsmt$ >>
MLast.SgMod loc b lsmt

- module type
<:sig item< module type s = mt >>
MLast.SgMty loc (Ploc.VaVal s) mt

<:sig item< module type $_:s$ = mt >>
MLast.SgMty loc s mt

- open
<:sig item< open $list:1s$ >>

MLast.SgOpn loc (Ploc.VaVal 1s)

<:sig item< open $ list:1s$ >>
MLast.Sg0Opn loc 1s

- type declaration
<:sig item< type $list:1td$ >>
MLast.SgTyp loc (Ploc.VaVal 1td)

<:sig item< type $_list:1td$ >>
MLast.SgTyp loc 1td

- use (1)
<:sig_item< ...internal use... >>
MLast.SgUse loc s lstrib

- value
<:sig item< value s : t >>

MLast.SgVal loc (Ploc.VaVal s) t

<:sig item< value $_:s$: t >>
MLast.SgVal loc s t

extra node (2)

no representation ...
MLast.SgXtr loc s ot

(1) Same remark as for ”str_item” above.
(2) Extra node internally used by the quotation kit ”g-ast.cmo” to build antiquotations of signature items.

109

module_expr

- access

<:module_expr< mel . $me2$ >>
MLast.MeAcc loc mel me2

application

<:module_expr< mel $me2$ >>
MLast .MeApp loc mel me2

functor

<:module_expr< functor (s : mt) -> me >>
MLast.MeFun loc (Ploc.VaVal s) mt me

<:module_expr< functor ($_:s$: 9mt) -> me >>
MLast.MeFun loc s mt me

- struct

<:module_expr< struct $list:1lstri$ end >>
MLast.MeStr loc (Ploc.VaVal 1lstri)

<:module_expr< struct $_list:1lstri$ end >>
MLast.MeStr loc lstri

module type constraint

<:module_expr< (me : mt) >>
MLast.MeTyc loc me mt

- uppercase identifier

<:module_expr< $uid:s$ >>
MLast.MeUid loc (Ploc.VaVal s)

<:module_expr< $_uid:s$ >>
MLast.MeUid loc s
- extra node (1)
no representation ...

MLast.MeXtr loc s ot

(1) Extra node internally used by the quotation kit ”q_ast.cmo” to build antiquotations of module expres-
sions.

module_type

- access
<:module_type< $mt1$. $mt2$ >>
MLast.MtAcc loc mtl mt2

- application

<:module_type< mtl $mt2$ >>
MLast.MtApp loc mtl mt2

110

- functor
<:module_type< functor (s : mtl) -> $mt2$ >>
MLast.MtFun loc (Ploc.VaVal s) mtl mt2

<:module_type< functor ($_:s$: $mt1$) -> $mt2% >>
MLast.MtFun loc s mtl mt2

- lowercase identifier

<:module_type< $lid:s$ >>
MLast.MtLid loc (Ploc.VaVal s)

<:module_type< $.1id:s$ >>
MLast.MtLid loc s

abstract

<:module_type< ’ s >>
MLast.MtQuo loc (Ploc.VaVal s)

<:module_type< ’> $_:s$ >>
MLast.MtQuo loc s

signature
<:module_type< sig $list:1sigi$ end >>
MLast.MtSig loc (Ploc.VaVal 1lsigi)

<:module_type< sig $_list:1sigi$ end >>
MLast.MtSig loc lsigi

uppercase identifier
<:module_type< $uid:s$ >>
MLast.MtUid loc (Ploc.VaVal s)

<:module_type< $_uid:s$ >>
MLast.MtUid loc s

- with construction
<:module_type< mt with $list:lwc$ >>
MLast.MtWit loc mt (Ploc.VaVal lwc)

<:module_type< mt with $_list:lwc$ >>
MLast.MtWit loc mt lwc

extra node (1)

no representation ...
MLast .MtXtr loc s ot

(1) Extra node internally used by the quotation kit ”q-ast.cmo” to build antiquotations of module types.

111

13.5.5 classes...

class_expr
- application
<:class_expr< ce e >>
MLast.CeApp loc ce e
- constructor
<:class_expr< $list:1s$ [$list:1t$ 1 >>
MLast.CeCon loc (Ploc.VaVal 1ls) (Ploc.VaVal 1t)

<:class_expr< $_list:1s$ [$_list:1t$] >>
MLast.CeCon loc 1s 1t

- function
<:class_expr< fun p -> ce >>
MLast.CeFun loc p ce

- let binding
<:class_expr< let $flag:b$ $list:1lpe$ in ce >>
MLast.CeLet loc (Ploc.VaVal b) (Ploc.VaVal lpe) ce

<:class_expr< let $ flag:b$ $_list:1pe$ in ce >>
MLast.CelLet loc b 1lpe ce

- object
<:class_expr< object $opt:op$ $list:lcstri$ end >>

MLast.CeStr loc (Ploc.VaVal op) (Ploc.VaVal lcstri)

<:class_expr< object $_opt:op$ $_list:lcstri$ end >>
MLast.CeStr loc op lcstri
- class type constraint

<:class_expr< (ce : ct) >>
MLast.CeTyc loc ce ct

class_type

- constructor
<:class_type< $list:1s$ [$list:1t$ 1 >>
MLast.CtCon loc (Ploc.VaVal 1ls) (Ploc.VaVal 1t)

<:class_type< $_list:1s$ [$_list:1t$] >>
MLast.CtCon loc 1s 1t

- arrow

<:class_type< [t 1 -> ct >>
MLast.CtFun loc t ct

112

- object

<:class_type< object $list:lcsigi$ end >>
MLast.CtSig loc (Ploc.VaVal None) (Ploc.VaVal lcsigi)

<:class_type< object $_list:lcsigi$ end >>
MLast.CtSig loc (Ploc.VaVal None) lcsigi

<:class_type< object (t) $list:lcsigi$ end >>
MLast.CtSig loc (Ploc.VaVal (Some t)) (Ploc.VaVal lcsigi)

<:class_type< object (t) $_list:lcsigi$ end >>
MLast.CtSig loc (Ploc.VaVal (Some t)) lcsigi

<:class_type< object $opt:ot$ $list:1lcsigi$ end >>
MLast.CtSig loc (Ploc.VaVal ot) (Ploc.VaVal lcsigi)

<:class_type< object $_opt:ot$ $_list:lcsigi$ end >>
MLast.CtSig loc ot lcsigi

class_str_item

- type constraint

<:class_str_item< type $t1$ = $t2% >>
MLast.CrCtr loc t1 t2

- declaration list

<:class_str_item< declare $list:lcstri$ end >>
MLast.CrDcl loc (Ploc.VaVal lcstri)

<:class_str_item< declare $_list:lcstri$ end >>
MLast.CrDcl loc lcstri

inheritance

<:class_str_item< inherit ce >>
MLast.CrInh loc ce (Ploc.VaVal None)

<:class._str_item< inherit ce $_opt:os$ >>
MLast.CrInh loc ce os

initialization

<:class_str_item< initializer e >>
MLast.CrIni loc e
method

<:class_str_item< method s = e >>
MLast.CrMth loc (Ploc.VaVal s) (Ploc.VaVal False) e (Ploc.VaVal None)

<:class_str_item< method $_:s$ = e >>
MLast.CrMth loc s (Ploc.VaVal False) e (Ploc.VaVal None)

<:class_str_item< method s : t = e >>

113

MLast.CrMth loc (Ploc.VaVal s) (Ploc.VaVal False) e (Ploc.VaVal (Some t))

<:class_str_item< method $_:s$: t = e >>
MLast.CrMth loc s (Ploc.VaVal False) e (Ploc.VaVal (Some t))

<:class_str_item< method private s = e >>
MLast.CrMth loc (Ploc.VaVal s) (Ploc.VaVal True) e (Ploc.VaVal None)

<:class_str_item< method private $_:s$ = e >>
MLast.CrMth loc s (Ploc.VaVal True) e (Ploc.VaVal None)

<:class_str_item< method private s : t = e >>
MLast.CrMth loc (Ploc.VaVal s) (Ploc.VaVal True) e (Ploc.VaVal (Some t))

<:class_str_item< method private $_:s$: t = e >>
MLast.CrMth loc s (Ploc.VaVal True) e (Ploc.VaVal (Some t))

<:class_str_item< method $flag:b$ s $opt:ot$ = e >>
MLast.CrMth loc (Ploc.VaVal s) (Ploc.VaVal b) e (Ploc.VaVal ot)
<:class._str_item< method $_flag:b$ $_:s$ $_opt:ot$ = e >>
MLast.CrMth loc s b e ot

- value

<:class_str_item< value s = e >>
MLast.CrVal loc (Ploc.VaVal s) (Ploc.VaVal False) e

<:class_str_item< value $_:s$ = e >>
MLast.CrVal loc s (Ploc.VaVal False) e

<:class_str_item< value mutable s = e >>
MLast.CrVal loc (Ploc.VaVal s) (Ploc.VaVal True) e

<:class_str_item< value mutable $_:s$% = e >>
MLast.CrVal loc s (Ploc.VaVal True) e

<:class_str_item< value $flag:b$ s = e >>
MLast.CrVal loc (Ploc.VaVal s) (Ploc.VaVal b) e

<:class._str_item< value $_flag:b$ $_:s$ = e >>
MLast.CrVal loc s b e

- virtual method

<:class_str_item< method virtual s : t >>
MLast.CrVir loc (Ploc.VaVal s) (Ploc.VaVal False) t

<:class_str_item< method virtual $_:s$% : t >>
MLast.CrVir loc s (Ploc.VaVal False) t

<:class_str_item< method virtual private s : t >>
MLast.CrVir loc (Ploc.VaVal s) (Ploc.VaVal True) t

<:class_str_item< method virtual private $_:s$: t >>

114

MLast.CrVir loc s (Ploc.VaVal True) t

<:class_str_item< method virtual $flag:b$ s : t >>
MLast.CrVir loc (Ploc.VaVal s) (Ploc.VaVal b) t

<:class_str_item< method virtual $_flag:b$ $_:s$: t >>
MLast.CrVir loc s b t

class_sig_item

- type constraint
<:class._sig item< type $t1$ = $t2¢ >>
MLast.CgCtr loc t1 t2

- declare

<:class._sig item< declare $list:lcsigi$ end >>
MLast.CgDcl loc (Ploc.VaVal lcsigi)

<:class_sig item< declare $_list:lcsigi$ end >>
MLast.CgDcl loc lcsigi

inheritance

<:class_sig item< inherit ct >>
MLast.CgInh loc ct
- method

<:class._sig item< method s : t >>
MLast.CgMth loc (Ploc.VaVal s) (Ploc.VaVal False) t

<:class_sig item< method $_:s$: t >>
MLast.CgMth loc s (Ploc.VaVal False) t

<:class._sig item< method private s : t >>
MLast.CgMth loc (Ploc.VaVal s) (Ploc.VaVal True) t

<:class_sig item< method private $_:s$: t >>
MLast.CgMth loc s (Ploc.VaVal True) t

<:class_sig item< method $flag:b$ s : t >>
MLast.CgMth loc (Ploc.VaVal s) (Ploc.VaVal b) t

<:class_sig item< method $_flag:b$ $_:s$: t >>
MLast.CgMth loc s b t

- value

<:class_sig_item< value s : t >>
MLast.CgVal loc (Ploc.VaVal s) (Ploc.VaVal False) t

<:class._sig item< value $_:s$: t >>
MLast.CgVal loc s (Ploc.VaVal False) t

115

<:class_sig item< value mutable s : t >>
MLast.CgVal loc (Ploc.VaVal s) (Ploc.VaVal True) t

<:class._sig item< value mutable $_:s$: t >>
MLast.CgVal loc s (Ploc.VaVal True) t

<:class_sig_item< value $flag:b$ s : t >>
MLast.CgVal loc (Ploc.VaVal s) (Ploc.VaVal b) t

<:class._sig item< value $_flag:b$ $_:s$: t >>
MLast.CgVal loc s b t

- method virtual

<:class._sig item< method virtual s : t >>
MLast.CgVir loc (Ploc.VaVal s) (Ploc.VaVal False) t

<:class_sig item< method virtual $_:s$: t >>
MLast.CgVir loc s (Ploc.VaVal False) t

<:class_sig item< method virtual private s : t >>
MLast.CgVir loc (Ploc.VaVal s) (Ploc.VaVal True) t

<:class_sig item< method virtual private $_:s$: t >>
MLast.CgVir loc s (Ploc.VaVal True) t

<:class_sig item< method virtual $flag:b$ s : t >>
MLast.CgVir loc (Ploc.VaVal s) (Ploc.VaVal b) t

<:class_sig item< method virtual $_flag:b$ $_:s$: t >>
MLast.CgVir loc s b t

13.5.6 other
with_constr

”With” possibly following a module type.

- with type

<:with_constr< type s $list:1tv$ = t >>
MLast.WcTyp loc (Ploc.VaVal s) (Ploc.VaVal 1tv) (Ploc.VaVal False) t

<:with_constr< type $_:s$ $_list:1tv$ = t >>
MLast.WcTyp loc s 1tv (Ploc.VaVal False) t

<:with_constr< type s $list:1tv$ = private t >>
MLast.WcTyp loc (Ploc.VaVal s) (Ploc.VaVal 1tv) (Ploc.VaVal True) t

<:with_constr< type $_:s$ $_list:1tv$ = private t >>
MLast.WcTyp loc s 1tv (Ploc.VaVal True) t

<:with_constr< type s $list:1tv$ = $flag:b$ t >>
MLast.WcTyp loc (Ploc.VaVal s) (Ploc.VaVal 1tv) (Ploc.VaVal b) t

116

<:with_constr< type $_:s$ $_list:1tv$ = $_flag:b$ t >>
MLast.WcTyp loc s 1tv b t

- with module

<:with_constr< module $list:1s$ = me >>
MLast.WcMod loc (Ploc.VaVal 1ls) me

<:with_constr< module $_1list:1s$ = me >>
MLast.WcMod loc 1ls me

poly_variant

Polymorphic variants.

- constructor

<:poly_variant< ¢ s >>
MLast.PvTag (Ploc.VaVal s) (Ploc.VaVal True) (Ploc.VaVal [])

<:poly.variant< ¢ $_:s$ >>
MLast.PvTag s (Ploc.VaVal True) (Ploc.VaVal [])

<:polyvariant< ¢ s of $list:1t$ >>
MLast.PvTag (Ploc.VaVal s) (Ploc.VaVal False) (Ploc.VaVal 1t)

<:polyvariant< ¢ $_:s$ of $_list:1t$ >>
MLast.PvTag s (Ploc.VaVal False) 1t

<:polyvariant< ¢ s of & $list:1t$ >>
MLast.PvTag (Ploc.VaVal s) (Ploc.VaVal True) (Ploc.VaVal 1t)

<:polyvariant< ¢ $_:s$ of & $_list:1t$ >>
MLast.PvTag s (Ploc.VaVal True) 1t

<:polyvariant< ¢ s of $flag:b$ $list:1t$ >>
MLast.PvTag (Ploc.VaVal s) (Ploc.VaVal b) (Ploc.VaVal 1t)

<:polyvariant< ¢ $_:s$ of $_flag:b$ $ list:1t$ >>
MLast.PvTag s b 1t

- type
<:poly variant< t >>
MLast.PvInh t

13.6 Nodes without quotations

Some types defined in the AST tree module "MLast” don’t have any associated quotation. They are:
e type_var
e type_decl

e class_infos

117

13.6.1 type_var
The type "type_var” is defined as:

type type_var = (Ploc.vala string * (bool * bool));

The first boolean is "True” if the type variable is prefixed by ”+” (”plus” sign). The second boolean is
"True” if the type variable is prefixed by ”=” ("minus” sign).

13.6.2 type_decl

The type "type_decl” is a record type corresponding to a type declaration. Its definition is:

type type_decl =
{ tdNam : (loc * Ploc.vaval string);
tdPrm : Ploc.vala (list type_var);
tdPrv : Ploc.vala bool;
tdDef : ctyp;
tdCon : Ploc.vala (list (ctyp * ctyp)) }

The field ”tdNam” is the type identifier (together with its location in the source).
The field ”tdPrm” is the list of its possible parameters.

The field "tdPrv” tells if the type is private or not.

The field ”tdDef” is the definition of the type.

The field ”tdCon” is the possible list of type constraints.

13.6.3 class_infos
The type "class_infos” is a record type parametrized with a type variable. It is common to:

2

e the ”class declaration” ("class ...” as structure item), the type variable being ”class_expr”,

”

e the ”class description” ("class ...” as signature item), the type variable being ”class_type”,

e the "class type declaration” ("class type ...), the type variable being ”class_type”.
It is defined as:

type class_infos ’a =
{ ciloc : loc;
ciVir : Ploc.vala bool;
ciPrm : (loc * Ploc.vala (list type_var));
ciNam : Ploc.vala string;
ciExp : ’a }

The field ”ciloc” is the location of the whole definition.

The field ”ciVir” tells whether the type is virtual or not.

118

The field ”ciPrm” is the list of its possible parameters.
The field ”ciNam” is the class identifier.

The field "ciExp” is the class definition, depending of its kind.

119

120

Chapter 14

Syntax tree quotations in user syntax

The quotation kit "q-ast.cmo” allow to use syntax tree quotations in user syntax. It fully works only in
7strict” mode. In ”transitional” mode, there is no way to use antiquotations, what restricts its usage.

If this kit is loaded, when a quotation of syntax tree is found, the current OCaml language parser is called.
Then, the resulting tree is meta-ified (except the antiquotations) to represent the syntax tree of the syntax
tree.

14.1 Antiquotations

The OCaml langage parser used, and its possible extensions, must have been built to allow the places of the
antiquotations. The symbols enclosed by the meta-symbol ”V” (see the chapter about extensible grammars,
section ”symbols”), define where antiquotations can take place.

But there is no need to specify antiquotations for the main types defined in the AST tree module ("MLast”):
Vexpr”, "patt”, "expr”, "str_item”, "sig_item”, and so on. All syntax parts of these types are automati-

3

cally antiquotable.
For example, in Camlp5 sources, the grammar rule defining the ”let..in” statement is:

"let"; r = V (FLAG "rec") "flag" "opt";
1 =V (LIST1 let_binding SEP "and"); "in"; x = expr

All symbols of these rules, except the keywords, are antiquotable:

e The "rec” flag, because enclosed by the ”V” meta symbol. The two strings which follow it gives the
possible antiquotation kinds: ”flag” (the normal antiquotation kind) and ”opt” (kept by backward

compatibility, but not recommended). It is therefore possible to antiquot it as: "$flag:...$" or
7$opt:...$” where the ”...” is an expression or a pattern depending on the position of the enclosing
quotation

e The binding list is also antiquotable, since it is also enclosed by the ” V” meta symbol. Its antiquotation
kind is ”list” (the default when the meta symbol parameter is a list). It is therefore possible to write
7$list:...$” at the place of the binding list.

e The expression after the ”in” is also antiquotable, because it belongs to the main types defined in the
module "MLast”.

121

In that example, the variable ”r” is of type "Ploc.vala bool”, the variable ”r” of type "Ploc.vala (list
(patt * expr))” and the variable "x” of type "MLast.expr”.

... to be completed ...

122

Chapter 15

The Pcaml module

All about language parsing entries, language printing functions, quotation management at parsing time,
extensible directives, extensible options, and generalities about Camlp5.

15.1 Language parsing

15.1.1 Main parsing functions

The two functions below are called when parsing an interface (.mli file) or an implementation (.ml file) to
build the syntax tree; the returned list contains the phrases (signature items or structure items) and their
locations; the boolean tells whether the parser has encountered a directive; in this case, since the directive
may change the syntax, the parsing stops, the directive is evaluated, and this function is called again.
These functions are references, because they can be changed to use another technology than the Camlpb
extended grammars. By default, they use the grammars entries [implem] and [interf] defined below.

value parse_interf :
ref (Stream.t char -> (list (MLast.sig_item * MLast.loc) * bool));

Function called when parsing an interface (”.mli”) file

value parse_implem :
ref (Stream.t char -> (list (MLast.str_item * MLast.loc) * bool));

Function called when parsing an implementation (”.ml”) file

15.1.2 Grammar

value gram : Grammar.g;

Grammar variable of the language.

15.1.3 Entries

Grammar entries which return syntax trees. These are set by the parsing kit of the current syntax, through
the statement EXTEND. They are usable by other possible user syntax extensions.

value expr : Grammar.Entry.e MLast.expr;

Expressions.

123

value patt : Grammar.Entry.e MLast.patt;

Patterns.

value ctyp : Grammar.Entry.e MLast.ctyp;
Types.

value sig_item : Grammar.Entry.e MLast.sig_ item;

Signature items, i.e. items between ”sig” and ”end”, or inside an interface (”.mli”) file.

value str_item : Grammar.Entry.e MLast.str_item;

Structure items, i.e. items between ”struct” and ”"end”, or inside an implementation (”.ml”) file.

value module_type : Grammar.Entry.e MLast.module_type;

Module types, e.g. signatures, functors, identifiers.

value module_expr : Grammar.Entry.e MLast.module_expr;

Module expressions, e.g. structures, functors, identifiers.

value let_binding : Grammar.Entry.e (MLast.patt * MLast.expr);

Specific entry for the ”let binding”, i.e. the association ”let pattern = expression”.

value type_declaration : Grammar.Entry.e MLast.type_decl;

Specific entry for the "type declaration”, i.e. the association ”type name = type-expression”

value class_sig_item : Grammar.Entry.e MLast.class_sig_item;

Class signature items, i.e. items of class objects types.

value class_str_item : Grammar.Entry.e MLast.class_str_item;

Class structure items, i.e. items of class objects.

value class_type : Grammar.Entry.e MLast.class_type;

Class types, e.g. object types, class types functions, identifiers.

value class_expr : Grammar.Entry.e MLast.class_expr;

Class expressions, e.g. objects, class functions, identifiers.

value interf : Grammar.Entry.e (list (MLast.sig item * MLast.loc) * bool);
Interface, i.e. files with extension ”.mli”. The location is the one of the top of the tree. The boolean
says whether the parsing stopped because of the presence of a directive (which potentially could change
the syntax).

value implem : Grammar.Entry.e (list (MLast.str_item * MLast.loc) * bool);

Implementation, i.e. files with extension ”.ml”. Same remark about the location and the boolean.

value top_phrase : Grammar.Entry.e (option MLast.str_item);

Phrases of the OCaml interactive toplevel. Return "None” in case of end of file.

value use_file : Grammar.Entry.e (list MLast.str_item * bool);

Phrases in files included by the directive "#use”. The boolean indicates whether the parsing stopped
because of a directive (like for ”interf” below).

124

15.2 Language printing

15.2.1 Main printing functions

The two function below are called when printing an interface (.mli file) of an implementation (.ml file) from
the syntax tree; the list is the result of the corresponding parsing function.
These functions are references, to allow using other technologies than the Camlp5 extended printers.

value print_interf :
ref (list (MLast.sig_item * MLast.loc) -> unit);

Function called when printing an interface (”.mli”) file

value print_implem :
ref (list (MLast.str_item * MLast.loc) -> unit);

Function called when printing an implementation (”.ml”) file

By default, these functions fail. The printer kit ”pr_dump.cmo” (loaded by most Camlp5 commands) set
them to functions dumping the syntax tree in binary (for the OCaml compiler). The pretty printer kits,
such as ”pr_r.cmo” and ”"pr_o.cmo” set them to functions calling the predefined printers (see next section).

15.2.2 Printers

Printers taking syntax trees as parameters and returning pretty printed strings. These are set by the printing
kits, through the statement EXTEND_PRINTER. They are usable by other possible user printing extensions.

value pr_expr : Eprinter.t MLast.expr;
Expressions.

value pr_patt : Eprinter.t MLast.patt;

Patterns.

value pr_ctyp : Eprinter.t MLast.ctyp;
Types.

value pr_sig_item : Eprinter.t MLast.sig item;

Signature items, i.e. items between ”sig” and "end”, or inside an interface (”.mli”) file.

value pr_str_item : Eprinter.t MLast.str_item;

Structure items, i.e. items between ”struct” and ”"end”, or inside an implementation (”.ml”) file.

value prmodule_type : Eprinter.t MLast.module_type;

Module types, e.g. signatures, functors, identifiers.

value prmodule_expr : Eprinter.t MLast.module_expr;

Module expressions, e.g. structures, functors, identifiers.

value pr_class_sig item : Eprinter.t MLast.class_sig_item;

Class signature items, i.e. items of class objects types.

value pr_class_str_item : Eprinter.t MLast.class_str_item;

Class structure items, i.e. items of class objects.

125

value pr_class_type : Eprinter.t MLast.class_type;
Class types, e.g. object types, class types functions, identifiers.

value pr_class_expr : Eprinter.t MLast.class_expr;

Class expressions, e.g. objects, class functions, identifiers.

15.3 Quotation management

value handle expr_quotation : MLast.loc -> (string * string) -> MLast.expr;

Called in the semantic actions of the rules parsing a quotation in position of expression.

value handle patt_quotation : MLast.loc -> (string * string) -> MLast.patt;

Called in the semantic actions of the rules parsing a quotation in position of pattern.

value quotation dump file : ref (option string);

"Pcaml.quotation dump file” optionally tells the compiler to dump the result of an expander (of
kind ”generating a string”) if this result is syntactically incorrect. If ”None” (default), this result is
not dumped. If "Some fname”, the result is dumped in the file ”fname”. The same effect can be done
with the option ”-QD” of Camlp5 commands.

15.4 Extensible directives and options

type directive_fun = option MLast.expr -> unit;
The type of functions called to treat a directive with its syntactic parameter. Directives act by side
effect.

value add-directive : string -> directive fun -> unit;

Add a new directive.

value find directive : string -> directive_fun;

Find the function associated with a directive. Raises ”"Not_found” if the directive does not exists.

value add_option : string -> Arg.spec -> string -> unit;

Add an option to the command line of the Camlp5 command.

15.5 Equalities over syntax trees

These equalities skip the locations.

value eq_expr : MLast.expr -> MLast.expr -> bool;

value eq_patt : MLast.patt -> MLast.patt -> bool;

value eq_ctyp : MLast.ctyp -> MLast.ctyp -> bool;

value eq_str_item : MLast.str_item -> MLast.str_item -> bool;

value eq_sig_item : MLast.sig_item -> MLast.sig_item -> bool;

value eq_module_expr : MLast.module_expr -> MLast.module_expr —-> bool;

value eq_module_type : MLast.module_type -> MLast.module_type —-> bool;

value eq_class_sig_item : MLast.class_sig_item -> MLast.class_sig_item —-> bool;
value eq_class_str_item : MLast.class_str_item -> MLast.class_str_item -> bool;
value eq_class_type : MLast.class_type —-> MLast.class_type -> bool;

value eq_class_expr : MLast.class_expr -> MLast.class_expr —-> bool;

126

15.6 Generalities

value version : string;

The current version of Camlpb.

value syntaxmname : ref string;

The name of the current syntax. Set by the loaded syntax kit.

value input_file : ref string;

The file currently being parsed.

value output_file : ref (option string);

The output file, stdout if None (default).

value no_constructors_arity : ref bool;

True if the current syntax does not generate constructor arity, which is the case of the normal syntax,
and not of the revised one. This has an impact when converting Camlp5 syntax tree into OCaml

compiler syntax tree.

127

128

Chapter 16

Extensions of syntax

Camlpb allows to extend the syntax of the OCaml language, and even change the whole syntax.

It uses for that one of its parsing tools: the extensible grammars.

To understand the whole syntax in the examples given in this chapter, it is a good thing to know this parsing
tool (the extensible grammars), but we shall try to give some minimal explanations to allow the reader to
follow them.

A syntax extension is an OCaml object file (ending with ”.cmo” or ”.cma”) which is loaded inside Camlp5.
The source of this file uses calls to the specific statement EXTEND applied to entries defined in the Camlpb
module "Pcaml”.

16.1 Entries

The grammar of OCaml contains several entries, corresponding to the major notions of the language, which
are modifiable this way, and even erasable. They are defined in this module "Pcaml”.

Most important entries:

expr: the expressions.
patt: the patterns.
ctyp: the types.

str_item: the structure items, i.e. the items between ”struct” and ”end”, and the toplevel phrases in
a”.ml” file.

sig_item: the signature items, i.e. the items between "sig” and "end”, and the toplevel phrases in a
7. mli” file.

module_expr: the module expressions.

module_type: the module types.

Entries of object programming;:

class_expr: the class expressions.

129

e class_type: the class types.

e class_str_item: the objects items.

e class_sig item: the objects types items.
Main entries of files and interactive toplevel parsing:

e implem: the phrases that can be found in a ”7.ml” file.

e interf: the phrases that can be found in a ”.mli” file.

e top_phrase: the phrases of the interactive toplevel.

e use_file: the phrases that can be found in a file included by the directive "use”.
Extra useful entries also accessible:

e let_binding: the bindings ”expression = pattern” found in the "let” statement.

e type_declaration: the bindings "name = type” found in the "type” statement.

16.2 Syntax tree quotations

A grammar rule is a list of rule symbols followed by the semantic action, i.e. the result of the rule. This
result is a syntax tree, whose type is the type of the extended entry. The description of the types of the
syntax tree are in the Camlp5 module "MLast”.

However, there is a simpler way to make values of these syntax tree types: the system quotations (see
chapters about quotations and syntax tree). With this system, it is possible to represent syntax tree in
concrete syntax, between specific parentheses, namely ”<<” and ”>>”, or between ”<:name<” and ”>>".

)

For example, the syntax node of the ”if” statement is, normally:
MLast.ExIfe loc el e2 e3

where loc is the source location, and el, €2, e3 are the expressions constituting the if statement. With
quotations, it is possible to write it like this (which is stricly equivalent because this is evaluated at parse
time, not execution time):

<:expr< if el then $e2$ else $e3$ >>
With quotations, it is possible to build pieces of program as complex as desired. See the chapter about
syntax trees.
16.3 An example : repeat..until

A classical extension is the programmation of the "repeat” statement. The "repeat” statement is like a
”while” except that the loop is executed at least one time and that the test is at the end of the loop and is
inverted. The equivalent of:

repeat x; y; z until ¢

is:

130

do {

X5 ¥ Z;

while not ¢ do { x; y; z %}
}

or, with a loop:
loop () where rec loop () = do {
X5 ¥ Z;
if ¢ then () else loop ()
}

16.3.1 The code

This syntax extension could be written like this (see the detail of syntax in the chapter about extensible
grammars and the syntax tree quotations in the chapter about them):

#load "pa_extend.cmo";
#load "q_MLast.cmo";
open Pcaml;

EXTEND
expr:
[["repeat"; el = LIST1 expr SEP ";"; "until"; c = expr ->
let el = el @ [<:expr< while not c do { $list:el$ } >>] in
<:expr< do { $list:el$ } >> 1 1]
END;

Alternatively, with the loop version:

#load "pa_extend.cmo";
#load "q_MLast.cmo";
open Pcaml;

EXTEND
expr:
[["repeat"; el = LIST1 expr SEP ";"; "until"; c = expr ->
let el = el @ [<:expr< if c then () else loop () >>] in
<:expr< loop () where rec loop () = do { $list:el$ } >>]]
END;

The first ”#1oad” in the code (in both files) means that a syntax extension has been used in the file, namely
the "EXTEND” statement. The second "#load” means that abstract tree quotations has been used, namely
the "<:expr< ... >>”.

The quotation, found in the second version:
<:expr< loop () where rec loop () = do { $list:el$ } >>
is especially interesting. Written with abstract syntax tree, it would be:

MLast.ExLet loc True
[(MLast.PalLid loc "loop",
MLast.ExFun loc [(MLast.PaUid loc "()", None, MLast.ExSeq loc el)])]
(MLast.ExApp loc (MLast.ExLid loc "loop") (MLast.ExUid loc "()"));

131

This shows the interest of writing abstract syntax tree with quotations: it is easier to program and to
understand.

16.3.2 Compilation

If the file "foo.ml” contains one of these versions, it is possible to compile it like this:
ocamlc -pp camlpbr -I +camlpb -c foo.ml

Notice that the ocamlc option ”-c¢” means that we are interested only in generating the object file ”foo.cmo”,
not achieving the compilation by creating an executable. Anyway the link would not work because of usage
of modules specific to Camlp5.

16.3.3 Testing
In the OCaml toplevel

ocaml -I +camlp5 camlpbr.cma
Objective Caml version ...

Camlp5 Parsing version ...

#load "foo.cmo";
value x = ref 42;
value x : ref int = {val=42}
repeat
print_int x.val; print_endline ""; x.val := x.val + 3
until x.val > 70;
42
45
48
51
54
57
60
63
66
69
- : unit = O

In a file

The code, above, used in the toplevel, can be written in a file, say ”bar.ml”:

#load "./foo.cmo";
value x = ref 42;
repeat
print_int x.val;
print_endline "";
x.val := x.val + 3
until x.val > 70;

132

with a subtile difference: the loaded file must be ”./foo.cmo” and not just "foo.cmo” because Camlp5 does
not have, by default, the current directory in its path.

The file can be compiled like this:
ocamlc -pp camlpbSr bar.ml

or in native code:
ocamlopt -pp camlpbr bar.ml

And it is possible to check the resulting program by typing:
camlpbr pr_r.cmo bar.ml

whose displayed result is:

#load "./foo.cmo";
value x = ref 42;
do {
print_int x.val;
print_endline "";
x.val := x.val + 3;
while not (x.val > 70) do {
print_int x.val;
print_endline "";
x.val := x.val + 3
}
};

See also the same example pretty printed in its original syntax, using the extendable programs printing.

133

134

Chapter 17

Extensions of printing

Camlpb provides extensions kits to pretty print programs in revised syntax and normal syntax. Some other
extensions kits also allow to rebuild the parsers, or the EXTEND statements in their initial syntax. The
pretty print system is itself extensible, by adding new rules. We present here how it works in the Camlpb
sources.

The pretty print system of Camlp5b uses the library modules Pretty, an original system to format output)
and Extfun, another original system of extensible functions.

This chapter is destinated to programmers who want to understand how the pretty printing of OCaml
programs work in Camlp5, want to adapt, modify or debug it, or want to add their own pretty printing
extensions.

17.1 Introduction

The files doing the pretty prints are located in Camlp5 sources in the directory "etc”. Look at them if you
are interested on creating new ones. The main ones are:

e "etc/prr.ml”: pretty print in revised syntax.
e 7etc/proo.ml”: pretty print in normal syntax.
e "etc/prrp.ml”: rebuilding parsers in their original revised syntax.
e 7etc/proop.ml”: rebuilding parsers in their original normal syntax.

e 7etc/pr_extend.ml”: rebuilding EXTEND in its original syntax.
We present here how this system work inside these files. First, the general principles. Second, more details
of the implementation.
17.2 Principles
17.2.1 Using module Pretty

All functions in OCaml pretty printing take a parameter named ”the printing context” (variable pc). It is
a record holding :

e The current indendation : pc.ind

135

e What has to be printed before, in the same line : pc.bef
e What has to be printed after, in the same line : pc.aft

e The dangling token, useful in normal syntax to know whether parentheses are necessary : pc.dang

A typical pretty printing function calls the function horiz_vertic of the library module Pretty. This function
takes two functions as parameter:

e The way to print the data in one only line (horizontal printing)

e The way to print the data in two or more lines (vertical printing)

Both functions catenate the strings by using the function sprintf of the library module Pretty which
controls whether the printed data holds in the line or not. They generally call, recursively, other pretty
printing functions with the same behaviour.

Let us see an example (fictive) of printing an OCaml application. Let us suppose we have an application
expression "el e2” to pretty print where el and e2 are sub-expressions. If both expressions and their
application holds on one only line, we want to see:

el e2

On the other hand, if they do not hold on one only line, we want to see e2 in another line with, say, an
indendation of 2 spaces:

el
e2

Here is a possible implementation. The function has been named expr_app and can call the function expr
to print the sub-expressions el and e2:

value expr_app pc el e2 =
horiz_vertic
(fun O ->

let s1 = expr {(pc) with aft = ""} el in
let s2 = expr {(pc) with bef = ""} e2 in
sprintf "%s %s" sl s2)
(fun O ->
let sl = expr {(pc) with aft = ""} el in
let 82 =
expr
{(pc) with

ind = pc.ind + 2;
bef = tab (pc.ind + 2)}
e2
in
sprintf "%s\n%s" sl s2)

>

The first function is the horizontal printing. It ends with a sprintf separating the printing of el and e2
by a space. The possible ”"before part” (pc.bef) and ”after part” (pc.aft) are transmitted in the calls of
the sub-functions.

136

The second function is the vertical printing. It ends with a sprintf separating the printing of el and e2 by
a newline. The second line starts with an indendation, using the ”before part” (pc.bef) of the second call
to expr.

The pretty printing library function Pretty.horiz vertic calls the first (horizontal) function, and if it fails
(either because s1 or s2 are too long or hold newlines, or because the final string produced by sprintf is
too long), calls the second (vertical) function.

Notice that the parameter pc contains a field pc.bef (what has to be printed before in the same line), which
in both cases is transmitted to the printing of el (since the syntax {(pc) with aft = ""} is a record with
pc.bef kept). Same for the field pc.aft transmitted to the printing of e2.

17.2.2 Using EXTEND_PRINTER statement

This system is combined to the extensible printers to allow the extensibility of the pretty printing.

The code above actually looks like:

EXTEND_PRINTER
pr_expr:
[[<:expr< el $e28 >> >
horiz_vertic

(fun O ->
let s1 = curr {(pc) with aft = ""} el in
let s2 = next {(pc) with bef = ""} e2 in
sprintf "%s %s" sl s2)
(fun O ->
let s1 = curr {(pc) with aft = ""} el in
let s2 =
next
{(pc) with

ind = pc.ind + 2;
bef = tab (pc.ind + 2)}
e2
in
sprintf "%s\n¥%s" s1 s2)] 1]

END;

The variable ”pc” is implicit in the semantic actions of the syntax "EXTEND PRINTER”, as well as two other
variables: ”curr” and "next”.

These parameters, ”curr” and "next”, correspond to the pretty printing of, respectively, the current level
and the next level. Since the application in OCaml is left associative, the first sub-expression is printed at
the same (current) level and the second one is printed at the next level. We also see a call to next in the
last (2nd) case of the function to treat the other cases in the next level.

17.2.3 Dangling else, bar, semicolon

In normal syntax, there are cases where it is necessary to enclose expressions between parentheses (or between
begin and end, which is equivalent in that syntax). Three tokens may cause problems: the ”else”, the vertical
bar ”|” and the semicolon ” ;”. Here are examples where the presence of these tokens constraints the previous

137

expression to be parenthesized. In these three examples, removing the begin..end enclosers would change
the meaning of the expression because the dangling token would be included in that expression:

Dangling else:
if a then begin if b then c end else d
Dangling bar:

function
A >
begin match a with
B ->c
| D> e
end
| F>g

Dangling semicolon:

if a then b
else begin
let ¢ = d in
e
end;
f

The information is transmitted by the value pc.dang. In the first example above, while displaying the
”then” part of the outer ”if”, the sub-expression is called with the value pc.dang set to "else" to inform
the last sub-sub-expression that it is going to be followed by that token. When a ”if” expression has to be
displayed without "else” part, and that its "pc.dang” is ”else”, it has to be enclosed with spaces.

This problem does not exist in revised syntax. While pretty printing in revised syntax, the parameter
pc.dang is not necessary and remains the empty string.

17.2.4 By level

As explained in the chapter about the extensible printers (with the EXTEND_PRINTER statement), printers
contain levels. The global printer variable of expressions is named "pr_expr” and contain all definitions
for pretty printing expressions, organized by levels, just like the parsing of expressions. The definition of
”pr_expr” actually looks like this:

EXTEND_PRINTER
pr_expr:
["top"
[(x code for level "top" *)]
| "add"
[(x code for level "add" *) 1]
| "mul"
[(x code for level "mul" *)]
| "apply"
[(x code for level "apply" *)]
| "simple"
[(x code for level "add" *)] 1]

END;

138

17.3 The Prtools module

The Prtools module is defined inside Camlp5 for pretty printing kits. It provides variables and functions to
treat comments, and meta-functions to treat lists (horizontally, vertically, paragraphly).

17.3.1 Comments

value comm bef : pr_context -> MLast.loc -> string;

[comm_bef pc loc] get the comment from the source just before the given location [loc]. This comment
may be reindented using [pc.ind]. Returns the empty string if no comment found.

value source : ref string;

The initial source string, which must be set by the pretty printing kit. Used by [comm_bef] above.

value set_commmin_pos : int -> unit;

Set the minimum position of the source where comments can be found, (to prevent possible duplication
of comments).

17.3.2 Meta functions for lists
type pr_fun ’a = pr_context -> ’a -> string;

Type of printer functions.

value hlist : pr_fun ’a -> pr_fun (list ’a);

[hlist elem pc el] returns the horizontally pretty printed string of a list of elements; elements are
separated with spaces.
The list is displayed in one only line. If this function is called in the context of the [horiz] function of
the function [horiz_vertic] of the module Printing, and if the line overflows or contains newlines, the
function internally fails (the exception is catched by [horiz_vertic] for a vertical pretty print).

value hlist2 : pr_fun ’a -> pr_fun ’a -> pr_fun (list ’a);

horizontal list with a different function from 2nd element on.

value hlistl : pr_fun ’a -> prfun ’a -> pr_fun (list ’a);

horizontal list with a different function for the last element.

value vlist : pr_fun ’a -> pr_fun (list ’a);
[vlist elem pc el] returns the vertically pretty printed string of a list of elements; elements are separated
with newlines and indentations.

value vlist2 : pr_fun ’a -> pr_fun ’a -> pr_fun (list ’a);

vertical list with different function from 2nd element on.

value vlist3 : pr_fun (’a * bool) -> pr_fun (’a * bool) -> pr_fun (list ’a);

vertical list with different function from 2nd element on, the boolean value being True for the last
element of the list.

value vlistl : pr_fun ’a -> prfun ’a -> pr_fun (list ’a);

vertical list with different function for the last element.

139

value plist : pr_fun ’a -> int -> pr_fun (list (’a * string));
[plist elem sh pc el] returns the pretty printed string of a list of elements with separators. The elements
are printed horizontally as far as possible. When an element does not fit on the line, a newline is added
and the element is displayed in the next line with an indentation of [sh]. [elem] is the function to print
elements, [el] a list of pairs (element * separator) (the last separator being ignored).

value plistb : pr_fun ’a -> int -> pr_fun (list (’a * string));
[plist elem sh pc el] returns the pretty printed string of the list of elements, like with [plist] but the
value of [pc.bef] corresponds to an element already printed, as it were on the list. Therefore, if the
first element of [el] does not fit in the line, a newline and a tabulation is added after [pe.bef].

value plistl : pr_fun ’a -> prfun ’a -> int -> pr_fun (list (’a * string));

paragraph list with a different function for the last element.

17.3.3 Miscellaneous

value tab : int -> string;

[tab ind] is equivalent to [String.make ind ’]

value flatten sequence : MLast.expr -> option (list MLast.expr);

[flatten_sequence e]. If [e] is an expression representing a sequence, return the list of expressions of
the sequence. If some of these expressions are already sequences, they are flattened in the list. If that
list contains expressions of the form let..in sequence, this sub-sequence is also flattened with the let..in
applying only to the first expression of the sequence. If [e] is a let..in sequence, it works the same way.
If [e] is not a sequence nor a let..in sequence, return None.

17.4 Example : repeat..until

This pretty prints the example repeat..until statement programmed in the chapter Syntax extensions (first
version generating a "while” statement).

17.4.1 The code

The pattern generated by the "repeat” statement is recognized (sequence ending with a ”while” whose con-
tents is the same than the beginning of the sequence) by the function ”is_repeat” and the repeat statement is
pretty printed in its initial form using the function ”horiz_vertic” of the Pretty module. File ”pr_repeat.ml”:

#load "pa_extprint.cmo";
#load "q_MLast.cmo";

open Pcaml;
open Pretty;
open Prtools;

value eq_expr_list ell el2 =

if List.length ell <> List.length el2 then False
else List.for_all2 eq_expr ell el2

value is_repeat el =
match List.rev el with

140

[[<:expr< while not e do { $list:el2$ } >> :: rell]l ->
eq_expr_list (List.rev rell) el2
| _ -> False]

value semi_after pr pc = pr {(pc) with aft = sprintf "¥%s;" pc.aft};

EXTEND_PRINTER
pr_expr:
[[<:expr< do { $list:el$ } >> when is_repeat el ->
match List.rev el with
[[<:expr< while not e do { $list:el$ } >> :: _1 ->
horiz_vertic
(fun () ->
sprintf "Ysrepeat %s until %s%s" pc.bef
(hlistl (semi_after curr) curr
{(pc) with bef = ""; aft = ""} el)
(curr {(pc) with bef = ""; aft = ""} e)
pc.aft)
(fun () ->
let sl = sprintf "Ysrepeat" (tab pc.ind) in
let 82 =
vlistl (semi_after curr) curr
{(pc) with
ind = pc.ind + 2;
bef = tab (pc.ind + 2);

aft = ""}
el
in
let s3 =
sprintf "%suntil Y%s" (tab pc.ind)
(curr {(pc) with bef = ""} e)
in

sprintf "%s\n¥%s\n¥%s" sl s2 s3)
_ —> assert False]]]

’

END;

17.4.2 Compilation

ocamlc -pp camlpbr -I +camlpb -c pr_repeat.ml

17.4.3 Testing

Getting the same files "foo.ml” and ”bar.ml” of the repeat syntax example:

$ cat bar.ml
#load "./foo.cmo";
value x = ref 42;
repeat
print_int x.val;
print_endline "";

141

x.val := x.val + 3
until x.val > 70;

$ camlp
Without the pretty printing kit:

$ camlpbr pr_r.cmo bar.ml
#load "./foo.cmo";
value x = ref 42;
do {
print_int x.val;
print_endline "";
x.val := x.val + 3;
while not (x.val > 70) do {
print_int x.val;
print_endline "";
x.val := x.val + 3
}
};

With the pretty printing kit:

$ camlpbr pr_r.cmo ./pr_repeat.cmo bar.ml -1 75
#load "./foo.cmo";
value x = ref 42;
repeat
print_int x.val;
print_endline "";
x.val := x.val + 3
until x.val > 70;

142

Chapter 18

Quotations

The quotations are a syntax extension in Camlpb allowing to build expressions and patterns in any syntax
independant from the one of OCaml. Quotations are expanded, i.e. transformed, at parse time to produce
normal syntax trees, like the rest of the program. Quotations expanders are normal OCaml functions writable
by any programmer.

The aim of quotations is to use concrete syntax for manipulating abstract values, what make programs
easier to write, read, modify, and understand. Their drawback is that they are isolated from the rest of the
program, in opposition to syntax extensions, which are included in the language.

18.1 Introduction

A quotation is syntactically enclosed by specific quotes formed by less (<) and greater (>) signs. Namely:
e starting with either ”<<” or ”<:ident<” where ”ident” is the quotation name,
e ending with ”7>>”

Examples:

<< \x.x x >>
<:foo< hello, world >>
<:bar< Q#$%;*x >>

The text between these particular parentheses can be any text. It may contain enclosing quotations and the
characters 7<”, ”>” and ”\” can be escaped by ”\”. Notice that possible double-quote, parentheses, OCaml
comments do not have necessary to balance inside them.

As far as the lexer is concerned, a quotation is just a kind of string.

18.2 Quotation expander
The quotations are treated at parse time. Each quotation name is associated with a quotation expander, a
function transforming the content of the quotation into a syntax tree. There are actually two expanding

functions, depending on the fact that the quotation is in the context of an expression or if it is in the context
of a pattern.

If a quotation has no associated quotation expander, a parsing error is displayed and the compilation fails.

143

The quotation expander, or, rather, expanders, are functions taking the quotation string as parameter and
returning a syntax tree. There is no constraint about which parsing technology is used. It can be stream
parsers, extensible grammars, string scanning, ocamllex and yacc, any.

To build syntax trees, Camlp5 provides a way to easily build them:n see the chapter about them: it is
possible to build abstract syntax through concrete syntax using, precisely... quotations.

18.3 Defining a quotation

18.3.1 By syntax tree

To define a quotation, it is necessary to program the quotation expanders and to, finally, end the source
code with a call to:

Quotation.add name (Quotation.ExAst (f_expr, f_patt));

where "name” is the name of the quotation, and ”f_expr” and ”f_patt” the respective quotations expanders
for expressions and patterns.

Then, after compilation of the source file (without linking, i.e. using option ”-¢” of the OCaml compiler),
an object file is created (ending with ”.cmo”), which can be used as syntax extension kit of Camlp5.

18.3.2 By string

There is, actually, another way to program the expander: an alone function which returns, not a syntax tree,
but just a string which is parsed, afterwards, by the system. This function takes a boolean as first parameter
telling whether the quotation is in position of expression (True) or in position of a pattern (False).

If using that way, the source file must end with:
Quotation.add name (Quotation.ExStr f);

where ”£” is that quotation expander. The advantage of this second approach is that it is simple to under-
stand and use. The drawback is that there is no way to specify different source locations for different parts
of the quotation (what may be important in semantic error messages).

18.3.3 Default quotation

It is possible to use some quotation without its name. Use for that the variable ”Quotation.default_quotation”.
For example, ending a file by:

Quotation.add "foo" (Quotation.ExAst (f_expr, f_patt));
Quotation.default.val := "foo";

allows to use the quotation ”foo” without its name, i.e.:
<< L.

instead of:
<:foo< ... >>

If several files set the variable ”Quotation.default”, the default quotation applies to the last loaded one.

144

18.4 Antiquotations

A quotation obeys its own rules of lexing and parsing. Its result is a syntax tree, of type "Pcaml.expr”
if the quotation is in the context of an expression, or "Pcaml.patt” if the quotation is in the context of a
pattern.

But it can be interesting to insert portions of expressions or patterns of the enclosing context in its own
quotations. For that, the syntax of the quotation must define a syntax for antiquotations areas. It can be,
for example:

e A character introducing a variable: in this case the antiquotation can just be a variable.

e A couple of characters enclosing the antiquotations. For example, in the predefined syntax tree quota-
tions, the antiquotations are enclosed with dollar (”$”) signs.

In quotations, the locations in the resulting syntax tree are all set to the location of the quotation itself (if
this resulting tree contains locations, they are overwritten with this location). Consequently, if there are
semantic (typing) errors, the OCaml compiler will underline the entire quotation.

But in antiquotations, since they can be inserted in the resulting syntax tree, it is interesting to keep their
initial quotations. For that, the nodes:

<:expr< $anti:...$ >>
<:patt< $anti:...$ >>

equivalent to:

MLast.ExAnt loc ...
MLast.PaAnt loc ...

are provided (see syntax tree quotations).
Let us take an example, without this node, and with this specific node.

Let us consider an elementary quotation system whose contents is just an antiquotation. This is just a school
example, since the quotations brackets are not necessary, in this case. But we are going to see how the source
code is underlined in errors messages.

18.4.1 Example without antiquotation node

The code for this quotation is (file ”qa.ml”):

#load "q_MLast.cmo";
let expr s = Grammar.Entry.parse Pcaml.expr (Stream.of_string s) in
Quotation.add "a" (Quotation.ExAst (expr, fun []));

The quotation expander ”expr” just takes the string parameter (the contents of the quotation), and returns
the result of the expression parser of the OCaml language.

Compilation:
ocamlc -pp camlpbr -I +camlpb -c qa.ml

Let us test it in the toplevel with a voluntary typing error:

145

$ ocaml -I +camlp5 camlpbr.cma
Objective Caml version ...

Camlp5 Parsing version ...

#load "qa.cmo";
let x = "abc" and y
Characters 28-41:

let x = "abc" and y

25 in <:a< x Ty >>;

25 in <:a< x Ty >>;

This expression has type int but is here used with type string

We observe that the full quotation is underlined, although it concerns only the variable ”y”.

18.4.2 Example with antiquotation node

Let us consider this second version (file ”qb.ml”):

#load "q_MLast.cmo";

let expr s =
let ast = Grammar.Entry.parse Pcaml.expr (Stream.of_string s) in
let loc = Ploc.make 1 0 (0, String.length s) in
<:expr< $anti:ast$ >>

in

Quotation.add "b" (Quotation.ExAst (expr, fun []));

Like above, the quotation expander ”expr” takes the string parameter (the contents of the quotation) and
applies the expression parser of the OCaml language. But its result, instead of being returned ast it is, is
enclosed with the antiquotation node. (The location built is the location of the whole string.)

Compilation:
ocamlc -pp camlpbr -I +camlpb -c gb.ml
Now the same test gives:

$ ocaml -I +camlp5 camlpbr.cma
Objective Caml version ...

Camlp5 Parsing version ...

#load "gqb.cmo";
let x = "abc" and y
Characters 37-38:

let x = "abc" and y

25 in <:b< x T y >>;

25 in <:b< x T y >>;

This expression has type int but is here used with type string

Notice that, now, only the variable ”y” is underlined.

146

18.4.3 1In conclusion

In the resulting tree of the quotation expander:

e only portions of this tree, which are sons of the expr and patt antiquotation nodes, have the right
location they have in the quotation (provided the quotation expander gives it the right location of the
antiquation in the quotation),

e the other nodes inherit, as location, the location of the full quotation.

18.5 The Quotation module

type expander =
[ExStr of bool -> string -> string
| ExAst of (string -> MLast.expr * string -> MLast.patt)]

It is the type for quotation expander kinds:

e "Quotation.ExStr exp” corresponds to an expander ”"exp” returning a string which is parsed
by the system to create a syntax tree. Its boolean parameter tells whether the quotation is in
position of an expression (True) or in position of a pattern (False). Quotations expanders created
this way may work for some particular OCaml syntax, and not for another one (e.g. may work
when used with revised syntax and not when used with normal syntax, and conversely).

e "Quotation.ExAst (expr_exp, patt_exp)” corresponds to expanders returning syntax trees,
therefore not necessiting to be parsed afterwards. The function ”expr_exp” is called when the
quotation is in position of an expression, and “patt_exp” when the quotation is in position of a
pattern. Quotation expanders created this way are independent from the enclosing syntax.

value add : string -> expander -> unit;

”Quotation.add name exp” adds the quotation "name” associated with the expander ”exp”.

value find : string -> expander;

”Quotation.find name” returns the quotation expander of the given name.

value default : ref string;

The name of the default quotation : it is possible to use this quotation between ”<<” and ”>>" without
having to specify its name.

value translate : ref (string -> string);

Function translating quotation names; default = identity. Used in the predefined quotation ”q_phony. cmo”.
See below.

18.6 Predefined quotations

18.6.1 g-MLast.cmo

This extension kit add quotations of OCaml syntax tree, allowing to use concrete syntax to represent abstract
syntax. See the chapter Syntax tree.

147

18.6.2 g_ast.cmo

Like the previous quotation, this extension kit add quotations of OCaml syntax tree, but in the current user
syntax with all extensions, the previous one being restricted to revised syntax without extension. See the
chapters Syntax tree and Syntax tree quotations in user syntax.

18.6.3 q_phony.cmo

This extension kit is destinated to pretty printing and must be loaded after a language pretty printing kit
(in normal or in revised syntax). It prevents the expansions of all the quotations, transforming them into
variables. The pretty printing keeps then their initial form.

Moreover the macros (extension ”pa macro.cmo”) are also displayed in their initial form, instead of expanded.

18.7 A full example: lambda terms

This example allows to represent lambda terms by a concrete syntax and to be able to combine them using
antiquotations.

A lambda term is defined like this:

type term =
[Lam of string and term
| App of term and term
| Var of string]

Examples:

value fst = Lam "x" (Lam "y" (Var "x"));

value snd = Lam "x" (Lam "y" (Var "y"));

value delta = Lam "x" (App (Var "x") (Var "x"));
value omega = App delta delta;

value comb_s =

Lam "x"
(La.mb llyll
(Lamb ||Z||

(App (App (Var "x") (Var "y")) (App (Var "x") (Var "z")))));

Since combinations of lambda term may be complicated, The idea is to represent them by quotations in
concrete syntax. We want to be able to write the examples above like this:

value fst = << \x.\y.x >>;

value snd = << \x.\y.y >>;

value delta = << \x.x x >>

value omega = << "delta “delta >>;

value comb_s = << \x.\y.\z.(x y)(x z) >>;

which is a classic representation of lambda terms.

Notice, in the definition of ”omega”, the usage of the caret (”~”) sign to specify antiquotations. Notice also
the simplicity of the representation of the expression defining ”comb_s”.

148

Here is the code of the quotation expander, term.ml. The expander uses the extensible grammars. It has
its own lexer (using the stream lexers) because the lexer of OCaml programs ("Plexer.gmake ()”), cannot
recognize the backslashes alone.

18.7.1 Lexer
(* lexer *)
#load "pa_lex.cmo";
value rev_implode 1 =

let s = String.create (List.length 1) in
loop (String.length s - 1) 1 where rec loop i =

fun
[[c :: 1] -> do { String.unsafe_set s i c; loop (i - 1) 1}
I 0 ->s]
module B =
struct

value empty = [];

value add x 1 = [x :: 1];

value get = rev_implode;
end

value rec ident =
lexer
["a..zA..Z0..9-_°\128..\255" ident! |]

value empty _ = parser [: _ = Stream.empty :]1 -> [];

value rec next_tok =

lexer

["\\" -> ("BSLASH", "")

| ®~" -> ("CARET", "")

| "a..z" ident! -> ("IDENT", $buf)

[=> (v,
[=> (v, MM
|
|
|

II.II _> (llll’ Il'll)
empty _> (IIEOSII s n II)

-> raise (Stream.Error "lexing error: bad character")]

value rec skip_spaces = lexer [" \n\r"/ skip_spaces! |];

value record_loc loct i (bp, ep) = do {
if i >= Array.length loct.val then do {
let newt =
Array.init (2 * Array.length loct.val + 1)
(fun i ->

149

if i < Array.length loct.val then loct.val. (i)
else Ploc.dummy)
in
loct.val := newt;
}
else ();
loct.val. (i) := Ploc.make_unlined (bp, ep)
3

value lex_func cs =
let loct = ref [| [] in
let ts =
Stream.from
(fun i -> do {
ignore (skip_spaces $empty cs : list char);
let bp = Stream.count cs in
let r = next_tok $empty cs in
let ep = Stream.count cs in
record_loc loct i (bp, ep);
Some r
1))
in
(ts, fun i -> loct.val.(i))

value lam_lex =
{Plexing.tok_func = lex_func;
Plexing.tok_using _ = (); Plexing.tok_removing _ = ();
Plexing.tok_match = Plexing.default_match;
Plexing.tok_text = Plexing.lexer_text;
Plexing.tok_comm = None}

18.7.2 Parser

(* parser *)

#load "pa_extend.cmo";
#load "q_MLast.cmo";

value g = Grammar.gcreate lam_lex;
value expr_term_eos = Grammar.Entry.create g "term";
value patt_term_eos = Grammar.Entry.create g "term";

EXTEND
GLOBAL: expr_term_eos patt_term_eos;
expr_term_eos:
[[x = expr_term; EOS -> x]]
expr_term:
[[BSLASH; i = IDENT; "."; t = SELF -> <:expr< Lam $str:i$ t >>]
| [x = SELF; y = SELF -> <:expr< App x y >>]

150

CARET; r = expr_antiquot -> r

| [i = IDENT -> <:expr< Var $str:i$ >>
|
| ||(||; t = SELF, ||)|| -> t]]

expr_antiquot:
[[i = IDENT ->
let r =
let loc = Ploc.make_unlined (0, String.length i) in
<:expr< $lid:i$ >>
in
<:expr< $anti:r$ >>]]
patt_term_eos:
[[x = patt_term; EOS -> x]]
patt_term:
[[BSLASH; i = IDENT; "."; t = SELF -> <:patt< Lam $str:i$ t >>]
| [x = SELF; y = SELF -> <:patt< App x y >>]
| [i = IDENT -> <:patt< Var $str:i$ >>
| CARET; r = patt_antiquot -> r
| "("; t = SELF;)" -> t]]
patt_antiquot:
[[i = IDENT ->
let r =
let loc = Ploc.make_unlined (0, String.length i) in
<:patt< $1id:i$ >>
in
<:patt< $anti:r$ >>]]

END;

value expand_expr s =

Grammar.Entry.parse expr_term_eos (Stream.of_string s)
>
value expand_patt s =

Grammar .Entry.parse patt_term_eos (Stream.of_string s)

Quotation.add "term" (Quotation.ExAst (expand_expr, expand_patt));
Quotation.default.val := "term";

18.7.3 Compilation and test

Compilation:
ocamlc -pp camlpbr -I +camlpb -c term.ml
Example, in the toplevel, including a semantic error, correctly underlined, thanks to the antiquotation nodes:

$ ocaml -I +camlp5 camlpbr.cma
Objective Caml version ...

151

Camlp5 Parsing version ...

#load "term.cmo";
type term =
[Lam of string and term
| App of term and term
| Var of string]
type term =
[Lam of string and term | App of term and term | Var of string]
value comb_s = << \x.\y.\z.(x y)(x z) >>;
value comb_s : term =
Lam "x"
(Lam "y"
(Lam "z" (App (App (Var "x") (Var "y")) (App (Var "x") (Var "z")))))
value omega = << "delta “delta >>;
Characters 18-23:
value omega = << "delta “delta >>;
Unbound value delta
value delta = << \X.X x >>;
value delta : term = Lam "x" (App (Var "x") (Var "x"))
value omega = << "delta “delta >>;
value omega : term =
App (Lam "x" (App (Var "x") (Var "x")))
(Lam "x" (App (Var "x") (Var "x")))

152

Chapter 19

The revised syntax

The revised syntax is an alternative syntax of OCaml. It is close to the normal syntax. We present here
only the differences between the two syntaxes.

Notice that there is a simple way to know how the normal syntax is written in revised syntax: write the
code in a file ”foo.ml” in normal syntax and type, in a shell:

camlpbo pr_r.cmo pr_rp.cmo foo.ml
And, conversely, how a file "bar.ml” written in revised syntax is displayed in normal syntax:
camlpbr pr_o.cmo pr_op.cmo bar.ml
Even simpler, without creating a file:
camlpbo pr_r.cmo pr_op.cmo -impl -
. type in normal syntax ...
. type control-D ...
camlpbr pr_o.cmo pr_rp.cmo —-impl -
. type in revised syntax ...
. type control-D ...

19.1 Modules, Structure and Signature items

e Structure and signature items always end with a single semicolon which is required.

e In structures, the declaration of a value is introduced by the keyword ”value”, instead of ”let”:

OCaml Revised
let x = 42;; value x = 42;
let x = 42 in x + 7;; let x = 42 in x + 7;

e In signatures, the declaration of a value is also introduced by the keyword ”value”, instead of "val”:

OCaml Revised

val x : int;; value x : int;

e In signatures, abstract module types are represented by a quote and an (any) identifier:

153

OCaml Revised
module type MT;; module type MT = ’a;

e Functor application uses curryfication. Parentheses are not required for the parameters:

OCaml Revised
type t = Set.Make(M).t;; type t = (Set.Make M).t;
module M = Mod.Make (M1) (M2);; | module M = Mod.Make M1 M2;

e It is possible to group several declarations together either in an interface or in an implementation by
enclosing them between ”declare” and ”end” (this is useful when using syntax extensions to generate
several declarations from one). Example in an interface:

declare
type foo = [Foo of int | Bar];
value £ : foo —-> int;

end;

19.2 Expressions and Patterns

19.2.1 Imperative constructions

e The sequence is introduced by the keyword ”do” followed by ”{” and terminated by ”}”; it is possible
to put a semicolon after the last expression:

OCaml Revised
el; e2; e3; e4 do { el; e2; e3; ed }

e The "do” after the ”while” loop and the ”for” loop are followed by a ”{” and the loop end with ”}”;
it is possible to put a semicolon after the last expression:

OCaml Revised

while el do while el do {
el; e2; e3 el; e2; e3

done }

for i = el to e2 do for i = el to e2 do {
el; e2; e3 el; e2; e3

done }

19.2.2 Tuples and Lists

e Parentheses are required in tuples:

OCaml Revised
1, "hello", World (1, "hello", World)

e The lists are always enclosed with brackets. A list is a left bracket, followed by a list of elements
separated with semicolons, optionally followed by colon-colon and an element, and ended by a right
bracket. Warning: the colon-colon is not an infix but is just part of the syntactic construction.

OCaml Revised
Xy [x :: y]

[x; y; z] [x; y; 2]

X 1 oy oz oot [x; y; z :: t]

154

19.2.3 Records

e In record update, parentheses are required around the initial expression:

OCaml Revised
{e with field = a} {(e) with field = a}

e It is authorized to use function binding syntax in record field definitions:

OCaml Revised
{field = fun a -> e} {field a = e}

19.2.4 Irrefutable patterns

An irrefutable pattern is a pattern where it is syntactilly visible that it never fails. They are used in some
syntactic constructions. It is either:

e A variable,
e The wildcard ”_”,

e The constructor ”()”,

A tuple with irrefutable patterns,
e A record with irrefutable patterns,

e A type constraint with an irrefutable pattern.

Notice that this definition is only syntactic: a constructor belonging to a type having only one constructor
is not considered as an irrefutable pattern (except ”()”).

19.2.5 Constructions with matching

e The keyword ”function” no longer exists. Only "fun” is used.

e The pattern matchings, in constructions with ”fun”, match” and ”try” are closed with brackets: an

open bracket ”[” before the first case, and a close bracket ”]” after the last case:
OCaml Revised
match e with match e with
pl -> el [pl > el
| p2 -> e2 | p2 > e2]

But if there is only one case and if the pattern is irrefutable, the brackets are not required. These
examples work identically in OCaml and in revised syntax:

OCaml Revised
fun x -> x fun x -> x
fun {foo=(y, J} >y fun {foo=(y, D} >y

e [t is possible to write the empty function, raising the exception ”Match_failure” whichever parameter
is applied, the empty "match”, raising ” Match_failure” after having evaluated its expression, and the
empty "try”, equivalent to its expression without try:

155

fun []
match e with []
try e with []

e The patterns after ”let” and ”value” must be irrefutable. The following OCaml expression:

let £ (x::y) = ...
must be written:

let £ = fun [[x::y] —> ...

e [t is possible to use a construction ”where”, equivalent to ”let”, but usable only when where is only

one binding. The expression:
el where p = e
is equivalent to:

let p = e in el

19.2.6 Mutables and Assignment

e The statement ”<-" is written 7 :=":

Y

OCaml

Revised

x.f <-y

x.f :=y

e The "ref” type is declared as a record type with one field named ”val”, instead of ”contents”. The

operator ”!” does not exist any more, and references are assigned like the other mutables:
OCaml Revised
x :=lIx+y x.val := x.val + y
19.2.7 Miscellaneous

e The "else” is required in the ”if” statement:
OCaml Revised
if a then b if a then b else (O

e The boolean operations ”or” and ”and” can only be written with ” | |” and ”&&”:
OCaml Revised
aorbé&c all b&&c
all b&&c all bé&kc

e No more "begin end” construction. One must use parentheses.

e The operators as values are written with an backslash:

OCaml Revised
(+) \+
(mod) \mod

156

e Nested ”as” patterns require parenthesis:

OCaml
function Some a as b, ¢ —->

Revised
fun [((Some a as b), c) —>

But they are not required before the right arrow:

OCaml

function Some a as b ->

Revised

fun [Some a as b —>

e The operators with special characters are not automatically infix. To define infixes, use the syntax
extensions.

19.3 Types and Constructors

e The type constructors are before their type parameters, which are curryfied:

OCaml Revised

int list list int

(’a, bool) Hashtbl.t Hashtbl.t ’a bool

type ’a foo = ’a list list type foo ’a = list (list ’a)

The abstract types are represented by a unbound type variable:

OCaml Revised

type ’a foo;; type foo ’a = ’b;

type bar;; type bar = ’a;
Parentheses are required in tuples of types:

OCaml Revised

int * bool

(int * bool)

In declaration of a concrete type, brackets must enclose the constructor declarations:

OCaml

Revised

type t = A of i | Bj;;

type t = [Aof i | B1;

e It is possible to make the empty type, without constructor:
type foo = [];

e There is a syntax difference between data constructors with several parameters and data constructors
with one parameter of type tuple:

The declaration of a data constructor with several parameters is done by separating the types with
7and”. In expressions and patterns, this constructor parameters must be curryfied:

157

OCaml Revised
type t = C of t1 * t2;; type t = [C of t1 and t2];
C (x, y);; Cxy;

The declaration of a data constructor with one parameter of type tuple is done by using a tuple type.

In expressions and patterns, the parameter has not to be curryfied, since it is alone. In that case the
syntax of constructor parameters is the same between the two syntaxes:

OCaml Revised
type t = D of (t1 * t2);; type t = [D of (t1 * t2) 1;
D (x, y);; D (x, y);
e The bool constructors start with an uppercase letter. The identifiers ”true” and ”false” are not
keywords:
OCaml Revised
true && false

True && False

e In record types, the keyword ”mutable” must appear after the colon:

OCaml Revised
type t = {mutable x : t1};; type t = {x : mutable t1};
e Manifest types are with ”==":
OCaml Revised
type ’a t = ’a option = type t ’a = option ’a ==
None [None
| Some of ’a | Some of ’a]
e Polymorph types start with ”!1”:
OCaml Revised
type t = type t =
{f: ’a. ’alist } {f: ' ’a. list ’a}

19.4 Streams and Parsers

e The streams and the stream patterns are bracketed with ” [:” and ”:]” instead of ” [<” and ">]".

e The stream component ”terminal” is written with a backquote instead of a quote:

OCaml

[< ’1;

Revised

25 s;

)3 >]

[: ‘1; ‘2

s; ‘3 :]

e The cases of parsers are bracketed with ” [” and 717, like for ”fun”, "match” and "try”. If there is one
case, the brackets are not required:

OCaml Revised
parser parser
[< ’Foo >] -> e [[: ‘Foo :] ->e
| [<p=1>] ->f;; | [: p=£f:1 ->f1;
parser [< ’x >] -> x;; parser [: ‘x :1 -> x;

158

e It is possible to write the empty parser raising the exception ” Stream.Failure” whichever parameter is
applied, and the empty stream matching always raising ” Stream.Failure”:

parser []

match e with parser []

e In normal syntax, the error indicator starts with a double question mark, in revised syntax with a
simple question mark:

e In normal syntax, the component optimization starts with ”?!” in revised syntax with ”!

OCaml Revised
parser parser
[< ’1; ’2 ?? ‘'error" >] -> [: ‘1; ‘2 ? ‘'error" :] ->

OCaml Revised
parser parser
[< 721; 22720 >] —> [: “1; ‘21 1 =>

19.5 Classes and Objects

e Object items end with a single semicolon which is required.

Class type parameters follow the class identifier:

OCaml

Revised

class [’a, ’b] point = ...
class ¢ = [int] color;;

class point [’a, ’b] = ...
class ¢ = color [int];

In the type of class with parameters, the type of the parameters are between brackets.

signature:

OCaml

Revised

class ¢ int -> point;;

class ¢ : [int] -> point;

The keywords ”virtual” and ”private” must be in this order:

OCaml

Revised

method virtual private m :

method private virtual m :

method virtual private m :

method virtual private m :

Object variables are introduced with ”value” instead of ”val”:

OCaml

Revised

object val x = 3 end

object value x = 3; end

Type constraints in objects are introduced with ”type” instead of ”constraint”:

OCaml

Revised

object constraint ’a = int end

object type ’a = int; end

159

Example in

19.6 Labels and Variants

~,

e Labels in types must start with ”

OCaml Revised

val x : num:int -> bool;; value x : “num:int -> bool;

e Types whose number of variants are fixed start with ” [=7:

OCaml Revised

type t = [‘On | ‘0ff];; type t = [= ‘On | ‘0£ff];

e The ”[” and the ”<” in variant types must not be sticked:

OCaml Revised

type t = [< ‘Foo | ‘Bar 1;; type t = [< ‘Foo | ‘Bar];

160

Chapter 20

Scheme and Lisp syntaxes

It is possible to write OCaml programs with Scheme or Lisp syntax. They are close the one to the other,
both using parentheses to identify and separate statements.

20.1 Common

The syntax extension kits are named ”pa_scheme.cmo” and ”pa_lisp.cmo”. The sources (same names
ending with ”.ml” in the Camlp5 sources), are written in their own syntax. They are boostrapped thanks
to versions written in revised syntax and to the Camlpb pretty printing system.

In the OCaml toplevel, it is possible to use them by loading ”camlp5r.cma” first, then "pa_lisp.cmo” or
"pa_scheme.cmo” after:

ocaml -I +camlpb5 camlpbr.cma pa_scheme.cmo
Objective Caml version ...

Camlp5 Parsing version ...

(let ((x 3)) (x 3 x))

- : int = 9

(values 3 4 5)

- : (int * int * int) = (3, 4, 5)

ocaml -I +camlp5 camlpbr.cma pa_lisp.cmo
Objective Caml version ...

Camlp5 Parsing version ...
(let ((x 3)) (* 3 x))
- :int =9

(, 345)
- : (int * int * int) = (3, 4, 5)

The grammar of Scheme and Lisp are relatively simple, just reading s-expressions. The syntax tree nodes
are created in the semantic actions. Because of this, these grammars are hardly extensible.

161

However, the syntax extension EXTEND (”pa_extend.cmo” in extensible grammars) works for them: only
the semantic actions have to be written with the Scheme or Lisp syntax. The stream parsers are also
implemented.

Warning: these syntaxes are incomplete, but can be completed, if Camlp5 users are insterested.

20.2 Scheme syntax

Some examples are given to show the principles:

OCaml Scheme

let x = 42;; (define x 42)

let £ x = 0;; (define (f x) 0)

let rec £ x y = 0;; (definerec (f x y) 0)

let x = 42 and y = 27 in x + y;; (let ((x 42) (y 27)) (+ x y))
let x = 42 in let y = 27 in x + y;; (let*x ((x 42) (y 27)) (+ x y))
module M = struct ... end;; (module M (struct ...))

type ’at = A of ’a * int | B (type (t ’a) (sum (A ’a int) (B)))
fun x y > x (lambda (x y) x)

X; V; 2 (begin x y z)

fxy (£ xy

[1; 2; 3] [1 23]

Xt oy ozt xyz:: t]

a, b, c (values a b c)

match x with ’A°..°Z° -> "x" (match x ((range ’A’ ’Z’) "x")))
{x=y; z =1t} {&xy) (zt)}

20.3 Lisp syntax

The same examples:

OCaml Lisp

let x = 42;; (value x 42)

let £ x = 0;; (value f (lambda x 0))

let rec £ x y = 0;; (value rec f (lambda (x y) 0))
let x = 42 and y = 27 in x + y;; (let ((x 42) (y 27)) (+ x y))
let x = 42 in let y = 27 in x + y;; (let*x ((x 42) (y 27)) (+ x y))
module M = struct ... end;; (module M (struct ...))

type ’at = A of ’a * int | B (type (t ’a) (sum (A ’a int) (B)))
fun x y > x (lambda (x y) x)

X; V; 2 (progn x y z)

fxy (£ xy

[1; 2; 3] (list 1 2 3)

Xt oy ozt (list x y z :: t)

a, b, c (, abc)

match x with ’A’..°Z° -> "x" (match x ((range ’A’ ’Z’) "x")))
{x=y; z =1t} {} G y) (z 1))

162

Chapter 21

Macros

Camlpb provides a system of macros, added by the parsing kit ”pa_macro.cmo”. Macros are values evaluated
at parsing time.

When loaded, the parsing kit extend the syntax of the language and add command options.

21.1 Added syntax

The parsing kit "pa-macro.cmo” extends the structure items (= toplevel phrases), the expressions and the
patterns by the following grammar rules:

str-item ::= str-macro-def
sig-item ::= sig-macro-def
eXpr ::= macro-expr
patt ::= macro-patt
cons-decl ::= macro-cons-decl
match-assoc ::= macro-match-assoc
str_macro-def ::= "DEFINE" uident
"DEFINE" uident "=" expr
"DEFINE" uident params "=" expr

"IFDEF" dexpr "THEN" st-or-mac "END"
"IFDEF" dexpr "THEN" st-or-mac
"ELSE" st-or-mac "END"
| "IFNDEF" dexpr "THEN" st-or-mac "END"
| "IFNDEF" dexpr "THEN" st-or-mac
"ELSE" st-or-mac "END"
= "DEFINE" uident
| "DEFINE" uident params "=" type
| "UNDEF" uident
|
|

I
|
| "UNDEF" uident
|
I

sig_macro-def ::

"IFDEF" dexpr "THEN" sg-or-mac "END"
"IFDEF" dexpr "THEN" sg-or-mac
"ELSE" sg-or-mac "END"
| "IFNDEF" dexpr "THEN" sg-or-mac "END"
| "IFNDEF" dexpr "THEN" sg-or-mac
"ELSE" sg-or-mac "END"
macro-expr ::= "IFDEF" dexpr "THEN" expr "ELSE" expr "END"

163

macro-patt ::

macro-cons-decl ::

macro-match-assoc ::=

st-or-mac ::=
sg-or-mac ::=
params ::

dexpr ::

uident ::
ident ::
ident-char ::

utf8-byte ::

"IFNDEF" dexpr "THEN" expr "ELSE" expr "END"
"__FILE__"
"__LOCATION__"
"IFDEF" dexpr "THEN" patt "ELSE" patt "END"
"IFNDEF" dexpr "THEN" patt "ELSE" patt "END"
"IFDEF" dexpr "THEN" cons-decl "END"
"IFDEF" dexpr "THEN" cons-decl
"ELSE" cons-decl "END"
"IFNDEF" dexpr "THEN" cons-decl "END"
"IFNDEF" dexpr "THEN" cons-decl
"ELSE" cons-decl "END"
"IFDEF" dexpr "THEN" match_assoc "END"
"IFDEF" dexpr "THEN" match-assoc
"ELSE" match-assoc "END"
"IFNDEF" dexpr "THEN" match-assoc "END"
"IFNDEF" dexpr "THEN" match-assoc
"ELSE" match-assoc "END"
str_macro-def

str-item
sig-macro-def

sig-item

ident params

ident

dexpr "OR" dexpr

dexpr "AND" dexpr

"NOT" dexpr

uident

"(" dexpr ")"

’A’-’Z° ident

ident-charx*

(Ca’-’a’ | A2 | C0°-797 | 02 720

utf8-byte)

’\128’-"\255"

When a macro has been defined, as name e.g. "NAME”, the expressions and patterns are extended this way:

expr ::= "NAME"
[
patt ::= "NAME"
|
expr-params := expr
| expr
patt-params := patt ",
| patt

"NAME" ||(|| expr-params n)n

IINAMEII n (II patt_params ll) n

n
B

" expr-params

" patt-params

Notice that the identifiers "DEFINE”, ”UNDEF”, ” IFDEF”, ” IFNDEF”, "ELSE”, "END”, ”OR”, ”AND” and ”NOT”
are new keywords (they cannot be used as identifiers of constructors or modules.

However, the identifiers ”__FILE_” and ”__LOCATION_” and the new defined macro names are not new

identifiers.

164

21.2 Added command options
The parsing kit ”pa macro.cmo” also add two options usable in all Camlp5 commands:

-D uident

Define the uident in question like would have been a DEFINE (without parameter) in the code.

-U uident
Undefine the uident in question like would have been a UNDEF in the code.

—defined

Print the defined macros and exit.

21.3 Semantics

The statement "DEFINE” defines a new macro with optional parameters and an optional value. The macro
name must start with an uppercase letter.

The test of a macro can be done either:
e in structure items
e in signature items
e in expressions
e in patterns
e in a constructor declaration
e in a match case

using the statement ” IFDEF”. Its non-existence can be tested by " IFNDEF”. In expressions and patterns, the
”ELSE” part is required, not in structure items.

The expression behind the ” IFDEF” or the ” IFNDEF” statement may use the operators ”0R”, ” AND” and ”NOT”
and contain parentheses.

Notice that in a ”IFDEF” where the value is True (resp. False), the "ELSE” (resp "THEN”) part does not
need to be semantically correct (well typed), since it does not appear in the resulting syntax tree. Same for
”IFNDEF” and for possible macros parameters which are not used in the associated expression.

If a macro is defined twice, its first version is lost.

The statement "UNDEF” removes a macro definition.

When associated with a value, the "DEFINE” macro acts like a variable (or like function call if it has parame-

ters), except that the parameters are evaluated at parse time and can also be used also in pattern positions.
Notice that this is a way to define constants by name in patterns. For example:

DEFINE WWl = 1914;

DEFINE WW2 = 1939;

value war_or_year =
fun

165

[WW1 -> "world war I"
| WW2 -> "world war II"
| _ => "not a war"]

In a definition of a macro, if the expression contains an evaluation, the evaluation is not done by Camlpb
but just transmitted as code. In this case, it does not work in pattern position. Example in the toplevel:

DEFINE PLUS(x, y) = x + y;
PLUS(3, 4);

- :int =7

fun [PLUS(3, 4) -> O 1;
Toplevel input:

fun [PLUS(3, 4) —> O 1;

Failure: this is not a constructor, it cannot be applied in a pattern

On the other hand, if the expression does not contain evaluation, this is possible:

+H*

DEFINE F0O(x, y) = (x, Some y);

FOO(True, "bar");
- : (bool * option string) = (True, Some "bar")
fun [FOO(_, "hello") >0 | _ > 1 1];

(’a * option string) -> int = <fun>

The macro ”__FILE_” is replaced by the current compiled source file name. In the OCaml toplevel, its value
is the empty string.

The macro ” __LOCATION_" is replaced by the the current location (two integers in number of characters from
the beginning of the file, starting at zero) of the macro itself.

In signatures, the macro definitions can return types which can be used in type definitions.

In constructor declarations and in match cases, it is possible to conditionally define some cases by ” IFDEF”
or "IFNDEF”. For example:

type t =
[A of int
| IFNDEF FOO THEN
B of string
END
| C of bool 1]

match x with
[Ai—>]
| IFNDEF FOO THEN
B s -> toto
END
| Cb->e 1;

166

21.4 Predefined macros
The macro ”CAMLP5” is always predefined.

The macro ”0CAML_oversion” is predefined, where "oversion” is the OCaml version the Camlp5 program
has been compiled with, where all characters but numbers are replaced by underscores. For example, if using
OCaml 3.09.3, the macro ”0CAML_3_09_3" is defined.

Moreover, for some Camlp5 versions (and all the versions which follows them), the macro ” CAMLP5 version”
is defined where "version” is the Camlp5 version where all characters but numbers are replaced by under-

scores. For example, in version 4.02, the macro "CAMLP5.4_02” had been defined and this macro have
appeared in all versions of Camlp5 since 4.02.

To see which macros are predefined, type:

camlpbr pa_macro.cmo -defined

167

168

Chapter 22

Pragma directive

The directive "#pragma” allows to evaluate expressions at parse time, useful, for example, to test syntax
extensions by the statement EXTEND without having to compile it in a separate file.

To use it, add the syntax extension "pa_pragma.cmo” in the Camlp5 command line. It add the ability to
use this directive.

Example in a file, adding a syntax for the statement 'repeat’ and using it just after:

#pragma
EXTEND

GLOBAL: expr;
expr: LEVEL "top"

[["repeat"; el = sequence; "until"; e2 = SELF ->

<:expr< do { el; while not $e2$ do { $e1$ + ¥ >> 1 1]

sequence:

[[el = LIST1 expr_semi -> <:expr< do { $list:el$ } >>]]
expr_semi:

[[e=expr; ";" >e]]

END;

let i = ref 1 in
repeat print_int i.val; print_endline ""; incr i; until i.val = 10;

The compilation of this example (naming it ”foo.ml”) can be done with the command:
ocamlc -pp "camlpbr g_MLast.cmo pa_extend.cmo pa_pragma.cmo" -I +camlp5 foo.ml

Notice that it is still experimental and probably incomplete, for the moment.

169

170

Chapter 23

Extensible functions

Extensible functions allow to define functions by pattern matching which are extensible by adding of new
cases which are inserted automatically at the good place by comparing the patterns. The pattern cases
are ordered according to syntax trees representing them, ”when” statements being inserted before the cases
without ”when”.

Notice that extensible functions are functional: when extending a function, a new function is returned.

The extensible functions are used in the pretty printing system of Camlpb.

23.1 Syntax

The syntax of the extensible functions, when loading ”pa_extfun.cmo” is the following;:

expression ::= extensible-function
extensible-function ::= "extfun" expression "with" "[" match-cases "]"
match-cases ::= match-case "|" match-cases

match-case ::= pattern "->" expression
| pattern "when" expression "->" expression

It is actually the same syntax than the one of "match” and ”try” constructions.

23.2 Semantics

The statement "extend” defined by the syntax takes an extensible function and return another extensible
function with the new match cases inserted at good places into the initial extensible function.

Extensible functions are of type "Extfun.t a b”, which is an abstract type, where "a” and ”b” are respec-
tively the type of the patterns and the type of the expressions. It corresponds to a function of type "a ->

b”

The function "Extfun.apply” takes an extensible function as parameter and return the function which can
be applied like a normal function.

The value "Extfun.empty” is an empty extensible function, of type "Extfun.t ’a ’b”. When applied with
"Extfun.apply” and a parameter, it raises the exception "Extfun.Failure” whatever the parameter.

171

For debugging, it is possible to use the function "Extfun.print” which displays the match cases of the
extensible functions. Actually, only the patterns are displayed in clear, the associated expressions are not.

The match cases are inserted according to the following rules:

The match cases are inserted in the order they are defined in the syntax ”extend”
A match case pattern with "when” is insered before a match case pattern without ”when”.

Two match cases patterns both with ”when” or both without ”when” are insered according to the
alphabetic order of some internal syntax tree of the patterns where bound variables names are not
taken into account.

If two match cases patterns without "when” have the same patterns internal syntax tree, the initial
one is silently removed.

If two match cases patterns with "when” have the same patterns internal syntax tree, the new one is
inserted before the old one.

172

Part 1V

Conclusion

173

174

Chapter 24

Future work

Just some ideas... things to implement or to thing about...

24.1 pretty print in shorter syntax

It is also planed to improve the pretty printing system and the printers, so that the management of the lines
(indentation, continuations) be handled by the system. For the moment, the programmer has to manage
them using the "pc” variable.

24.2 rewritting pretty printer in Scheme syntax

The pretty printer kit ”pr_scheme.cmo” still uses an old technology of pretty printing using old module
named ”Spretty”. I has to be rewritten using EXTEND_PRINTER and the module Pretty.

24.3 printer for EXTEND_PRINTER

There is a syntax "EXTEND_PRINTER” but the corresponding printer is missing.

24.4 extensible lexers

Extensible lexers would be a interesting extension, also. And possibly lexers using regular expressions
(extensible if possible, otherwise as a different module).

24.5 utf-8

The Camlpb lexer for OCaml programs (module Plexer) allows utf-8 characters. Since utf-8 seems to have
some success among unicode formats, perhaps a reflexion to add greek characters and/or real utf-8 arrows
in the syntax (in particular in types) could be interesting.

175

176

Appendix A

Commands and Files

The main command of Camlp5 is ”camlp5”. It is an OCaml program in bytecode (compiled with ocamlc,
not ocamlopt), able to dynamically load OCaml object files (ending with ”.cmo” and ”.cma”).

All other Camlp5 commands derive from that one: they are the command ”camlp5” with some implicitely
applied parameters.

All commands have an option ”-help” which display all possible command parameters and options. Notice
that some parameters (the parsing and pretting kits) may add new options. For example, the command:

camlpb pr_r.cmo -help
prints more lines than just:
camlp5 -help

The first parameters ("load options”) allow to specify parsing and printing kits (”.cmo” and ”.cma” files)
which are loaded inside the ”camlp5” core before any action. Other options may follow.

A.1 Parsing and Printing Kits

A.1.1 Parsing kits
language parsing kits
pa_r.cmo

Revised syntax (without parsers).

pa_rp.cmo

Add revised syntax parsers.

pa_o.cmo

Normal syntax (without parsers). Option added:

-no_quot

don’t parse quotations, allowing to use, e.g. ”<:>” as token.

pa_op.cmo

Add normal syntax parsers.

177

pa_oop.cmo

Add normal syntax parsers without code optimization.

pa_lex.cmo

Add stream lexers.

parsing extension
pa_extend.cmo

Add the EXTEND statement. Options added:

-split_ext
split EXTEND by functions to turn around a PowerPC problem.
-quotify
generate code for quotations (internally used to synchronize q-MLast and pa_r)

-meta_action

undocumented (internally used for compiled version)

pa_extend. m.cmo

Add the specific symbols SLIST0, SLIST1, SOPT and SFLAG to the EXTEND statement.

pa_extfold.cmo

Add the specific symbols FOLDO and FOLD1 to the EXTEND statement.

printing extension

pa_extprint.cmo

Add the EXTEND_PRINTER statement.

extensible functions

pa_extfun.cmo

Add the extensible function (”extfun” statement).

functional parsers

pa_fstream.cmo

Add the functional parsers (”fparser” statement).

other languages
pa_lisp.cmo

Lisp syntax.
pa_scheme.cmo

Scheme syntax.

pa_sml.cmo

SML syntax.

178

other parsing kits

pa-lefteval.cmo

Add guarantee of left evaluation in functions calls.

pamacro.cmo

Add macros. Options added:

-D <string>

define for IFDEF statement
-U <string>

undefine for IFDEF statement
-defined

print the defined macros and exit

pa_pragma.cmo

Add pragma directive: evaluations at parse time

A.1.2 Printing kits
language printing kits

pr_r.cmo

Display in revised syntax. Added options:

-flag <str>
Change pretty printing behaviour according to ”"<str>":
A /a enable/disable all flags
D/d enable/disable allowing expanding ’declare’
L/1 enable/disable allowing printing ’let..in’ horizontally
S/s enable/disable printing sequences beginners at end of lines
default setting is "aS”.

-wflag <str>

Change displaying 'where’ statements instead of ’let’:
A/a enable/disable all flags

I/i enable/disable "where’ after ’in’

L/1 enable/disable 'where’ after ’let..=’

M/m enable/disable 'where’ after 'match’ and ’try’
P/p enable/disable 'where’ after left parenthesis
R/r enable/disable 'where’ after 'record_field..=’
S/s enable/disable 'where’ in sequences

T/t enable/disable "where’ after ’then’ or ’else’

V /v enable/disable 'where’ after ’value..=’

W /w enable/disable "where’ after '->’

default setting is ” Ars”.

-1 <length>
Maximum line length for pretty printing (default 78)

-sep._src
Read source file for text between phrases (default).

179

-sep <string>
Use this string between phrases instead of reading source.
pr-ro.cmo

Add display objects, labels and variants in revised syntax.

pr_rp.cmo

Add display parsers with their (revised) syntax.

pr-o.cmo

Display in normal syntax. Added options:

-flag <str>

Change pretty printing behaviour according to <str>:
A/a enable/disable all flags

L/1 enable/disable allowing printing ’let..in’ horizontally
M/m enable/disable printing double semicolons

default setting is ” Am”.

-1 <length>
Maximum line length for pretty printing (default 78)

-sep_src

Read source file for text between phrases (default).
-sep <string>
Use this string between phrases instead of reading source.
pr_op.cmo

Add displaying parsers with their (normal) syntax.

extensible functions

pr_extfun.cmo

Add displaying extensible functions (”extfun” statement) in their initial syntax.

other language

pr_scheme.cmo
Display in Scheme syntax. Option added:
-1 <length>
Maximum line length for pretty printing (default 78)
-sep <string>
Use this string between phrases instead of reading source.
pr_schemep.cmo

Add display parsers with their (Scheme) syntax.

180

other printing kits
pr_extend.cmo

Add the displaying of EXTEND statements in their initial syntax.Option added:

-no_slist
Don’t reconstruct SLIST, SOPT, SFLAG

pr_depend.cmo
Display dependencies. Option added:
-I dir
Add 7dir” to the list of search directories.

pr_dump.cmo

Dump the syntax tree in binary (for the OCaml compiler)

prnull.cmo

No output.

A.1.3 Quotations expanders

q-MLast.cmo

9 2 99 7

Syntax tree quotations. Define the quotations named: "expr”, ”"patt”, "ctyp”, "str_item”, "sig_item”,

7N YA N YY) ”» o ”» o

”module_type”, ”module_expr”, ”class_type”, " class_expr”, ” class_sig_item”, ” class_str_item”, ” with_constr”
and ”poly_variant”.

g-phony.cmo

Transform quotations into phony variables to be able to pretty print the quotations in their initial form
(not suitable for compilation)

A.2 Commands

camlpbr

Shortcut for ”camlp5 pa_r.cmo pa_rp.cmo pr_dump.cmo”

camlpbr.opt

Same as previous, but in native code instead of bytecode, therefore faster. But not extensible: it is
not possible to add other parsing or printing kits neither in command arguments nor with the ”load”
directive inside sources. Suitable for compiling sources not using other syntax extensions.

camlpbo

Shortcut for ”camlp5 pa_o.cmo pa_op.cmo pr_dump.cmo”

camlpbo.opt

Same as previous, and like ” camlp5r. opt”, faster and not extensible. Moreover, this has been produced
by compilation of Camlpd grammars, resulting in a still faster executable.

camlpbsch

Shortcut for ”camlp5 pa_scheme.cmo pr_dump.cmo”

181

A.3 OCaml toplevel files

These object files can be loaded in the OCaml toplevel to make Camlp5 parse the input. It is possible to
load them either by putting them as parameter of the toplevel, or by using the directive "load”. The option
”-I +camlp5” has to be added to the "ocaml” command (the OCaml toplevel).

camlpbr.cma

Read phrases and display results in revised syntax

camlpbo.cma

Read phrases and display results in normal syntax

camlpbsch.cma

Read phrases in Scheme syntax

A.4 Library files

The Camlpb library is named ”gramlib.cma” and its native code version is ”"gramlib.cmxa”. They contain
the modules:

e Ploc : building and combining locations

e Plexing : lexing for Camlp5 grammars

e Plexer : lexer used in revised and normal syntax

e Gramext : implementation of extensible grammars

e Grammar : extensible grammars

e Extfold : functions for grammar extensions FOLDO and FOLD1
e Extfun : functions for extensible functions

e Eprinter : extensible printers

e Fstream : functional streams

e Pretty : pretty printing on strings

This is a pure library : when linking with it, the Camlp5 program is not included.

182

Appendix B

Library

All modules defined in ”gramlib.cma”, but not including all Camlp5 modules used by the Camlp5 commands
and kits.

B.1 Ploc module

Building and combining locations. This module also contains some pervasive type and function.

type t = ’abstract;
Location type.

B.1.1 located exceptions

exception Exc of location and exn;

”Ploc.Exc loc e” is an encapsulation of the exception ”e” with the input location ”1oc”. To be used

to specify a location for an error. This exception must not be raised by the OCaml function "raise”,

but rather by "Ploc.raise” (see below), to prevent the risk of several encapsulations of "Ploc.Exc”.
value raise : t -> exn -> ’a;

"Ploc.raise loc e”,if "e” is already the exception "Ploc.Exc”, re-raise it (ignoring the new location
”loc”), else raise the exception "Ploc.Exc loc e”.

B.1.2 making locations

value make : int -> int -> (int * int) -> t;
”Ploc.make line nb bol_pos (bp, ep)” creates alocation starting at line number ”"1ine nb”, where
the position of the beginning of the line is "bol_pos” and between the positions "bp” (included) and
7ep” excluded. The positions are in number of characters since the begin of the stream.

value make_unlined : (int * int) -> t;

”Ploc.make unlined” is like "Ploc.make” except that the line number is not provided (to be used e.g.
when the line number is unknown).

value dummy : t;

"Ploc.dummy” is a dummy location, used in situations when location has no meaning.

183

B.1.3 getting location info

value first pos : t -> int;
"Ploc.first_pos loc” returns the position of the begin of the location in number of characters since
the beginning of the stream.

value lastpos : t -> int;
"Ploc.last_pos loc” returns the position of the first character not of the location in number of
characters since the beginning of the stream.

value linemnb : t -> int;
”Ploc.linenb loc” returns the line number of the location or ”-1" if the location does not contain
a line number (i.e. built with "Ploc.make unlined” above).

value bol pos : t -> int;

"Ploc.bol pos loc” returns the position of the beginning of the line of the location in number of
characters since the beginning of the stream, or ”0” if the location does not contain a line number (i.e.
built the with "Ploc.make unlined” above).

B.1.4 combining locations

value encl : t -> t -> t;
"Ploc.encl locl loc2” returns the location starting at the smallest start and ending at the greatest
end of the locations ”"1oc1” and "1oc2”. In other words, it is the location enclosing ”1loc1” and "1loc2”.
value shift : dint -> t -> t;
”"Ploc.shift sh loc” returns the location ”loc” shifted with ”sh” characters. The line number is
not recomputed.
value sub : t -> int -> int -> t;
”"Ploc.sub loc sh len” is the location ”loc” shifted with ”sh” characters and with length ”len”.
The previous ending position of the location is lost.
value after : t -> int -> int -> t;

"Ploc.after loc sh len” is the location just after loc (starting at the end position of ”1oc”) shifted
with ”sh” characters and of length ”1len”.

B.1.5 miscellaneous

value name : ref string;

”Ploc.name.val” is the name of the location variable used in grammars and in the predefined quota-
tions for OCaml syntax trees. Default: ”"loc"”.

value from file : string -> t -> (string * int * int * int);

”"Ploc.from_file fname loc” reads the file "fname” up to the location ”loc” and returns the real
input file, the line number and the characters location in the line; the real input file can be different
from ”fname” because of possibility of line directives typically generated by /lib/cpp.

184

B.1.6 pervasives

type vala ’a =
[VaAnt of string
| Vaval of ’a]

Encloser of many abstract syntax tree notes types, in ”strict” mode. This allow the system of antiquo-
tations of abstract syntax tree quotations to work when using the quotation kit ”q_ast.cmo”.

value callwith : ref ’a -> ’a -> (°b -> ’¢c) -> ’b -> ’c;

"Ploc.callwith r v f a” sets the reference "r” to the value ”v”, then calls ”f a”, and resets "r” to
its initial value. If ”f a” raises an exception, its initial value is also reset and the exception is reraised.
The result is the result of ”f a”.

B.2 Plexing module

Lexing for Camlpb grammars.

This module defines the Camlp5 lexer type to be used in extensible grammars (see module ”Grammar”). It
also provides some useful functions to create lexers.

type pattern = (string * string);
Type for values used by the generated code of the EXTEND statement to represent terminals in entry
rules.
e The first string is the constructor name (must start with an uppercase character). When it is
empty, the second string is supposed to be a keyword.

e The second string is the constructor parameter. Empty if it has no parameter (corresponding to
the "wildcard’ pattern).

e The way tokens patterns are interpreted to parse tokens is done by the lexer, function " tok match”
below.

exception Error of string;

A lexing error exception to be used by lexers.

B.2.1 lexer type

type lexer ’te =
{ tok_func : lexer_func ’te;
tok_using : pattern -> unit;
tok_removing : pattern -> unit;
tok_match : mutable pattern -> ’te -> string;
tok_text : pattern -> string;
tok_comm : mutable option (list Ploc.t) }

The type for lexers compatible with Camlp5 grammars. The parameter type ”’te” is the type of the
tokens.

e The field "tok_func” is the main lexer function. See ”lexer_func” type below.

185

e The field "tok_using” is a function called by the "EXTEND” statement to warn the lexer that a
rule uses this pattern (given as parameter). This allow the lexer 1/ to check that the pattern
constructor is really among its possible constructors 2/ to enter the keywords in its tables.

e The field "tok_removing” is a function possibly called by the "DELETE RULE” statement to warn
the lexer that this pattern (given as parameter) is no more used in the grammar (the grammar
system maintains a number of usages of all patterns and calls this function when this number falls
to zero). If it is a keyword, this allow the lexer to remove it in its tables.

e The field "tok match” is a function called by the Camlp5 grammar system to ask the lexer how the
input tokens have to be matched against the patterns. Warning: for efficiency, this function has
to be written as a function taking patterns as parameters and, for each pattern value, returning
a function matching a token, not as a function with two parameters.

e The field "tok_text” is a function called by the grammar system to get the name of the tokens
for the error messages, in case of syntax error, or for the displaying of the rules of an entry.

e The field "tok_comm” is a mutable place where the lexer can put the locations of the comments,
if its initial value is not "None”. If it is "None”, nothing has to be done by the lexer.

and lexer_func ’te = Stream.t char -> (Stream.t ’te * location_function)
The type of a lexer function (field ”tok_func” of the type "1lexer”). The character stream is the input
stream to be lexed. The result is a pair of a token stream and a location function (see below) for this
tokens stream.

and location_function = int -> Ploc.t;
The type of a function giving the location of a token in the source from the token number in the stream
(starting from zero).

value lexer_text : pattern -> string;

A simple "tok_text” function.

value defaultmatch : pattern -> (string * string) -> string;

A simple "tokmatch” function, appling to the token type ” (string * string)”.

B.2.2 lexers from parsers or ocamllex

The functions below create lexer functions either from a ” char stream” parser or for an ”ocamllex” function.
With the returned function ”£” it is possible to get a simple lexer (of the type "Plexing.lexer” above):

{Plexing.tok_func = f;

Plexing.tok_using = (fun _ -> ());
Plexing.tok_removing = (fun _ -> ());
Plexing.tok_match = Plexing.default_match;
Plexing.tok_text = Plexing.lexer_text}

Note that a better "tok_using” function should check the used tokens and raise "Plexing.Error” for
incorrect ones. The other functions ”tok_removing”, "tok match” and ”"tok_text” may have other imple-
mentations as well.

value lexer_func_of_parser :
((Stream.t char * ref int * ref int) -> (’te * Ploc.t)) —> lexer_func ’te;

A lexer function from a lexer written as a char stream parser returning the next token and its location.
The two references with the char stream contain the current line number and the position of the
beginning of the current line.

value lexer_func_of_ocamllex : (Lexing.lexbuf -> ’te) -> lexer_func ’te;

A lexer function from a lexer created by "ocamllex”.

186

B.2.3 function to build a stream and a location function

value make_stream_and_location :
(unit -> (’te * Ploc.t)) -> (Stream.t ’te * location_function);

B.2.4 useful functions and values
value eval _char : string -> char;

value eval_string : Ploc.t -> string -> string;

Convert a char or a string token, where the backslashes had not been interpreted into a real char or
string; raise "Failure” if bad backslash sequence found; "Plexing.eval char (Char.escaped c)”

” N M ~??

would returns ”c¢” and "Plexing.eval string (String.escaped s)” would return ”s”.

value restore_lexing info : ref (option (int * int));
value linenb : ref (ref int);
value bol pos : ref (ref int);

Special variables used to reinitialize line numbers and position of beginning of line with their correct
current values when a parser is called several times with the same character stream. Necessary for
directives (e.g. #load or #use) which interrupt the parsing. Without usage of these variables, locations
after the directives can be wrong.

B.2.5 backward compatibilities
Deprecated since version 4.08.

type location = Ploc.t;

value make_loc : (int * int) -> location;

value dummy_loc : 1location;

B.3 Plexer module

This module contains a lexer used for OCaml syntax (revised and normal).

B.3.1 lexer

value gmake : wunit -> Plexing.lexer (string * string);

"gmake ()” returns a lexer compatible with the extensible grammars. The returned tokens follow the
normal syntax and the revised syntax lexing rules.

The token type is " (string * string)” just like the pattern type.

The meaning of the tokens are:
e ("", s) is the keyword ”s”,
e ("LIDENT", s) is the ident ”s” starting with a lowercase letter,
e ("UIDENT", s) is the ident ”s” starting with an uppercase letter,

M

e ("INT", s) is an integer constant whose string source is ”s”,

187

M
)

e ("INT 1", s) is an 32 bits integer constant whose string source is ”s

e ("INTL", s) is an 64 bits integer constant whose string source is ”s”,

e ("INTn", s) is an native integer constant whose string source is ”s”,

e ("FLOAT", s) is a float constant whose string source is ”s”,

e ("STRING", s) is the string constant "s”,

e ("CHAR", s) is the character constant ”s”,

e ("TILDEIDENT", s) is the tilde character ”~” followed by the ident ”s”,

e ("TILDEIDENTCOLON", s) is the tilde character ”~” followed by the ident ”s” and a colon ”:”,
e ("QUESTIONIDENT", s) is the question mark ”?” followed by the ident ”s”,

e ("QUESTIONIDENTCOLON", s) is the question mark ”?” followed by the ident ”s” and a colon ”:”,
e ("QUOTATION", "t:s") is a quotation "t” holding the string ”s”,

e ("ANTIQUOT", "t:s") is an antiquotation ”t” holding the string ”s”,

e ("EOI", "") is the end of input.

The associated token patterns in the EXTEND statement hold the same names than the first string (con-
structor name) of the tokens expressions above.

Warning: the string associated with the "STRING” constructor is the string found in the source without any
interpretation. In particular, the backslashes are not interpreted. For example, if the input is "\n" the string
is *not* a string with one element containing the "newline” character, but a string of two elements: the
backslash and the "n" letter.

Same thing for the string associated with the ”CHAR” constructor.

The functions "Plexing.eval string” and "Plexing.eval _char” allow to convert them into the real cor-
responding string or char value.

B.3.2 flags

value dollar for_antiquotation : ref bool;

When True (default), the next call to "Plexer.gmake ()” returns a lexer where the dollar sign is used
for antiquotations. If False, there is no antiquotations and the dollar sign can be used as normal token.

value specific_space_dot : ref bool;

When "False” (default), the next call to "Plexer.gmake ()” returns a lexer where there is no differ-
ence between dots which have spaces before and dots which don’t have spaces before. If "True”, dots
which have spaces before return the keyword " ." (space dot) and the ones which don’t have spaces
before return the keyword "." (dot alone).

value no_quotations : ref bool;

When ”True”, all lexers built by "Plexer.make ()” do not lex the quotation syntax. Default is
"False” (quotations are lexed).

188

B.4 Gramext module

This module is not supposed to be used by the casual user.

It shows in clear the implementations of grammars and entries types, the normal access being through the
”Grammar” module where these types are abstract. It can be useful for programmers interested in scanning
the contents of grammars and entries, for example to make analyses on them.

B.4.1 grammar type

type grammar ’te =
{ gtokens : Hashtbl.t Plexing.pattern (ref int);
glexer : mutable Plexing.lexer ’te }

The visible type of grammars, i.e. the implementation of the abstract type ”Grammar.g”. It is also the
implementation of an internal grammar type used in the Grammar functorial interface.

The type parameter ”’te” is the type of the tokens, which is ” (string * string)” for grammars
built with ”Grammar.gcreate”, and any type for grammars built with the functorial interface. The
field ”gtokens” records the count of usages of each token pattern, allowing to call the lexer function
"tok_removing” (see the Plexing module) when this count reaches zero. The field ”1exer” is the lexer.

B.4.2 entry type

type g_entry ’te =
{ egram : grammar ’te;
ename : string;
elocal : bool;
estart : mutable int -> Stream.t ’te -> 0Obj.t;
econtinue : mutable int -> int -> Obj.t -> Stream.t ’te -> 0bj.t;
edesc : mutable g_desc ’te }

The visible type for grammar entries, i.e. the implementation of the abstract type ”Grammar .Entry.e”
and the type of entries in the Grammar functorial interface. Notice that these entry types have a type
parameter which does not appear in the ”g_entry” type (the ”’te” parameter is, like for grammars
above, the type of the tokens). This is due to the specific typing system of the EXTEND statement
which sometimes has to hide real types, the OCaml normal type system not being able to type Camlpb
grammars.

Meaning of the fields:

e egram : the associated grammar
e ename : the entry name

e elocal : True if the entry is local (local entries are written with a star character ”*” by Gram-
mar.Entry.print)

e estart and econtinue are parsers of the entry used in the grammar machinery
e edesc : the entry description (see below)
and g_desc ’te =

[Dlevels of list (g_level ’te)
| Dparser of Stream.t ’te -> 0bj.t]

189

The entry description.
e The constructor "Dlevels” is for entries built by ”Grammar.Entry.create” and extendable by
the EXTEND statement.

e The constructor "Dparser” is for entries built by ”Grammar.Entry.of parser”.

and g_level ’te =
{ assoc : g_assoc;
Iname : option string;
lsuffix : g_tree ’te;
lprefix : g_tree ’te }
and g_assoc = [NonA | RightA | LeftA]

Description of an entry level.

e assoc : the level associativity
e lname : the level name, if any
e 1lsuffix : the tree composed of the rules starting with ”SELF”
e lprefix : the tree composed of the rules not starting with ”SELF”
and g_symbol ’te =
[Smeta of string and list (g_symbol ’te) and Obj.t
| Snterm of g_entry ’te
| Snterml of g_entry ’te and string
| SlistO of g_symbol ’te
| SlistOsep of g_symbol ’te and g_symbol ’te
| Slistl of g_symbol ’te
| Slistlsep of g_symbol ’te and g_symbol ’te
| Sopt of g_symbol ’te
| Sflag of g_symbol ’te
| Sself
| Snext
| Stoken of Plexing.pattern
| Stree of g_tree ’te]

Description of a rule symbol.

e The constructor ”Smeta” is used by the extensions FOLD0 and FOLD1

e The constructor ”Snterm” is the representation of a non-terminal (a call to another entry)
e The constructor ”Snterml” is the representation of a non-terminal at some given level

e The constructor ”S1ist0” is the representation of the symbol LISTO

e The constructor ”S1listOsep” is the representation of the symbol LISTO followed by SEP
e The constructor ”Slist1” is the representation of the symbol LIST1

e The constructor ”Slistlsep” is the representation of the symbol LIST1 followed by SEP
e The constructor ”Sopt” is the representation of the symbol OPT

e The constructor ”Sflag” is the representation of the symbol FLAG

e The constructor ”Sself” is the representation of the symbol SELF

e The constructor ”Snext” is the representation of the symbol NEXT

e The constructor ”Stoken” is the representation of a token pattern

190

e The constructor ”Stree” is the representation of a anonymous rule list (between brackets).
and g_action = 0Obj.t

The semantic action, represented by a type "0bj.t” because of the specific typing of the EXTEND
statement (the semantic action being able to be any function type, depending on the rule).

and g_tree ’te =
[Node of g_node ’te
| LocAct of g_action and list g_action
| DeadEnd]
and g_node ’te =
{ node : g_symbol ’te; son : g_tree ’te; brother : g_tree ’te }

The types of tree and tree nodes, representing a list of factorized rules in an entry level.
e The constructor "Node” is a representation of a symbol (field "node”), the rest of the rule tree
(field ”son”), and the following node, if this node fails (field "brother”)

e The constructor "LocAct” is the representation of a action, which is a function having all pattern
variables of the rule as parameters and returning the rule semantic action. The list of actions in
the constructor correspond to possible previous actions when it happens that rules are masked by
other rules.

e The constructor "DeadEnd” is a representation of a nodes where the tree fails or is in syntax error.
... the following lines have to be structured ...

type position =
[First
| Last
| Before of string
| After of string
| Level of string]

The type of position where an entry extension takes place.

e First : corresponds to FIRST

e Last : corresponds to LAST

e Before s : corresponds to BEFORE ”s”
e After s : corresponds to AFTER 7s”

e Level s: corresponds to LEVEL ”s”

The module contains other definitions but for internal use.

B.5 Grammar module

Extensible grammars.

This module implements the Camlp5b extensible grammars system. Grammars entries can be extended using
the EXTEND statement, added by loading the Camlpb ”pa_extend.cmo” file.

191

B.5.1 main types and values

type g = ’abstract;

The type of grammars, holding entries.

value gcreate : Plexing.lexer (string * string) -> g;

Create a new grammar, without keywords, using the lexer given as parameter.

value tokens : g -> string -> list (string * int);

Given a grammar and a token pattern constructor, returns the list of the corresponding values currently
used in all entries of this grammar. The integer is the number of times this pattern value is used.

Examples:

e The call: Grammar.tokens g "" returns the keywords list.

e The call: Grammar.tokens g "IDENT" returns the list of all usages of the pattern "IDENT” in
the EXTEND statements.

value glexer : g -> Plexing.lexer token;

Return the lexer used by the grammar

type parsable = ’abstract;

value parsable : g -> Stream.t char -> parsable;

Type and value allowing to keep the same token stream between several calls of entries of the same
grammar, to prevent loss of tokens. To be used with Entry.parse parsable below

module Entry =
sig
type e ’a = ’x;
value create : g -> string -> e ’a;
value parse : e ’a -> Stream.t char -> ’a;
value parse_token : e ’a -> Stream.t token -> ’a;
value parse_parsable : e ’a -> parsable -> ’a;
value name : e ’a -> string;
value of _parser : g -> string -> (Stream.t token -> ’a) -> e ’a;
value print : e ’a -> unit;
value find : e ’a -> string -> e 0bj.t;
external obj : e ’a -> Gramext.g_entry token = "}identity";
end;

Module to handle entries.

e Grammar.Entry.e: type for entries returning values of type ”’a”.

e Grammar.Entry.create g n: creates a new entry named "n” in the grammar "g”.

e Grammar.Entry.parse e : returns the stream parser of the entry "e”.

” 7

e Grammar.Entry.parse_token e : returns the token parser of the entry ”e”.

e Grammar.Entry.parse_parsable e : returns the parsable parser of the entry ”e”.

” 7

e Grammar.Entry.name e : returns the name of the entry ”e”.
e Grammar.Entry.of parser g n p : makes an entry from a token stream parser.

” 0

e Grammar.Entry.print e : displays the entry ”e” using "Format”.

192

e Grammar.Entry.find e s: finds the entry named ”s” in the rules of ”e”.

e Grammar.Entry.obj e : converts an entry into a ”Gramext.g entry” allowing to see what it
holds.

value of_entry : Entry.e ’a -> g;

Return the grammar associated with an entry.

B.5.2 printing grammar entries

The function ”Grammar.Entry.print” displays the current contents of an entry. Interesting for debugging,
to look at the result of a syntax extension, to see the names of the levels.

The display does not include the patterns nor the semantic actions, whose sources are not recorded in the
grammar entries data.

Moreover, the local entries (not specified in the GLOBAL indicator of the EXTEND statement) are indicated
with a star ("#*”) to inform that they are not directly accessible.

B.5.3 clearing grammars and entries

module Unsafe :
sig
value gram_reinit : g -> Plexing.lexer token -> unit;
value clear_entry : Entry.e ’a -> unit;
end;

Module for clearing grammars and entries. To be manipulated with care, because: 1) reinitializing
a grammar destroys all tokens and there may have problems with the associated lexer if there are
keywords; 2) clearing an entry does not destroy the tokens used only by itself.

e Grammar.Unsafe.reinit_gram g lex removes the tokens of the grammar and sets "1lex” as a
new lexer for ”g”. Warning: the lexer itself is not reinitialized.

e Grammar.Unsafe.clear_entry e removes all rules of the entry ”e”.

B.5.4 scan entries

value print_entry : Format.formatter -> Gramext.g_entry ’te -> unit;

General printer for all kinds of entries (obj entries).

value iter_entry :
(Gramext.g_entry ’te -> unit) -> Gramext.g_entry ’te -> unit;

”Grammar.iter_entry f e” applies "f” to the entry ”e” and transitively all entries called by "e”. The
order in which the entries are passed to ”£” is the order they appear in each entry. Each entry is passed
only once. *)

value fold entry : (Gramext.gentry ’te -> ’a -> ’a) -> Gramext.g entry ’te -> ’a -> ’a;

”Grammar.fold entry f e init” computes” (f eN .. (f e2 (f el init)))”,where”el .. eN”

are ”e” and transitively all entries called by ”e”. The order in which the entries are passed to ”£” is
the order they appear in each entry. Each entry is passed only once. *)

193

B.5.5 functorial interface

Alternative for grammars use. Grammars are no more Ocaml values: there is no type for them. Modules
generated preserve the rule "an entry cannot call an entry of another grammar” by normal OCaml typing.

module type GLexerType =
sig
type te = ’x;
value lexer : Plexing.lexer te;
end;

The input signature for the functor ”Grammar.GMake”: "te” is the type of the tokens.

module type S =
sig
type te = ’x;
type parsable = ’x;
value parsable : Stream.t char -> parsable;
value tokens : string -> list (string * int);
value glexer : Plexing.lexer te;
module Entry :
sig
type e ’a = ’y;
value create : string -> e ’a;
value parse : e ’a —-> parsable -> ’a;
value parse_token : e ’a -> Stream.t te -> ’a;
value name : e ’a -> string;
value of_parser : string -> (Stream.t te -> ’a) -> e ’a;
value print : e ’a -> unit;
external obj : e ’a -> Gramext.g_entry te = "Jidentity";
end;
module Unsafe :
sig
value gram_reinit : Plexing.lexer te —> unit;
value clear_entry : Entry.e ’a -> unit;
end;
end;

Signature type of the functor ”Grammar .GMake”. The types and functions are almost the same than in
generic interface, but:

e Grammars are not values. Functions holding a grammar as parameter do not have this parameter
yet.

e The type "parsable” is used in function "parse” instead of the char stream, avoiding the possible
loss of tokens.

e The type of tokens (expressions and patterns) can be any type (instead of (string * string)); the
module parameter must specify a way to show them as (string * string).

module GMake (L : GLexerType) : S with type te = L.te;

B.5.6 grammar flags

value error_verbose : ref bool;

Flag for displaying more information in case of parsing error; default = "False”.

194

value warning verbose : ref bool;

Flag for displaying warnings while extension; default = ”True”.
value strict_parsing : ref bool;
Flag to apply strict parsing, without trying to recover errors; default = "False”.

B.6 Extfold module

Module internally used to make the symbols FOLD0 and FOLD1 work in the EXTEND statement + exten-
sion "pa_extfold.cmo”.

B.7 Extfun module

Extensible functions.

This module implements pattern matching extensible functions which works with the parsing kit ”pa_extfun. cmo”,
the syntax of an extensible function being:

extfun e with [pattern_matching]
See chapter : Extensible functions.
type t ’a ’b = ’x;
The type of the extensible functions of type a -> ’b.
value empty : t ’a ’b;
Empty extensible function.
value apply : t ’a ’b -> ’a -> ’b;
Apply an extensible function.

exception Failure;

Match failure while applying an extensible function.
value print : t ’a ’b -> unit;

Print patterns in the order they are recorded in the data structure.

B.8 Eprinter module

This module allows to create printers, apply them and clear them. It is also internally used by the
”EXTEND_PRINTER” statement.

type t ’a = ’abstract;

Printer type, to print values of type ”’a”.

type pr_context = { ind : int; bef : string; aft : string; dang : string };

Printing context.

e 7ind” : the current indendation

e "bef” : what has to be printed before, in the same line

195

e 7aft” : what has to be printed after, in the same line

e ”"dang” : the dangling token to know whether parentheses are necessary

value make : string -> t ’a;

Builds a printer. The string parameter is used in error messages. The printer is created empty and
can be extended with the "EXTEND_PRINTER” statement.

value apply : t ’a -> pr_context -> ’a -> string;

Applies a printer, returning the printed string of the parameter.

value apply_level : t ’a -> string -> pr_context -> ’a -> string;

Applies a printer at some specific level. Raises "Failure” if the given level does not exist.

value clear : t ’a -> unit;

Clears a printer, removing all its levels and rules.

value empty_pc : pr_context;

Empty printer context, equal to {ind = 0; bef = ""; aft = ""; dang = ""}

Some other types and functions exist, for internal use.

B.9 Fstream module

This module implement functional streams.

To be used with syntax "pa_fstream.cmo”. The syntax is:

e stream: "fstream [: ... :]7

e parser: "parser [[: ... 1 -> ... R
Functional parsers are of type:

Fstream.t ’a -> option (’a * Fstream.t ’a)

They use limited backtrack, i.e if a rule fails, the next rule is tested with the initial stream; limited because
when in case of a rule with two consecutive symbols ”a” and ”b”, if "b” fails, the rule fails: there is no try
with the next rule of ”7a”.

type t ’a = ’x;

The type of ’a functional streams.

value from : (int -> option ’a) -> t ’a;

"Fstream.from f” returns a stream built from the function "£”. To create a new stream element, the
function ”£” is called with the current stream count. The user function ”£” must return either ”Some
<value>” for a value or "None” to specify the end of the stream.

value of_list : 1list ’a -> t ’a;

Return the stream holding the elements of the list in the same order.

value of_string : string -> t char;

Return the stream of the characters of the string parameter.

196

value of_channel : in_channel -> t char;

Return the stream of the characters read from the input channel.

value iter : (’a -> unit) -> t ’a -> unit;
"Fstream.iter f s” scans the whole stream s, applying function ”£” in turn to each stream element
encountered.

value next : t ’a -> option (’a * t ’a);
Return "Some (a, s)” where "a” is the first element of the stream and ”s” the remaining stream, or

"None” if the stream is empty.

value empty : t ’a -> option (unit * t ’a);

" ~??

Return "Some ((), s)” if the stream is empty where ”s” is itself, else "None”.

value count : t ’a -> int;

Return the current count of the stream elements, i.e. the number of the stream elements discarded.

value count_unfrozen : t ’a -> int;

Return the number of unfrozen elements in the beginning of the stream; useful to determine the position
of a parsing error (longuest path).

B.10 Pretty module

Pretty printing on strings.

value horiz vertic : (unit -> ’a) -> (unit -> ’a) -> ’a;

“horiz vertic h v” first calls ”"h” to print the data horizontally, i.e. without newlines. If the dis-
playing contains newlines or if its size exceeds the maximum line length (see variable "1ine length”

M <p)?

below), then the function ”"h” stops and the function ”v” is called which can print using several lines.

value sprintf : format ’a unit string -> ’a;

"sprintf fmt ...” formats some string like "Printf.sprintf” does, except that, if it is called in
the context of the *first* function of "horiz vertic” above, it checks whether the resulting string
has chances to fit in the line. If not, i.e. if it contains newlines or if its length is greater than
"max_line_length.val”, the function gives up (raising some internal exception). Otherwise the built
string is returned. ”sprintf” behaves like "Printf.sprintf” if it is called in the context of the
second function of "horiz_vertic” or without context at all.

value line_length : ref int;

”line_length” is the maximum length (in characters) of the line. Default = 78. Can be set to any
other value before printing.

B.11 Deprecated modules Stdpp and Token

The modules ”Stdpp” and ”Token” has been deprecated since version 5.00. The module "Stdpp” was
renamed "Ploc” and most of its variables and types was renamed too. The module "Token” was renamed
"Plexing”’

The backward compatibility is assumed. See the files ”stdpp.m1i” and "token.mli” in the Camlpb distri-

bution to convert from old into new names if any. After several versions or years, the modules ”Stdpp” and
”Token” will disappear from Camlpb.

197

198

Appendix C

Camlpb sources

Information for developpers of the Camlp5 program.

C.1 Kernel

The sources are composed of:

e the OCaml stuff, copied from the OCaml compiler

e the kernel composed of the directories:

odyl : the dynamic loading system
lib : the library

main : the main program camlpb

meta : the parsers for revised syntax, ast quotations, EXTEND statement, etc/

e the rest: directories etc, compile, ocpp

Some other directories contain configuration files, tools, documentation and manual pages.

The kernel is sufficient to make the core system work: it is possible to compile and bootstrap only it. All
sources being in revised syntax, the first compilation of Camlp5 is done by a version of this kernel in pure
OCaml syntax, located in the directory ocaml_src.

These sources in pure OCaml syntax are not modified by hand. When changes are done in the kernel, and
when the check is done that it correctly compiles and bootstraps, the kernel in pure OCaml syntax is rebuilt
using Camlpb pretty print. This is done by the command ”make bootstrap_sources”.

C.2 Compatibility

This distribution of Camlp5 is compatible with several versions of OCaml. The problem is about the
definition of OCaml syntax trees which may change from a version of OCaml to another. Since OCaml
does not install the sources nor the compiled versions of its syntax tree, a copy of the necessary source
files, borrowed from the source of the OCaml compiler has been done in the directory ’ocaml_stuff’, in
subdirectories with the OCaml version number.

199

If the present distribution of Camlp5 is not compatible with the version of OCaml you have (the command
‘configure’ tells you), it is possible to add it. For that, you need the sources of the OCaml distribution you
have. Once done, after a ’configure’ telling you that it is not compatible, do:

make steal OCAML_SRC=<path-to-0Caml-sources>

This creates a new directory in ’ocaml_stuff’ with sources of the syntax tree of your OCaml compiler.

If you want to check that the sources of the syntax tree of OCaml are up-to-date (e.g. if this is the current
OCaml developpement), do:

make compare_stolen OCAML_SRC=<path-to-0Caml-sources>

The compatibility is done also with the file ‘'main/ast2pt.ml’, which is the module converting Camlp5 syntax
tree into OCaml syntax tree.

In the directory ’ocaml_src¢’ with containt the pure OCaml sources of the Camlp5 core (see chapter TREE
STRUCTURE below), there are as versions of this files as version of OCaml. They are named ’ast2pt.ml_jversion;,’.
If you are adding a new version of OCaml, you need this file. In a first step, make a copy from a close version:

cd ocaml_src/main
cp ast2pt.ml_<close_version> ast2pt.ml_<version>

Then, you can redo ”configure” and do ”make core”. If the file 'ocaml_src/main/ast2pt.ml’ has a compilation
problems, fix them and to 'make core’ again.

Later, the same file 'main/ast2pt.ml’ in Camlp5 syntax may have similar compilation problem. This file is
in one examplary, thanks to IFDEF used here or there.

While compiling with some specific version of OCaml, this file is compiled with ’"OCAMUL_vers’ defined where
'vers’ is the version number form the beginning to the first space or charcter '+’ with all dots converted into
underscores. For example, if you OCaml version is 7.04.24+dev35, you can see in the compilation process
of ast2pt.ml that OCAML_7_.04.2 is defined, and you can add statements defined by the syntax extension
'pa_macro.cmo’, for example IFDEF OCAML_7_04_2. Add statements like that in 'main/ast2pt.ml’ to make
it compile.

C.3 Tree structure

The directory 'ocaml_src’ contains images in pure OCaml syntax of the directories odyl lib main and meta.
This allow to create a core version of Camlp5 from only the OCaml compiler installed.

You can decompose the building of the Camlp5 core into:

1. make library_cold

just makes the directory ’ocaml_src/lib’ and copy the cmo and cmi files into the directory "boot’

2. make compile_cold

makes the other directories of ocaml_src

3. make promote_cold

copies the executables ”camlp5”, ”camlpbr” and the syntax extensions (cmo files) into the directory
"boot’

200

From that point, the core Camlp5 is in directory ’boot’. The real sources in the top directories odyl lib main
and meta, which are written in revised syntax with some syntax extensions (grammars, quotations) can be
compiled. To achieve their compilation, you can do:

make core

Or to compile everything do:
make all

or just:
make

Notice that doing ”"make core” or "make all” from scratch (after a make clean), automatically starts by
making the core files from their pure OCaml versions.

C.4 Fast compilation from scratch

./configure

make clean core compare
make coreboot

make all opt opt.opt

C.5 Testing changes

1. do your changes

2. do:
make core compare
if it says that the bootstrap is ok, you can do:

make all
make opt
make opt.opt

otherwise, to make sure everything is ok, first do:
make coreboot

sometimes two bootstraps (‘make coreboot’ twice) are necessary, in particular if you change things in the
directory ’lib’. It is even possible that three bootstraps are necessary.

If things goes wrong, it is possible to return to the previous version by typing:
make restore clean_hot

then you can change what is necessary and continue by typing:
make core

and test the bootstrap again:

201

make coreboot

After several bootstraps (by 'make coreboot’ or 'make bootstrap’), many versions are pushed in the directory
'boot’ (you can type 'find boot -type d -print’ to see that). If your system correctly bootstraps, you can
clean that by typing:

make cleanboot

which keeps only two versions. (The command 'make clean’ also removes these stack of versions.)

C.6 Before committing your changes
Make sure that the cold start with pure OCaml sources work. For that, do:
make compare_sources | less

This shows you the changes that would be done in the OCaml pure sources of the directory ocaml_src.

To make the new versions, do:

make new_sources
make promote_sources

Notice that these pure OCaml sources are not supposed to be modified by hand, but only created by the above
commands. Besides, their sources, although pretty printed, are sometimes not easy to read, particularly for
expanded grammars (of the statement "TEXTEND’).

However, if these sources do not compile, due to changes in the OCaml compiler, it is possible to edit them.
In this case, similar changes may have to be done in the normal sources in revised syntax.

After doing 'make new_sources’ above, and before doing 'make promote_sources’ below, it is possible to do
‘make untouch_sources’ which change the dates of the new created files with the dates of the old files if they
are not modified. This way, the "svn commit” will not have to compare these files, which may have some
importance if you network is not fast.

The 'make new_sources’ builds a directory named ’ocaml src.new’. If this directory still exists, due to a
previous 'make new_sources’, the command fails. In this case, just delete it (rm -rf ocaml_src.new) without
problem: this directory is not part of the distribution, it is just temporary.

The 'make clean_sources’ deletes old versions of ocaml_src, keeping only the last and the before last ones.
The command:

make bootstrap_sources
is a shortcut for:

make new_sources
make untouch_sources
make promote_sources
make clean_sources

If there are changes in the specific file ‘'main/ast2pt.ml’, do also:

202

make compare_all_ast2pt
and possibly:
make bootstrap_all_ast2pt

because this file, in ’ocaml_src/main’ directory has different versions according to the OCaml version.

After having rebuilt the pure OCaml sources, check they work by rebuilding everything from scratch, starting
with ”configure”.
C.7 If you change the main parser

If you change the main parser 'meta/pa_r.ml’, you may check that the quotations expanders of syntax tree
'meta/q-MLast.ml’ match the new version. For that, do:

cd meta
make compare_q_MLast

If no differences are displayed, it means that 'q_-MLast.ml’ is ok, relatively to 'pa_r.ml’.
Otherwise, if the displayed differences seem reasonable, update the version by typing:
make bootstrap_q_MLast

Then returning to the top directory, do 'make core compare’ and possibly 'make coreboot’ (one of several
times) to check the correctness of the file.

And don’t forget, if you want to commit, to re-create the pure OCaml sources like indicated above.

C.8 Switching between transitional and strict mode

If Camlpb is compiled in some mode, it is possible to change its mode in two boostrapping steps. Type:
make MODE=T coreboot

to switch to transitional mode, or:
make MODE=S coreboot

to switch to strict mode.

After two (necessary) bootstraps, the kernel is compiled in the new mode. Complete the compilation by:
make MODE=T all opt opt.opt

or:
make MODE=S all opt opt.opt

according to the new mode you want to use.

Another solution is, of course, recompile everything from scratch:

203

make clean
./configure -transitional
make world.opt

or:

make clean
./configure -strict
make world.opt

204

Appendix D

About Camlpb

Version

jversion/,

Home page
http://pauillac.inria.fr/~ddr/camlp5/

Author
Daniel de Rauglaudre, INRIA

<licence/>

205

