Animating Autonomous Agents

in Shared Virtual Worlds

Philippe Codognet

INRIA-Rocquencourt and University of Paris 6

LIP6, case 169, 8 rue du Capitaine Scott

75 015 PARIS, FRANCE

Philippe .Codognet@lip6.fr

Abstract.

We present a high-level language for specifying animation of objects in multimedia systems, and in particular for describing behaviors of autonomous agents in 3D virtual worlds. This work is based on VRML (Virtual Reality Modeling Language), the standard format for specifying 3D scenes over the Internet. We have thus designed VRCC, a concurrent programming language connected to the VRML environment, which makes it possible to program animations using the notion of constraints and a model of discrete time at the core of the system. In order to design autonomous, life-like 3D creatures that can autonomously move in the 3D world, we propose some simple behaviors derived from biologically-inspired models of navigation. The first example is motion planning for a virtual robot in a maze. The idea is to go to a point identified as a goal and to avoid obstacles. The agent is reactive and can thus take into account moving obstacles and goal. Secondly, we investigate exploration guided by a stimulus (e.g. light or smell) towards a goal (e.g. food), location of which is unknown, using either temporal difference or spatial difference methods.

1. Introduction

VRML (Virtual Reality Modeling Language) has become since a few years a de facto standard for publishing 3D scenes on the Web. It is a very interesting model because of its generality and versatility, see for instance [2] for a good introduction. Many plug-ins for Web browsers now exist for interpreting the VRML file format, and there is moreover an ISO normalisation of this language (VRML97).

However, VRML is more than a mere specification format for 3D scenes because one can specify complete virtual worlds in which the user can wander at will and where it can interact with 3D objects. More importantly, there is currently a growing interest in developing support for shared virtual worlds, which is putting the (virtual) reality of 3D digital communities at hand. The two main existing systems in that direction are Sony's Virtual Society project and the Community Place browser [3], which has been used for creating several shared virtual worlds in the US and in Japan and Blaxxun’s CCPRO systems which is used for instance in « le deuxième monde » currently hosted by french TV channel Canal+ , and which is a virtual reconstruction of Paris in 3D where people from all over the Internet can meet and explore.

However, most of these shared virtual worlds suffer from an important drawback, namely they are not lively or interactive enough. As interaction is usually limited to chat with other users co-located in the same virtual world, the interest of a site depends more on the number of other people « visiting » it than on the originality or theme of its design.

We will therefore consider in this paper the problem of “populating” such worlds with virtual agents representing life-like creatures which could autonomously navigate and react to their environment, and also possibly interact with users. As a first step in that direction, we will consider agents with simple adaptative behaviors inspired from research in the field of Artificial Life and robotics. For this purpose, we need to design a language in which to program such behaviors, and this language should be both simple, declarative and powerful in order to make it possible to express a great variety of operations. We propose a framework based on VRCC, an integration within the VRML model of a timed Concurrent Constraint language. The basis of this declarative language is the notion of constraint, which can be used to enforce hidden relations between agents and/or between an agent and the environment (e.g. minimal distances, non-collision, etc) or general integrity rules (such as gravity) and thus make sure that the simulated virtual world does not depart too much from our real one.

2. Animation and VRML time model

VRML grew out of SGI's format for storing 3D scenes in Open Inventor, and was thus primarly design to describe static 3D objects and scenes. VRML is based on the classical scene graph architecture for representing and grouping the 3D objects. Scene can be constructed from built-in nodes (boxes, spheres, cone, or any polygon-shaped form) and new user-defined nodes can be also constructed using PROTO nodes. VRML provides basic light sources and performs basic scene illumination calculations.
VRML 2.0 [12] introduced primitives for animation and user interaction, based on a simple event model: each object in the virtual world can receive input events and send output events, these events are communicated between objects through predifined routes, completely independent of the structure of the scene graph. A VRML world basically consists of nodes, describing various geometries, in the scene graph and of a series of routes between objects. An important feature is the possibility to have script nodes, with associated Java or JavaScript programs, for treating and modifying events.

[image: image1.jpg]£ 3 &

Guide Print ity

dvoid wi

VRML is based on a discrete time model, with special nodes called time sensors driving the animation. Such nodes are the only ones that can create output events without receiving inputs, based on some internal clocking signal. Time sensors, when active, run in cycles and generate ticks at the begining of each cycle, but they also generate events within a cycle stating which fraction of the cycle is currently completed. In order to be animated, objects have to receive events are regular intervals that will modify their position. The easisest way is to use interpolators that will, for given initial and final values and a given fraction of the cycle performed, compute a corresponding interpolation. For moving objects, only linear interpolation of trajectories is available as a primitive, more complex animation patterns have to be encoded by the programmer.

The fact that time sensors generate fractional events within a cycle is the way of incorporating a continuous notion of time within the execution model. In theory such fraction_changed events are sent continuously to demanding objects. In practice they are generated only when needed, that is, when redrawing the scene because either the location, size or appearence of some object has been changed or because the viewer is moving and has therefore a different point of view. That is, the granularity of time is in practice, and not surprizingly, driven by the frame rate, which depends on the complexity of the scene, computing power of the machine and intrinseque speed of the browser. Experiment conducted with several browsers on a PC workstation shown that the frame rate is between 10 and 20 frames per seconds, which is acceptable to have a realistic rendering, but not as good as, for instance, the fluidity of animation in computer games running on specific hardware (30 to 60 frames per second). Anyway, considering 20 fps as a basic figure for real-time rendering, it means that events are send out in the VRML browser every 50 milliseconds to drive the animation. Also note that the VRML model is such that the execution of script nodes is not interrupted, meaning that computations not fast enough will degrade the overall frame rate.

3. Reactive Agents

Let us first consider the problem of designing a basic reactive agent in a VRML world, for instance an animated object than can avoid collision with other moving object that could be on his trajectory. Such a situation is depicted in figure 1, where a moving cone, oscillating repeatedly between the left and right sides of the chessboard has to avoid a box which could be put on its way. The box can indeed be interactively dragged by the user and the cone has obviously to react in real-time and modify its trajectory accordingly.

There is no support for this in the VRML model : collision avoidance primitives are only available for preventing the user to bump into walls or objects, and nothing is done for animated objects in the scene. We will use for this purpose the idea of spatial constraints, that is, to provide a mechanism that will enforce a logical relation to forbid an object to enter a specific portion of the scene.

Figure 1. A moving cone and a box

3.1 Constraints for Reactive Agents

A constraint is simply a logical relation between several unknowns,those unknowns being variables that should take values in some domain. A constraint thus restrict the degrees of freedom (possible values) the unknowns can take; it represents some partial information relating the objects of interest. The whole idea of constraint solving is to start reasoning and computing with partial information, ensuring the overall consistency and reducing as much as possible the domains of the unknowns. This is in sharp contrast to classical programming (either imperative, object-oriented or functional) where one only computes with complete values and has no support for propagating partial information.

Constraint Programming has proved to be very successful for Problem Solving and Combinatorial Optimization applications, by combining the declarativity of a high-level language with the efficiency of specialized algorithms for constraint solving, borrowing sometimes techniques from Operations Research and Numerical Analysis [10]. We aim at applying the power of constraint solving techniques for developing complex and efficient planning modules for autonomous agents integrated in 3D virtual environments.

3.2 Reactive agents in VRML

An example of a very simple reactive planning module is that of the moving cone (within a predefined path) who should avoid a moving (user-draggable) box, as depicted in figure 1, where the desired behavior is to avoid the box if it happens to be in the trajectory and to go back to the initial trajectory as soon as possible. We implement the constraint by using a VRML Script Node linked, using routes, to both the moving obstacle (the box) and the moving object (the cone). It will be in charge of checking that the position of the object is always at a certain distance of the box and to modify the trajectory to avoid the obstacle either by the left or by the right, depending on the shortest. The graph of the routes linking the VRML objects is depicted in Figure 2.

[image: image2.wmf][image: image3.wmf]
[image: image4.wmf][image: image5.wmf]
[image: image6.wmf][image: image7.wmf]
[image: image8.jpg]3 Netscape.

a [Membres |5

[image: image9.jpg]3 Netscape
Ei

=3

Iprimes

@ e

[image: image10.jpg]e SR 5

Figure 2. The route graph of the basic reactive agent
The animation of the cone is given by a TimeSensor TS generating clock ticks that are routed to a standard (linear) position interpolator and then routed to the cone. A PlaneSensor PS listen to the position of the mouse controlled by the user and moves the obstacle (the box) accordingly. Both the potion of the box and the intented position of the cone are routed to the non-collision constraint, that is in charge of modifying the intented position of the cone to avoid the obstacle, the output of which is definitively routed to the cone.

If we note by Object.X and Object.Z the (horizontal) coordinates of the cone and by obstacle.X and obstacle.Z that of the box, the arithmetic constraint to be enforced is (for a given radius) :

(Object.X – Obstacle.X)^2

+ (Object.Z – Obstacle.Z)^2

> radius

This constraint is checked for the temptative position of the object at each time point and if it not satisfied then the position is modified (by adding a small move perpendicular to the moving direction of the object either by the left or by the right) until the constraint is satisfied, in which case this value is taken as the new position of the object. One thus obtain a very natural motion for the object, and obstacle avoidance results in a circular trajectory around it. Obviously this scheme is reactive in the sense that it takes into account the fact that the obstacle can be moved by the user and the new induced constraint is checked in real-time to enforce an adequate trajectory for the object.

However such a scheme is very limited, as it has to sequentialize the treatment of position constraints in order to finally route the output to the given agent. Therefore if one considers several position constraints that have to be satisfied together, such a scheme might be unsound as the output of the first constraint might be modified by the second one, and so on, leading eventually with an output inconsistent with some of the previous constraints. One thus has to design a more complex architecture, where navigation constraints are compositionally agglomerated, and solved together at the same time; we need a full programming language to specify animation and agent behaviors.

4. A Reactive Behavior Language
In this section we will detail the design of VRCC, a concurrent constraint programming language integrated in the VRML environment. It is based on the Timed Concurrent Constraint framework of Saraswat et al. [9].
4.1 Concurrent Constraint Languages

Concurrent Constraint Programming (CC) has been proposed a few years ago [8] as a new programming paradigm that can be seen as the merging and generalization of Constraint Logic Programming and Concurrent Logic Languages. It makes it possible to combine both approaches, that is, on the one hand, the ability to reason (symbolically) and to compute (numerically) on specific domains (constraints) and, on the other hand, the possibility to have a dynamic data-driven control of the execution flow (concurrency). The fundamental idea of Concurrent Constraint Languages is the use of constraints for defining the synchronization and control mechanisms. Therefore, several agents could communicate and synchronize through a global store where all information is added in a monotonic way through the time line. Figure 3 depicts this paradigm.

Figure 3. The Concurrent Constraint Model
Each agent can either add a new constraint (Tell operation) or check if some constraint is already true in the current store (Ask operation), i.e., from a logical point of view, implied by it. The Tell operation corresponds to the classical addition of a new constraint in Constraint Programming. Synchronization is achieved through a blocking Ask operation : if it cannot be stated whether the constraint is true or false in the current store, i.e. more information is needed to decide, then the asking agent is suspended until other concurrently running agents add (Tell) newconstraints strong enough to decide. The CC paradigm therefore breaks from the ''problem solving'' tradition of constraint programming (both CLP and CSP) based on transformational languages/models and opens towards a reactive framework for multi-agent languages based on constraints.

4.2 Timed CC
The Timed CC (TCC) extension of classical CC languages [9] is the framework needed for integration within VRML. It basically introduces a notion of discrete time that is compatible with that of VRML (time sensors). The basic idea of TCC is that of synchronous programming exemplified by languages such as Esterel [1] : programs run and respond to signals intantaneously. Time is decomposed in discrete time points, generated by clocks outside the system and programs are executed between time-points. Program execution takes « zero time », that is, is neglectible w.r.t. the time clocking the overall system. Surprizing as it seems, this scheme, called the perfect synchrony hypothesis, is nevertheless adequate for modeling real-time systems and a language such as Esterel is indeed used to program low-level real-time controllers. In TCC, the concurrent computation of running agents is started at each time point and continues until quiescence of the computation. Control is then given back until another signal (time point) is generated. This mechanism is depicted in Figure 4.

 T0 T1 T2

Figure 4. the Timed CC Model

4.3 VRCC : TCC within VRML

Let us consider how to integrate the TCC framework within the VRML model. The main thing is to consider that VRML should clock the TCC system, i.e. that some TimeSensor node in VRML should send its clock ticks (events) for generating time points in the TCC part. This means that TCC computations should run between two events generated by a VRML time sensor node, that is, two frames drawn by the browser. The basic assumption here is that time is external and driven by VRML; there is no control over time in Timed CC. Concurrent computation of running agents is started at each time point (generated by VRML) and until quiescence of the computation. Control is then given back to VRML when quiescence is achived (that is, no agent can further be reduced), and so on so forth. Real-time constraints, as explained earlier, mean that we should have in mind a system where TCC computations are triggered approximatively every 50 ms and run for a few tens of milliseconds before giving control back to the VRML browser.

This architecture is depicted below in Figure 5.

Figure 5. VRCC execution model

Another important point is to handle communication (more than mere clock ticks) between the VRML world and TCC computations. This communication should be bi-directionnal : changes in the VRML world should affect TCC (that is, the TCC computation at the next time-point), and values resulting from TCC computations should be exported to VRML to be taken into account for the specified objects. This is done by handling two sets of shared variables : EventIns and EventOuts.

EvenIns are imported by TCC from VRML and constitute the initial constraint store (i.e. initial values) from which computation will proceed and EventOuts are exported from TCC to VRML and will be routed to VRML objects. Observe that in principle the two sets of variables could be distinct, but in general we will consider that they cover the same set of variables shared between VRML and TCC.

4.4 Syntax of the Language

At each time point, concurrent agents are running simultaneously until quiescence and then the program moves to the next time-point. Basic actions performed by the agents are either posting a constraint to a shared store (Tell operation), suspend until some constraint is entailed by the store (Ask operation), perform some method (Call operation), or post an action to be performed at the next time-point (Next operation).

The syntax of these operations is given below.

tell(c)

constraint addition

 ask(c) => A

synchronization

 A , A

concurrent execution

 A + A

in-determinism

 p(X,Y,...)

agent creation

 (X. A

local variables

next (A)

temporal construct
4.5 Basic Properties of VRCC

The first interesting property of VRCC computations is given by the underlying concurrency of TCC, both between agents and inside a single agent. Indeed, one can consider an agent composed of different sub-parts, with their own methods to perform animation, but which are linked together by some structural constraints.

The second property of the execution model is reactivity : changes in VRML world are taken into account at each time-point and therefore behaviors (TCC computations) can react in real-time, or more precisely at the next time-point. One should therefore take care of avoiding to slowdown the system by heavy computations in the TCC part.

The third property is compositionality : because one has logical variables and constraints for programming behaviors in TCC, constraints can be accumulated by several agents (or sub-agents) to compositionally construct a single behavior. Several constraints for the same agent will be treated together in order to propose a global solution.

Last but not least, the integration of constraint in the behavior language makes it possible to express problem solving capabilities: for instance a planner module, or scheduling of tasks, are easy to implement in a constraint-based language.

5. Biologically-inspired creatures

Let us consider less trivial examples that the previous cone and box. We are currently experimenting with a few examples of autonomous agents, adapting from biologically-inspired models of navigation. There is currently a growing interest for such models both in the Artificial Life and the robotics community, as exemplified for instance by [7] or [11] which provide excellent surveys of recent researches. Our first example will be motion planning for a virtual robot in a maze, see figure 6 for a snapshot of this problem.

The idea is to go to a point identified as a goal (the psychedelic sphere) and to simply avoid the brick-textured obstacles. However, this is nevertheless a complex robot navigation example with moving goal, and with moving obstacles (both user-draggable in real-time). The agent is thus reactive and take any modification of the environment or goal position into account.

Biologists usually consider that the navigation system of small animals (rats and mice, etc) can be decomposed in two subsystems : one based on maps (called the locale system, as it is based on the recognition of locations linked in a graph-like manner), and the other based on routes (called the taxon system, for behavioral orientation). There seems to be evidences that the hippocampus is used to store the cognitive map for the locale system, cf. [6]. We will here only consider an agent with a very limited intelligence building no cognitive map but using only the taxon system for route navigation. The agent will thus only trace a simple route towards a given goal by avoiding obstacles. Therefore the only constraint here is Non-Collision, that is, enforcing some minimal distance w.r.t. obstacles. This experiment is shown on figure 6, and the agent performs very well.

Figure 6. avoiding obstacles

The second example that we will consider is indeed an extension of the first one, where we will not give to the agent the location of the goal but rather use a exploration guided by a stimulus (e.g. light or smell) towards the goal (e.g. food), location of which is unknown. This exploration will be performed by using two different methods : temporal difference or spatial difference. Temporal differences consists in considering a single sensor (e.g. the nose) and checking at every time-point the intensity of the stimulus. If the stimulus is increasing, then the agent continues in the same direction, otherwise the direction is changed randomly and so on so forth. This is exemplified for instance by the chemotaxis (reaction to a chemical stimulus) of the Caenorabditis Elegans, a small soil nemapode [5].
With this method, the agent eventually reach the goal, but might wander in some irrelevant regions of the environment in between. A more efficient strategy is possible by using the spatial differences method. It requires to have two identical sensing organs, placed at different slightly positions on the agent (cf. the two ears). The basic idea is to favorize motion in the direction of the sensor that receive the most important stimulus. This behavior gives very good results, and the agents goes most of the time directly towards the goal. When the goal is moved away by the user, the agent reacts instantly towards the new location. A snapshot of this experiment is depicted in figure 7. More complex strategies are possible, e.g. by considering more sensors or by combining the temporal difference of several sensors, but they are not really more effective than the basic spatial difference method [4].

Figure 7. Exploration driven by a stimulus

(smelling a cake …)

6. Conclusion

We have designed a high-level language for describing behaviors of autonomous agents in virtual environments. We use VRML for the 3D visualization part and a timed concurrent constraint programming (TCC) for agent programming. This framework seems well-suited for animating simple 3D autonomous creatures. Interesting behaviors such as obstacle avoidance or exploration following a given stimulus towards a goal are easily expressible in this system and opens up for a variety of biologically-inspired behaviors for virtual creatures populating VRML virtual worlds.

7. References

[1] G. Berry and G. Gonthier. The Esterel Programming Language : Design, Semantics and Implementation, Science of Computer Programming, vol. 19 no. 2, 1992.
[2] R. Carey and G. Bell, The Annoted VRML 2.0 Reference Manual, Addison–Wesley, 1997.

[3] R. Lea, Java for 3D and VRML Worlds, New Riders, 1996.

[4] W. Leow. Computational Studies of Exploration by Smell, in [11].
[5] T. Morse, T. Ferrée, S. Lockery. Robust Spatial Navigation in a Robot Inspired by Chemotaxis in C. Elegans, in [11].

[6] J. O’Keefe and L. Nadel. The hippocampus as a cognitive map, Clarendon Press 1978.

[7] R. Pfeifer and R. A. Brooks (Eds.). Special issue on Practice and Future of Autonomous Agents, Robotics and autonomous systems, vol. 20, no. 2-4, June 97.

[8] V. Saraswat. Concurrent Constraint Programming, MIT Press, 1993.

[9] V. Saraswat, R. Jagadeesan and V. Gupta, Timed Default Concurrent Constraint Programming, Journal of Symbolic Computing (1996) 22, pp 475-520.

[10] V. Saraswat, P. Van Hentenryck, P. Codognet et al., Constraint Programming, ACM Computing Surveys vol. 28 no. 4, December 1996.

[11] N. Schmajuck (Ed.). Special issue on Biologically-inspired models of Navigation, Adaptive Behavior, vol. 6, no. 3/4, Winter/Spring 98.

[12] The VRML Architecture group, The virtual reality modeling language specification,

version 2.0, August 1996. Available at http://vag.vrml.org/VRML2.0/FINAL

agent

agent

EventOuts

EventIns

Concurrent exec. execution

Constraint

Store

Cone

Constraint

Interpolator

agent

agent

agent

Obstacle

TS

PS

TCC

agents

VRML world

VRML world

