Verified Characteristic Formulae for CakeML

Armaél Guéneau, Magnus O. Myreen, Ramana Kumar, Michael Norrish

April 27, 2017

Goal: write programs in a high-level (ML-style)

language, prove them correct interactively, and

compile them using a fully verified compilation
chain.

1/30

Main building blocks:

e The CakeML compiler (POPL'14, ICFP'16)
e Characteristic Formulae for ML (ICFP'11)

2/30

CakeML

e Features: references, modules, datatypes, exceptions, a FFI, ...

e Missing features: functors, module nesting, records

3/30

CakeML

The CakeML compiler:

Optimizing compiler

Verified compiler: “Compcert for ML"

e Small trusted base: HOL kernel & machine axiomatisation

Bootstraps (compiles itself)

4/30

CakeML
concrete syntax

Compiler function

Source-level
specification

L

N

Machine code

Compilertheorem'

Binary-level
specification

5/30

CakeML
concrete syntax

Compiler function

Source-level
specification

L

N

Machine code

*

?

Compilertheorem'

Binary-level
specification

5/30

Characteristic Formulae for ML (CFML)

CFML:

A tool to reason about ML programs. ..
e ...using Separation Logic

e ...in an interactive proof assistant (Coq).

Smoothly integrate the SL reasoning rules into the higher-order logic,
by turning all program variables into logical variables in one step

e Used to verify numerous non-trivial data-structures and algorithms
(Union-Find, Dijkstra, Binary trees, Vectors, Hashtables...)

6/30

racteristic Formulae for ML (CFML)

ML concrete
syntax

CF generator
—>

Characteristic
Formula

Program
specification

CF soundness

Program proof

ﬁ:e proof

7/30

End-to-end verification of ML programs: the missing bits

Connecting CakeML and Characteristic Formulae

What are the missing bits?

8/30

End-to-end verification of ML programs: the missing bits

Main challenge: realize CF axioms against the source code semantics

Other challenges:

Add support for exceptions

Add support for 1/0

Adapt from Coq to HOL

Adapt CakeML translator to integrate into CF the connection

between program values and logical values

9/30

Our Contribution

A program logic for CakeML

e State modular specifications about ML programs

e Prove them in a covenient way (using Separation Logic, following
their CF)

e Theorem: the toplevel specification carries to the machine code
produced by the CakeML compiler

Trusted codebase: HOL kernel, machine axiomatization

10/30

Background on CF
Soundness theorem: connecting CF to CakeML semantics

Extensions of CF
Support for 1/O through the CakeML FFI

Support for exceptions

Interoperating with the proof-producing translator

11/30

Background on CF

How does the CF framework work?

ML concrete CF generator Characteristic
>
syntax Formula

Main workhorse: the CF generator, “cf”.

e Source-level expression e — characteristic formula (cf e)

(ct e):

e logical formula; doesn’t mention the syntax of e

e akin to a total correctness Hoare triple

12/30

How does the CF framework work? (2)

ML concrete CF generator Characteristic
>
syntax Formula

(cfe)envHQ:
e “e can have H as pre-condition and @ as post-condition in
environment env”
e H, Q: heap predicates (Separation Logic assertions)
e H :heap — bool

Q@ : v — heap — bool

13/30

Example: “let x = ¢; in &"

Hoare-logic rule:

envk {H} e {Q'} VX, ((x,X) menv) F{Q" X} &2 {Q}
envF {H} (Let x e; &) {Q}

Characteristic Formula:
cf (Let x 1 &) env = local (AH Q.
Q.
cfet HQ A
VX.cfe ((x,X):env) (QX) Q)

Note: in practice, tactics are provided and the definition of cf is not shown to

the user

14/30

Soundness theorem: connecting
CF to CakeML semantics

Soundness of a CF framework

Characteristic CF soundness
Formula

Program /

specification nteractive proof

Program proof

“Proving properties about a characteristic formula
gives equivalent properties about the program itself”

15/30

Connecting CF and CakeML views of the heap

CakeML view of the heap: list of
store values.

state =
<| clock : num CF view of the heap: Separation
'efs‘; v ostore-v list Logic heap assertions.
'a store_v = Example: (r1 ~ vy~ v2)

Refv of ’'a
| W8array of word8 list
| Varray of 'a list

Define heaps and heap predicates specialized for CakeML values:

e Type heap = (num — v store_v)
e Projection state_to_heap : state — heap
e r~v = (Ah.3loc. r =Loc loc A h={ (loc, Refv v) })

16/30

Connecting logical values to CakeML deep-embedded values

CakeML values:

Litv 1it

| Conv ((conN X tid_or_exn) option) (v 1list)

| Closure (v sem_env) string exp

| Recclosure (v sem_env) ((string X string X exp) list) string
| Loc num

| Vectorv (v list)

We re-use CakeML refinement invariants:

INT/ = (Av.v = Litv (IntLit /)
BOOLT = (Av.v = Conv (Some (“true”, TypeId (Short “bool”))) [])

= INTipvo A INT ih vi =
{emp} plus_v - [vo; vi] {Av. (INT (io + i) v)}

17/30

Realizing CFML axioms: Hoare-triple semantics

Extract from CakeML big-step semantics:

evaluate st env [Lit /] = (st,Rval [Litv /])
evaluate st env [Var n] =
case lookup_var_id n env of
None = (st,Rerr (Rabort Rtype_error))
| Some v = (st,Rval [v])
evaluate st env [Fun x e] = (st,Rval [Closure env x €])
evaluate st env [App Opapp [f; v]] = evaluate :
case evaluate st env [v; f] of TR =
(st’,Rval [v; f]) =
case do_opapp [f; v] of
None = (st’,Rerr (Rabort Rtype_error))
| Some (env’,e) = state X (v list,v) result
if st’.clock = 0 then
(st’,Rerr (Rabort Rtimeout_error))
else evaluate (dec_clock st’) env’ [e]
| res = res

vV sem_env —
exp list —

18/30

Realizing CFML axioms: Hoare-triple semantics

Hoare-triple for an expression e in environment env: “env - {H} e {Q}"

envik {H} e {Q} <—
Vst H'.
(H* H") (state_to_heap st) =

v st’ ck.
evaluate (st with clock := ck) env [e] = (st’,Rval [v]) A

(Q v x H' x true) (state_to_heap st')

e H' accounts for the framed heap
e ck accounts for termination

e true accounts for discarded memory cells

19/30

Proving CF soundness

Bridging the gap between:

Characteristic formulae

cf (Let x e1 &) env = local (AH Q.
3Q".
ctfer HQ' A
Vxv. cf e ((x,xv) :: env) (Q" xv) Q)

Big-step semantics

evaluate st env [Let x el e2] =
case evaluate st env [el] of
(st’, Rval v) =
evaluate st’ ((x, HD v) :: env) [e2]
| (st’, Rerr v) = (st’, Rerr v)

20/30

Proving CF soundness

Theorem (CF are sound wrt. CakeML semantics):
F(cfe)env HQ = envk {H}e{Q}

Proof: by induction on the size of e.

Corollary:

If “(cf e) env H Q" holds, then starting from a state satisfying H,
evaluating e terminates with a value v and a new state satisfying Q v.

21/30

Extensions of CF

Extensions of CF

Support for 1/0 through the CakeML
FFI

Performing 1/0 in CakeML

e Needed to interact with the external world (printing to stdout,
opening files...)

e Done by calling external (C) code

22/30

CakeML 1/0 semantics

e State of the “external world” modeled by the semantics FFI state
(what has been printed to stdout, which files are open, ...)

e Executing an FFI operation updates the state of the FFI
e FFI state changes are modeled by an oracle function

e Modular proofs: need to be able to split the FFI state using “x
(proofs about stdout may be independent from proofs about the
file-system...)

0 ffi_state =

state =
<\ oracle
<| clock : num) .
. string — 0 — byte list —
; refs : v store_v list 0 1 1t
. . oracle_resu
ffi : 0 ffi_state

; ffi_state : 8

>
‘ ‘ >

Problem: we know nothing about the type variable 6!

23/30

Splitting the FFI state

Solution:
e User provides: how to split the FFI state into independent parts
(e.g. one part about stdout, one part about the file-system...)
e Eath part models a fraction of the external world
e Several external functions can update the same part

e FFIl parts exposed in the heap, and are *-separated

= Programs compose as long as their specifications agree on parts for
external functions they both use

24/30

Example: a specification for cat

fun do_onefile fname =
let
val fd = CharIO.openlIn fname
fun recurse () =
case CharI0.fgetc fd of
NONE = () I LIST FILENAME fns fsv A
| SOME ¢ =

Chavlo write o every (A fam. inFS_fname fnm fs) fns A

recurse () numOpenFDs fs < 255 =

in recurse (); {CATFS fs * STDOUT out}
CharIO.close fd cat_v - [fnsv]
end .

(UNIT () u) * CATFS fs *
STDOUT (out @ catfiles_string fs fns)}

fun cat fnames =
case fnames of

(l1=0

| £::fs = do_onefile f; cat fs

25/30

Extensions of CF

Support for exceptions

Without support for exceptions:

e An expression must reduce to a value

e Post-conditions have type v — heap — bool

We now allow expressions to raise an exception:

e Define datatype res =Valv | Exnv
e Post-conditions have type res — heap — bool

e Update the semantics and cf definitions accordingly...

Example: prove a more general specification for cat, which doesn’t
require that the input files exist.

Thanks to our tactics, programs without exceptions can be verified
without additional effort.

26/30

Interoperating with the
proof-producing translator

Existing tool: verified translation from HOL to CakeML

Pure CakeML

Verified
translation

Produces theorems relating a (purely
functional) piece of CakeML code

with the corresponding HOL (pure)
function.

Used to verify most of the compiler

27/30

Example: verified translation of length

e Define and verify the program in HOL4:

(length [] =0) A
(length (h :: t) = 1+ length t)

F Vxy.length (x ++ y) = length x + length y

e The translator automatically produces CakeML code ...

fun length_ml x =
case x of
I [T =0
| (h::t) = 1 + length t

e ...and the theorems

- run_prog length ml length env
F lookup_var “length-ml” length_env = Some length.v
F (aLIST — NUM) length length_v

28/30

Relating translator specifications and CF specifications

We prove equivalence between translator specifications and a particular
shape of CF specifications:

F(a—b)ffv —
Vxxv.axxv = {emp} fv-xv{Av.(b(f x)v)}

Makes translated programs and imperative code with empty input and
output heap interchangeable.

Interest:

o Get specifications “for free” for pure (translated) functions

e Allows for efficient imperative implementations of algorithms that
realize logical functions

29/30

Conclusion

e End-to-end verification framework for CakeML
e With a CF generator that supports all the features of CakeML
e With support for formally relating a logical function with an efficient

imperative implementation

Future work:

e Enhance tactics to further improve proof automation
e Prove correct more data-structures and algorithms (e.g. replace bits
of the CakeML compiler with more efficient, imperative code)

30/30

cf (Var x) env = local (AH Q.
3X. lookup_var_id x env = Some X A
H>Q X)

cf (Let x e1 &) env = local (AH Q.
Q.
cfet HQ A
VX.cfe ((x,X):env) (Q X) Q)

cf (If cond e; ;) env = 1local (AH Q.
Jcondv b.
exp_is_val env cond = Some condv A
BOOL b condv A
(b <= T) = cfepenvHQ) A
(b <= F) = cfeenvHQ))

31/30

Program specifications

Specifications:

e Written {H} f - args {Q}: Hoare-triple for functional applications

e Related to cf via a consequence of the soundness theorem:

Fons # [=
length xvs = length ns =
cf body (extend_env ns xvs env) H Q =
{H} naryClosure env ns body - xvs {Q}

32/30

Connecting CF and CakeML visions of the heap

Define heaps holding CakeML values:

heap = (num X v store_v) set

r~»v = (Ah.3loc. r =Loc loc A h={ (loc, Refv v) })
p*xqg = (ANh.Juv.split h(u,v) A pu A qV)

Define state_to_heap : state — heap.

For a state st with st.refs = [Refv vq; Refv vy

e state_to heap st = {(0,v1); (1,wv)}

e (Loc 0~ vy xLoc 1 ~~ v,) (state_to_heap st)

33/30

Realizing CFML axioms: app

Semantics of Hoare-triples for unary application

Hoare-triple for the application of a closure to a single argument:

{HY - x{Q}

{H} - x{Q}
case do_opapp [f; x] of
None = Vst h; hy. split (state_to_heap p st) (hi, h2) = —H h
| Some (env,exp) = envk {H} exp {Q}

34/30

Realizing CFML axioms: app

Semantics of Hoare-triples for n-ary application

Hoare-triple for the application of a closure to multiple arguments:

“{H} f-args {Q}"

{H}f-[1{Q} < F

{H} F- X {Q} < {H}f x{Q}

{H} f - x:x :xs{Q} =

{H}f - x{ g IH . H x ({H}g -x:xs{Q}}

Specifications are modular: app integrates the frame rule

35/30

(cfe)envHQ =
V st.
H (state_to_heap st) =
v st’ ck.
evaluate (st with clock := ck) env [e] = (st’,Rval [v]) A
(Q v x true) (state_to_heap st’)

36/30

Performing 1/0 in CakeML

CakeML programs do |/O using a byte-array-based foreign-function
interface (FFI).

e “App (FFI name) [array]’: a CakeML expression

e Calls the external function “name” (typically implemented in C)
with “array” as a parameter

e Reads back the result in “array”

For example: read a character from stdin, open a file, ...

37/30

Splitting the FFI state

Solution: parametrize state_to_heap with information on how to split
the FFI state into “parts”.

A part represents an independent bit of the external world

Several external functions can update the same part

The FFI state 6 can be split into separated parts

e “stdout” would be a part, “stdin” an other, the filesystem a third
one...

38/30

Splitting the FFI state (2)

We parametrize state_to_heap with:

e A projection function proj : 0 — (string > ££i)
e A list of FFI parts : (string list x ffi next) list

ffi =
Str string

ffi: low-level generic model for | Num num
the state of a FFI part | Cons £fi £fi

| List (ffi list)
ffi next: “next-state | Stream (num stream)
function”, a part of the oracle _

ffi next =

string — byte list — ffi —
(byte list x £fi) option

39/30

Splitting the FFI state (3)

Finally, we define a generic I0 heap assertion:

I0: ffi — ffi next — string list — heap — bool
I0stuns = (As.3Jts.s = {FFIpartstunsts})

Pre- and post-conditions can now make assertions about 1/0. Users
typically define more specialized assertions on top of I0.

40/30

Example: a more general specification for cat1

We can remove the precondition that the input file must exist:

F FILENAME fnm fnv A numOpenFDs fs < 255 =
{CATFS fs * STDOUT out}
catl.v - [fnv]
{POST
(Au.
3 content.
(UNIT () u) = (alist_lookup fs.files fnm = Some content) x
CATFS fs * STDOUT (out @ content))
(Me.
(BadFileName_exn e) * (—inFS_fname fnm fs) % CATFS fs x
STDOUT out)}

41/30

Exception-aware Hoare-triples

Hoare-triple validity “env = {H} e {Q}" becomes:

envt {H} e {Q} —
Vst h; hg.
split (state_to_heap p st) (h;, hy) =
H h; =
3rst’ he hg ck.
split3 (state_to_heap p st’) (hs, he, hg) A Q r he A

case r of
Val v = evaluate (st with clock := ck) env [e] = (st’,Rval [v])
| Exn v = evaluate (st with clock := ck) env [e] = (st/,Rerr (Rraise v))

Note: we still rule out actual failures, where evaluate returns “Rerr
(Rabort abort)”.

42/30

Updating cf

Add side-conditions to characteristic formulae, to deal with exceptions:

cf p (Var name) env = local (AH Q.
(Fv. lookup_var_id name env = Some v A H > Q (Val v)) A
Q ». F)

cf p (Let (Some x) e1 e2) env = local (AH Q.
3Q".
cfperenvHQ AN Q »e QA
Vxv. cf p e ((x,xv) :: env) (Q' (Val xv)) Q)

Q1 »e @ <— Ve. (EXl’l e) > @ (EXH e)

43/30

CFs for raise and handle

Define cf for Raise and Handle: similar to the Var and Let cases

cf p (Raise e) env = local (AH Q.
Jv.expisvalenve = Somev A H > Q(Exnv) A Q », F)

cf p (Handle e rows) env = local (AH Q.
31Q".
ctpeenvHQ AN Q », Q A
Vev.
cf_cases ev ev (map (I ## cf p) rows) env (Q' (Exn ev)) Q)

Q1 »y @ < Ve. @y (Vale) > @, (Vale)

44/30

	Background on CF
	Soundness theorem: connecting CF to CakeML semantics
	Extensions of CF
	Support for I/O through the CakeML FFI
	Support for exceptions

	Interoperating with the proof-producing translator

