
Formalizing Asymptotic Complexity
Claims via Deductive Program

Verification

Armaël Guéneau

Gallium

1/21

Formalizing Asymptotic Complexity
Claims via Deductive Program

Verification

2/21

Recall our undergrad algorithm courses...

“Is the value 4 present in this sorted array?”

“Binary search finds the element in time 𝑂(log 𝑛)”

3/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (i+1) j

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (i+1) j

bsearch [|1;3;4;6;7;8;10;13;14|] 4 0 9;;
- : int = 2

It works! We could even prove that it always works.

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (i+1) j

But there is a complexity bug...

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

4/21

Complexity bugs can be critical

http://ocert.org/advisories/ocert-2011-003.html

“Denial of Service via Algorithmic Complexity Attacks”, S. Crosby, D. Wallach

5/21

http://ocert.org/advisories/ocert-2011-003.html

One of the things we do at Gallium...

Machine-checked proofs of programs

including their algorithmic complexity

6/21

One of the things we do at Gallium...

Machine-checked proofs of programs

including their algorithmic complexity

6/21

Formalizing Asymptotic Complexity
Claims via Deductive Program

Verification

7/21

What is formal program verification?

• People write programs

• Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

• Writing a wishlist about a program (aka specification)• Checking the program against this wishlist (“is the
program correct?”)

8/21

What is formal program verification?

• People write programs• Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

• Writing a wishlist about a program (aka specification)• Checking the program against this wishlist (“is the
program correct?”)

8/21

What is formal program verification?

• People write programs• Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

• Writing a wishlist about a program (aka specification)• Checking the program against this wishlist (“is the
program correct?”)

8/21

What is formal program verification?

• People write programs• Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

• Writing a wishlist about a program (aka specification)

• Checking the program against this wishlist (“is the
program correct?”)

8/21

What is formal program verification?

• People write programs• Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

• Writing a wishlist about a program (aka specification)• Checking the program against this wishlist (“is the
program correct?”)

8/21

Formalizing Asymptotic Complexity
Claims via Deductive Program

Verification

9/21

Deductive verification

From the code of the program and the specification, deduce
a set of proof obligations, and try to prove those.

• Automated proofs: FramaC (C), Verifast (C, Java), Infer (C,
C++, Obj-C, Java), Why3 (OCaml)• Interactive proofs, using “proof assistants”: Coq, Isabelle

10/21

What are typical properties written in a specification?

• The program does not crash when you run it

• The program terminates (does not get stuck in a loop)• The program computes the right result• The program does not leak secrets (e.g. for crypto
primitives)• The program does not use too much time• The program does not use too much space, network
bandwidth...

11/21

What are typical properties written in a specification?

• The program does not crash when you run it• The program terminates (does not get stuck in a loop)

• The program computes the right result• The program does not leak secrets (e.g. for crypto
primitives)• The program does not use too much time• The program does not use too much space, network
bandwidth...

11/21

What are typical properties written in a specification?

• The program does not crash when you run it• The program terminates (does not get stuck in a loop)• The program computes the right result

• The program does not leak secrets (e.g. for crypto
primitives)• The program does not use too much time• The program does not use too much space, network
bandwidth...

11/21

What are typical properties written in a specification?

• The program does not crash when you run it• The program terminates (does not get stuck in a loop)• The program computes the right result• The program does not leak secrets (e.g. for crypto
primitives)

• The program does not use too much time• The program does not use too much space, network
bandwidth...

11/21

What are typical properties written in a specification?

• The program does not crash when you run it• The program terminates (does not get stuck in a loop)• The program computes the right result• The program does not leak secrets (e.g. for crypto
primitives)• The program does not use too much time

• The program does not use too much space, network
bandwidth...

11/21

What are typical properties written in a specification?

• The program does not crash when you run it• The program terminates (does not get stuck in a loop)• The program computes the right result• The program does not leak secrets (e.g. for crypto
primitives)• The program does not use too much time• The program does not use too much space, network
bandwidth...

11/21

Formalizing Asymptotic Complexity
Claims via Deductive Program

Verification

12/21

Asymptotic time guarantees

We’re interested in high-level time analysis

• Not “binary search terminates in less than 5ms”• Rather “binary search runs in 𝑂(log 𝑛) steps”

13/21

Asymptotic time guarantees

We’re interested in high-level time analysis

• Not “binary search terminates in less than 5ms”

• Rather “binary search runs in 𝑂(log 𝑛) steps”

13/21

Asymptotic time guarantees

We’re interested in high-level time analysis

• Not “binary search terminates in less than 5ms”• Rather “binary search runs in 𝑂(log 𝑛) steps”

13/21

Typical paper proofs rely on informal reasoning principles –
which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof:
bsearch arr v i j costs

𝑂(1).

(actual cost: 𝑂(log(𝑗 − 𝑖)))

By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: line 2 is 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) (l.3-5) + 𝑂(1) (l.6) + 𝑂(1) (l.8) = 𝑂(1). OK!

14/21

Typical paper proofs rely on informal reasoning principles –
which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof:
bsearch arr v i j costs

𝑂(1).

(actual cost: 𝑂(log(𝑗 − 𝑖)))

By induction on 𝑗 − 𝑖:

• 𝑗 − 𝑖 ≤ 0: line 2 is 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) (l.3-5) + 𝑂(1) (l.6) + 𝑂(1) (l.8) = 𝑂(1). OK!

14/21

Typical paper proofs rely on informal reasoning principles –
which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof:
bsearch arr v i j costs

𝑂(1).

(actual cost: 𝑂(log(𝑗 − 𝑖)))

By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: line 2 is 𝑂(1). OK!

• 𝑗 − 𝑖 > 0: 𝑂(1) (l.3-5) + 𝑂(1) (l.6) + 𝑂(1) (l.8) = 𝑂(1). OK!

14/21

Typical paper proofs rely on informal reasoning principles –
which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof:
bsearch arr v i j costs

𝑂(1).

(actual cost: 𝑂(log(𝑗 − 𝑖)))

By induction on 𝑗 − 𝑖:• 𝑗 − 𝑖 ≤ 0: line 2 is 𝑂(1). OK!• 𝑗 − 𝑖 > 0: 𝑂(1) (l.3-5) + 𝑂(1) (l.6) + 𝑂(1) (l.8) = 𝑂(1). OK!

14/21

Typical paper proofs rely on informal reasoning principles –
which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof:
bsearch arr v i j costs

𝑂(1).
(actual cost: 𝑂(log(𝑗 − 𝑖)))

“By induction on 𝑗 − 𝑖” …but which statement are we proving?

14/21

Typical paper proofs rely on informal reasoning principles –
which can easily be abused

1 let rec bsearch arr v i j =
2 if j <= i then -1 else
3 let k = i + (j - i) / 2 in
4 if v = arr.(k) then k
5 else if v < arr.(k) then
6 bsearch arr v i k
7 else
8 bsearch arr v (k+1) j

Flawed proof:
bsearch arr v i j costs

𝑂(1).
(actual cost: 𝑂(log(𝑗 − 𝑖)))

“By induction on 𝑗 − 𝑖” …but which statement are we proving?

∀𝑛, ∃𝑐,‶ bsearch costs 𝑐″ ≠ ∃𝑐, ∀𝑛,‶ bsearch costs 𝑐″

14/21

Reasoning about 𝑂 in a proof assistant

Using a proof assistant steers us clear of these abuses…

but maybe also from the simplicity of paper proofs.

15/21

Formally, what are we trying to prove?

“bsearch arr v i j runs in 𝑂(log(𝑗 − 𝑖)) steps.”

16/21

Formally, what are we trying to prove?

“bsearch arr v i j runs in 𝑂(log(𝑗 − 𝑖)) steps.”

16/21

Formally, what are we trying to prove?

“there exists a cost function 𝑓 ∈ 𝑂(log 𝑛) such that
for every arr, v, i, j,
bsearch arr v i j runs in at most 𝑓 (𝑗 − 𝑖) steps.”

16/21

Formally, what are we trying to prove?

“there exists a cost function 𝑓 ∈ 𝑂(log 𝑛) such that
for every arr, v, i, j,
bsearch arr v i j runs in at most 𝑓 (𝑗 − 𝑖) steps.”

First step of the proof: exhibit a concrete cost function?

16/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

Concrete cost function?

2 log(𝑗 − 𝑖) + 1? 3 log(𝑗 − 𝑖) + 4?

17/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

Concrete cost function? 2 log(𝑗 − 𝑖) + 1?

3 log(𝑗 − 𝑖) + 4?

17/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

Concrete cost function? 2 log(𝑗 − 𝑖) + 1? 3 log(𝑗 − 𝑖) + 4?

17/21

Our approach to this problem

• Interactive proofs (using Coq)

• Convince Coq to postpone the moment where the
concrete cost function is provided• Start proving the program and its invariants without
knowing the cost function• At the same time, infer the cost function from the code
of the program

18/21

Our approach to this problem

• Interactive proofs (using Coq)• Convince Coq to postpone the moment where the
concrete cost function is provided

• Start proving the program and its invariants without
knowing the cost function• At the same time, infer the cost function from the code
of the program

18/21

Our approach to this problem

• Interactive proofs (using Coq)• Convince Coq to postpone the moment where the
concrete cost function is provided• Start proving the program and its invariants without
knowing the cost function

• At the same time, infer the cost function from the code
of the program

18/21

Our approach to this problem

• Interactive proofs (using Coq)• Convince Coq to postpone the moment where the
concrete cost function is provided• Start proving the program and its invariants without
knowing the cost function• At the same time, infer the cost function from the code
of the program

18/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + …

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (if (j-i) <= 0 then … else …)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (if (j-i) <= 0 then 0 else …)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + …

)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + …

)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max … …

)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 …

)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (1 + …)

)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (1 + max … …)

)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (
1 + max (cost ((j-i)/2)) …

)
)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost (j-i) = 1 + (
if (j-i) <= 0 then 0 else
0 + 1 + max 0 (
1 + max (cost ((j-i)/2))

(cost ((j-i) - (j-i)/2 - 1))
)

)

19/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k = i + (j - i) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then

bsearch arr v i k
else

bsearch arr v (k+1) j

cost n = 1 + (
if n <= 0 then 0 else
0 + 1 + max 0 (
1 + max (cost (n/2))

(cost (n - n/2 - 1))
)

)

19/21

To finish the proof

Solve this equation, and prove that 𝑐𝑜𝑠𝑡(𝑛) is 𝑂(log 𝑛): by
hand, or using the “Master theorem”.

20/21

Conclusion

Machine-checked proofs of the asymptotic complexity of
programs.

• Implemented as a Coq library, to verify OCaml programs• Similar approach implemented in Isabelle at TUM
(Munich)• The approach could be applied to other languages (eg.
C, C++, Java)

21/21

