Formalizing Asymptotic Complexity
Claimsvia Deductive Program
Verification

Armaél Guéneau

Gallium

1/21

Asymptotic Complexity

2/21

Recall our undergrad algorithm courses...

“Is the value 4 present in this sorted array?”

4

-

]

o

=
Wilk-=-=-=-=-=-v
N ﬁ

IS
o [--a

13

14

“Binary search finds the elementin time O(log n)”

3/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =

if j <= i then -1 else
let k=1i+ (j - i) / 2 in
if v = arr. (k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (i+1) j

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =

if j <= i then -1 else
let k=1i+ (j - i) / 2 in
if v = arr. (k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (i+1) j

bsearch [|1;3;4;6;7;8;10;13;14|]1 4 0 9;;
- int =2
It works! We could even prove that it always works.

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =

if j <= i then -1 else
let k=1i+ (j - i) / 2 in
if v = arr. (k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (i+1) j

But there is a complexity bug...

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =

if j <= i then -1 else
let k=1i+ (j - i) / 2 in
if v = arr. (k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

4/21

Homework: implement binary search

(* Requires arr to be a sorted array of integers.
Returns k such that i <= k < j and arr.(k) = v
or -1 if there is no such k. *)

let rec bsearch (arr: int array) v i j =

if j <= i then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr. (k) then bsearch arr v i k
else bsearch arr v 1) j

4/21

Complexity bugs can be critical

http://ocert.org/advisories/ocert-2011-003.html

“Denial of Service via Algorithmic Complexity Attacks”, S. Crosby, D. Wallach

5/21

http://ocert.org/advisories/ocert-2011-003.html

One of the things we do at Gallium...

Machine-checked proofs of programs

6/21

One of the things we do at Gallium...

Machine-checked proofs of programs

including their algorithmic complexity

6/21

Formal
Program
Verification

7/21

What is formal program verification?

e People write programs

8/21

What is formal program verification?

e People write programs

e Programs contain bugs (ie. sometimes, they do not
behave as expected)

8/21

What is formal program verification?

e People write programs

e Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

8/21

What is formal program verification?

e People write programs

e Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

e Writing a wishlist about a program (aka specification)

8/21

What is formal program verification?

e People write programs

e Programs contain bugs (ie. sometimes, they do not
behave as expected)

Formal verification is a set of techniques for:

e Writing a wishlist about a program (aka specification)

e Checking the program against this wishlist (“is the
program correct?’)

8/21

Formal
Deductive Program
Verification

9/21

Deductive verification

From the code of the program and the specification, deduce
a set of proof obligations, and try to prove those.

e Automated proofs: FramaC (C), Verifast (C, Java), Infer (C,
C++, Obj-C, Java), Why3 (OCaml)

e Interactive proofs, using “proof assistants”: Coq, Isabelle

10/21

What are typical properties written in a specification?

¢ The program does not crash when you run it

11/21

What are typical properties written in a specification?

¢ The program does not crash when you run it
e The program terminates (does not get stuck in a loop)

11/21

What are typical properties written in a specification?

¢ The program does not crash when you run it
e The program terminates (does not get stuck in a loop)
e The program computes the right result

11/21

What are typical properties written in a specification?

The program does not crash when you run it

The program terminates (does not get stuck in a loop)

The program computes the right result

The program does not leak secrets (e.g. for crypto
primitives)

11/21

What are typical properties written in a specification?

¢ The program does not crash when you run it

e The program terminates (does not get stuck in a loop)

e The program computes the right result

e The program does not leak secrets (e.g. for crypto
primitives)

e The program does not use too much time

11/21

What are typical properties written in a specification?

¢ The program does not crash when you run it

e The program terminates (does not get stuck in a loop)

e The program computes the right result

e The program does not leak secrets (e.g. for crypto
primitives)

e The program does not use too much time

e The program does not use too much space, network
bandwidth...

11/21

Formalizing Asymptotic Complexity
Claims via Deductive Program
Verification

12/21

Asymptotic time guarantees

We're interested in high-level time analysis

13/21

Asymptotic time guarantees

We're interested in high-level time analysis

e Not “binary search terminates in less than 5ms”

13/21

Asymptotic time guarantees

We're interested in high-level time analysis

e Not “binary search terminates in less than 5ms”
e Rather “binary search runs in O(log) steps”

13/21

Typical paper proofs rely on informal reasoning principles —
which can easily be abused

1 let rec bsearch arr v i j =

2 if j <= i then -1 else

3 let k =i+ (j - i) / 2 in Flawed proof:

4 if v = arr.(k) then k bsearch arr v i j costs
5 else if v < arr. (k) then O(1).

6 bsearch arr v i k

7 else

8 bsearch arr v (k+1) j

14/21

Typical paper proofs rely on informal reasoning principles —
which can easily be abused

let rec bsearch arr v i j =
if j <= i then -1 else

let k=1+ (j - i) / 2 in Flawed proof:
if v = arr.(k) then k bsearch arr v i j costs
else if v < arr. (k) then O(1).

bsearch arr v i k
else
bsearch arr v (k+1) j

By inductionon;j — i:

14/21

Typical paper proofs rely on informal reasoning principles —
which can easily be abused

let rec bsearch arr v i j =
if j <= i then -1 else

let k=1+ (j - i) / 2 in Flawed proof:
if v = arr.(k) then k bsearch arr v i j costs
else if v < arr. (k) then O(1).

bsearch arr v i k
else
bsearch arr v (k+1) j

By inductionon;j — i:
e j—i<0:line2isO(1). OK!

14/21

Typical paper proofs rely on informal reasoning principles —
which can easily be abused

let rec bsearch arr v i j =
if j <= i then -1 else

let k=1+ (j - i) / 2 in Flawed proof:

if v = arr.(k) then k bsearch arr v i j costs
else if v < arr. (k) then O(1).

bsearch arr v i k
else

bsearch arr v (k+1) j

By inductionon;j — i:
e j—i<0:line2isO(1). OK!
e j—i>0:0()(1.3-5) +O(1) (.6) + O(1) (I.8) = O(1). OK!

14/21

Typical paper proofs rely on informal reasoning principles —
which can easily be abused

let rec bsearch arr v i j =
if j <= i then -1 else

let k=1+ (j - i) / 2 in Flawed proof:
if v = arr.(k) then k bsearch arr v i j costs
else if v < arr. (k) then O().

bsearch arr v 1 k (actual cost: O(log(j —)))
else

bsearch arr v (k+1) j

“By induction onj — i ..but which statement are we proving?

14/21

Typical paper proofs rely on informal reasoning principles —
which can easily be abused

let rec bsearch arr v i j =
if j <= i then -1 else

let k=1+ (j - i) / 2 in Flawed proof:
if v = arr.(k) then k bsearch arr v i j costs
else if v < arr. (k) then O().

bsearch arr v 1 k (actual cost: O(log(j —)))
else

bsearch arr v (k+1) j

“By induction onj — i ..but which statement are we proving?

Vn, Jc," bsearch costs¢” # 3¢, Vn," bsearch costs ¢”

14/21

Reasoning about O in a proof assistant

Using a proof assistant steers us clear of these abuses...

but maybe also from the simplicity of paper proofs.

15/21

Formally, what are we trying to prove?

“bsearch arr v i j runsin O(log(j —i)) steps.

16/21

Formally, what are we trying to prove?

“bsearch arr v i j runsin O(log(j —i)) steps.

16/21

Formally, what are we trying to prove?

“there exists a cost function f € O(logn) such that
foreveryarr,v, i, j,
bsearch arr v i j runsinatmost f(j —i) steps.”

16/21

Formally, what are we trying to prove?

“there exists a cost function f € O(logn) such that
foreveryarr,v, i,],
bsearch arr v i j runsinatmost f(j —i) steps.”

First step of the proof: exhibit a concrete cost function?

16/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

Concrete cost function?

17/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

Concrete cost function? 2log(j —i) +1?

17/21

let rec bsearch arr v i j =
if j <= i then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then bsearch arr v i k
else bsearch arr v (k+1) j

Concrete cost function? 2log(j —i) +1? 3log(j —i) + 4?

17/21

Our approach to this problem

¢ Interactive proofs (using Coq)

18/21

Our approach to this problem

¢ Interactive proofs (using Coq)

e Convince Coq to postpone the moment where the
concrete cost function is provided

18/21

Our approach to this problem

¢ Interactive proofs (using Coq)

e Convince Coq to postpone the moment where the
concrete cost function is provided

e Start proving the program and its invariants without
knowing the cost function

18/21

Our approach to this problem

¢ Interactive proofs (using Coq)

e Convince Coq to postpone the moment where the
concrete cost function is provided

e Start proving the program and its invariants without
knowing the cost function

e Atthe same time, infer the cost function from the code
of the program

18/21

let rec bsearch arr vij=
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + ..

19/21

let rec bsearch arr vij=
if j <= 1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) = 1 + (if (j-1i) <= 0 then .. else ..)

19/21

let rec bsearch arr vij=
if j <= 1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) = 1 + (if (j-1i) <= 0 then 0 else ..)

19/21

let rec bsearch arr vij=
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + (
if (j-1) <= 0 then 0 else
0+ ..

19/21

let rec bsearch arr vij=
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + (
if (j-1) <= 0 then 0 else
0+ 1 + ..

19/21

let rec bsearch arr vij=
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + (
if (j-1) <= 0 then 0 else
0+ 1 + max .. .

19/21

let rec bsearch arr vij=
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + (
if (j-1) <= 0 then 0 else
O+ 1+ max 0 ..

19/21

let rec bsearch arr vij=
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + (
if (j-1) <= 0 then 0 else
0+ 1+ max 0 (1 + ..)

19/21

let rec bsearch arr vij=
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + (
if (j-1) <= 0 then 0 else
0+ 1+ max 0 (1 + max

19/21

let rec bsearch arr v i j =
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-1i) =1 + (
if (j-1i) <= 0 then 0 else
O+ 1+ max 0 (

1 + max (cost ((j-i)/2)) ..

19/21

let rec bsearch arr v i j =
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost (j-i) =1 + (
if (j-1i) <= 0 then 0 else
0+ 1+ max 0 (
1 + max (cost ((j-1)/2))
(cost ((j-i) - (j-1)/2 - 1))

19/21

let rec bsearch arr v i j =
if j <=1 then -1 else
let k =1+ (j - 1) / 2 in
if v = arr.(k) then k
else if v < arr.(k) then
bsearch arr v i k
else
bsearch arr v (k+1) j

cost n =1+ (
if n <= 0 then 0 else
0+ 1+ max 0 (
1 + max (cost (n/2))
(cost (n - n/2 - 1))

19/21

To finish the proof

Solve this equation, and prove that cost(n) is O(log n): by
hand, or using the “Master theorem”.

20/21

Conclusion

Machine-checked proofs of the asymptotic complexity of
programs.

¢ Implemented as a Coq library, to verify OCaml programs

e Similarapproach implemented in Isabelle at TUM
(Munich)

e Theapproach could be applied to other languages (eg.
C, C++, Java)

21/21

