Programming languages
and their trustworthy implementation

Xavier Leroy
INRIA Paris

Van Wijngaarden award, 2016-11-05

-




A brief history
of programming languages
and their compilation



It's all zeros and ones, right?

0100001001 10010101 1100180/ /0,7, i
101 100101001000000/0/00/00//0010,5, 2.2 12, s

101100101001 1110/01010/0/0/0000 iz
olool 1010/ 101 1001010110/ /0001 /av/cresss,

jololiiol
ool b Ipfﬂ/ﬂ:f/wf/f/;;/f/

9

O 10 e e
1001011001015, ot 2222
110 s gno0! 1100 e 22
o[ﬂ“ﬂ” ,m%ﬂgmﬂ’ﬁ’éz’ﬁ"
i

f "

|r0ﬂ’¢,g1ﬁrf‘ffﬂ 10111000 00000001 00000000 00000000 00000000
olff,;%ﬂ;{’,’f d 10111010 00000010 00000000 00000000 00000000
ﬂg,gi!f{j,% 00111001 11011010 01111111 00000110
Y 00001111 10101111 11000010
'::1;}’ 01000010 11101011 11110110

11000011

(x86 machine code for the factorial function)

Machine code is. That doesn’t make it a usable language.



Antiquity (1950): assembly language

A textual representation of machine code, with mnemonic names
for instructions, symbolic names for code and data labels, and
comments for humans to read.

Example (Factorial in x86 assembly language)

; Input: argument N in register EBX
; Output: factorial N in register EAX

Factorial:
mov eax, 1 ; initial result =1
mov edx, 2 ; loop index = 2
L1: cmp edx, ebx ; while loop <= N ...
jg L2
imul eax, edx ; multiply result by index
inc edx ; increment index
jmp L1 ; end while

L2: ret ; end Factorial function



The Renaissance: arithmetic expressions
(FORTRAN 1957)

Express mathematical formulas the way we write them on paper.

—b+Vb?% —4ac
X1, X2 =
2a

In assembly: In FORTRAN:

mul t1, b, b sub x1, d, b D = SQRT(B*B - 4%*AxC)
mul t2, a, c div x1, x1, t3 X1 = (-B + D) / (2*A)
mul t2, t2, 4 neg x2, b X2 = (-B - D) / (2%A)
sub t1, t1, t2 sub x2, x2, d

sqrt d, ti div x2, x2, t3

mul t3, a, 2



A historical parallel with mathematics

Brahmagupta, 628:

Whatever is the square-root of the rupas multiplied by the
square [and] increased by the square of half the unknown,
diminish that by half the unknown [and] divide [the
remainder| by its square. [The result is| the unknown.

Cardano, Viete, et al, 1550-1600:

—b++/b?% —4ac
2a

X1,X2 =



The Enlightenment: functions, procedures

and recursion
(Lisp, 1958; Algol, 1960)

procedure quadratic(xl, x2, a, b, c);
value a, b, ¢c; real a, b, c, x1, x2;

begin

real d;

d = sqrt(b x b — 4 x a x c)
x1 := (=b+d) / (2 x a);
x2 ;= (=b —d) / (2 % a)
end;

integer procedure factorial(n); value n; integer n;

begin
if n <2 then
factorial =1
else
factorial := n x factorial(n—1)

end;



Industrial revolution and modern times
APL 1962, Algol W 1966, ISWIM 1966, BCPL 1967, Algol 1968, Pascal 1970, C 1972,
Prolog 1972, ML 1973, CLU 1974, Modula 1975, Smalltalk 1976, Ada 1983, C+-+ 1983
Common Lisp 1984, Eiffel 1986, Modula-3 1989, Haskell 1990, Python 1991, Java 1995
OCaml 1996, Javascript 1997, C# 2000, Scala 2003, Go 2009, Rust 2010, Swift 2014

templates
abstraction

cl 35585 potmorphm
exce tlonS call/cc
madules classes

monads,

generics closu red l i
mlxiﬁs es ’ odules
I m ds dosures

monadsC | templates
SRS pis lymorph ism

”mm” “/ Lemplates
_exceptions’ i objects

cau/cc mpum p . classes J
GCO J o

polymorphism

objects
GC

generlcs
o G @: POl O s lGCm iXi ns
dul
T teiiplates ot CldSSES
e 1 abstr wcmona bstra Ct|on ’gg(l‘l/cc
betracton closures ©¥e

A proliferation of languages that provide support for high-level

programming constructs.



Implementing programming languages

Compilation

Expressiveness of machine language
T T T

1940 19|50 1960 19|70 1980 1990 2000 2010



The challenge of compilation

@ Translate faithfully a high-level programming language into
very low-level machine language.

® "Optimize”, or more exactly improve performance of
generated machine code:
e by taking advantage of hardware features;
o by eliminating inefficiencies left by the programmer.



An example of optimizing compilation

double dotproduct(int n, double * a, double * b)
{
double dp = 0.0;
int i;
for (i = 0; 1 < n; i++) dp = dp + ali] * b[il;
return dp;

3

Compiled with a good compiler, then manually decompiled to C. ..



double dotproduct(int n, double a[l, double b[l) {

L17:

Li6:

L1i8:

L19:

LS5:

L14:

dp = 0.0;

if (n <= 0) goto L5;

r2 =n - 3; f1 = 0.0; rl1 = 0; £10 = 0.0;
if (r2 > n || r2 <= 0) goto L19;
prefetch(al16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(al20]); prefetch(b[20]);

£12 = a[0]; £13 = b[0]; f14 = a[1]; £15 = b[1];

ri = 8; if (8 >= r2) goto L16;

f16 = b[2]; £f18 = a[2]; 17 = £12 * £13;
£19 = b[3]; £20 = a[3]; f15 = f14 * f15;
£12 = a[4]; f16 = £18 * f16;

f19 =

f11 += £17; r1 += 4; f10 += f15;
f156 =

f1 += £16; dp += £19; b += 4;

if (r1 < r2) goto L17;

f11

b[5]; prefetch(a[20]); prefetch(b[24]);

0.0;

£29 * £19; £13 = b[4]; a += 4; f14 = a[1];

f15 = f14 x £15; £21 = b[2]; £23 = a[2]; 22 = f12

£24 = b[3]; £25 = a[3]; £21 = £23 * £21;
£12 = a[4]; £13 = b[4]; £24 = £25 * £24;
a +=4; b += 4; f14 = a[8]; f15 = b[8];
£11 += £22; £1 += £21; dp += £24;

£26 = b[2]; £27 = a[2]; f14 = f14 * £15;

£10

f10

£28 = b[3]; £29 = a[3]; £12 = £12 * £13; £26 = £27

a += 4; £28 = £29 * £28; b += 4;
£10 += f14; f11 += £12; f1 += £26;

dp += £28; dp += f1; dp += £10; dp += f11;

if (r1 >= n) goto L5;

£30 = a[0]; £f18 = b[0]; rl += 1; a += 8; f18 = £30

dp += £18;
if (r1 < n) goto L19;
return dp;

*

+

*

£13;

£15;

£26;

£18;

£12 = a[0]; £13 = b[0]; f14 = a[1]; £f15 = b[1]; goto L18;

b += 8;



L17: f16 = b[2]; f18 = a[2]; f17 = f12 *x f13;
£f19 = b[3]; £20 = a[3]; f15 = f14 x f15;
£f12 = a[4]; f16 = £18 * f16;
£19 = £29 *x £19; f13 = b[4]; a += 4; f14 = a[1];
f11 += £17; rl += 4; £10 += £15;
f15 = b[5]; prefetch(al[20]); prefetch(b[24]);

f1 += £16; dp += £19; b += 4;
if (r1 < r2) goto L17;



double dotproduct(int n, double a[l, double b[l) {

Li6:

L1i8:

L19:

LS:

L14:

dp = 0.0;

if (n <= 0) goto L5;

r2 =n - 3; f1 = 0.0; rl1 = 0; £10 = 0.0;
if (r2 > n || r2 <= 0) goto L19;
prefetch(al16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(al20]); prefetch(b[20]);

£12 = a[0]; £13 = b[0]; f14 = a[1]; £15 = b[1];

ri = 8; if (8 >= r2) goto L16;

f11

0.0;

f15 = f14 x £15; £21 = b[2]; £23 = a[2]; 22 = f12

£24 = b[3]; £25 = a[3]; £21 = £23 * f21
£12 = a[4]; £13 = b[4]; £24 = £25 * £24;
a +=4; b += 4; f14 = a[8]; f15 = b[8];
£11 += £22; £1 += £21; dp += £24;

£26 = b[2]; £27 = a[2]; f14 = f14 * £15;

£10

f10

£28 = b[3]; £29 = a[3]; £12 = £12 * £13; £26 = £27

a += 4; £28 = £29 * £28; b += 4;
£10 += £14; f11 += £12; £1 += £26;

dp += £28; dp += f1; dp += £10; dp += f11;

if (r1 >= n) goto L5;

£30 = a[0]; £f18 = b[0]; rl += 1; a += 8; f18 = £30

dp += £18;
if (r1 < n) goto L19;
return dp;

*

+

*

£13;

£15;

£26;

£18;

£12 = a[0]; £13 = b[0]; f14 = a[1]; £f15 = b[1]; goto L18;

b += 8;



Can you trust your compiler?



Miscompilation happens

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated
incorrect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years
using it to find compiler bugs. During this period we reported
more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and
also to silently generate wrong code when presented with valid
input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011



Are miscompilation bugs a problem?

For non-critical software:
e Programmers rarely run into them.

e Globally negligible compared with bugs in the program itself.

For critical software:
e A source of concern.

¢ Require additional verification activities. (E.g. manual reviews
of generated assembly code; more tests.)
e Reduce the usefulness of formal verification.

(A provably-correct source program can still misbehave at
run-time!)



Addressing miscompilation

A radical solution: why not formally verify the compiler itself?

After all, compilers have simple specifications:
If compilation succeeds, the generated code should
behave as prescribed by the semantics of the source
program.

As a corollary, we obtain:
Any safety property of the observable behavior of the
source program carries over to the generated executable
code.



An old idea. ..

John McCarthy
James Painter!

CORRECTNESS OF A COMPILER
FOR ARITHMETIC EXPRESSIONS®

1. Introduction. This paper contains a proof of the correctness of a simple
compiling algorithm for compiling arithmetic expressions into machine
language.

The definition of correctness, the formalism used to express the descrip-
tion of source language, object language and compiler, and the methods
of proof are all intended to serve as prototypes for the more complicated
task of proving the correctness of usable compilers. The ultimate goal,
as outlined in references [1], [2], [3] and [4] is to make it possible to use
a computer to check proofs that compilers are correct.

Mathematical Aspects of Computer Science, 1967



An old idea. ..

3

Proving Compiler Correctness
in a Mechanized Logic

R. l\/lilﬁer and R. Weyhrauch

Computer Science Department
Stanford University

Abstract

We discuss the task of machine-checking the proof of a simple compiling
algorithm. The proof-checking program is LCF, an implementation of a logic
for computable. functions due to Dana Scott, in which the abstract syntax
and extensional semantics of programming languages can be naturally
expressed. The source language in our example is a simple ALGor-like
language with assignments, conditionals, whiles and compound statements.
The target language is an assembly language for a machine with a pushdown
store. Algebraic methods are used to give structure to the proof, which is
presented enly in outline. However, we present in full the expression-compiling
part of the algorithm. More than half of the complete proof has been machine
checked, and we anticipate no difficulty with the remainder. We discuss our
experience in conducting the proof, which indicates that a large part of it
may be automated to reduce the human contribution.

Machine Intelligence (7), 1972.



CompCert:

a formally-verified C compiler



The CompCert project
(X. Leroy, S. Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

e Source language: a very large subset of C 99.

e Target language: PowerPC/ARM/x86 assembly.

e Generates reasonably compact and fast code
= careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.



The formally verified part of the compiler

side-effects out_ { ] type elimination ]
CompCert C ! = C#minor
of expressions | ) loop simplifications

stack allocation

Optimizations: constant prop., CSE,

inlining, tail calls of "&" variables

CFG construction ( . ) instruction ( .
RTL | CminorSel = , Cminor
) expr. decomp. \ ) selection

register allocation (IRC)

calling conventions

Y

| linearization ( ) layout of

LTL > Linear > Mach
of the CFG \ ! ) stack frames

as

ge on
Y
[Asm x86] [Asm ARM Asm PPC




Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is
entirely machine-checked, using the Coq proof assistant.

Theorem transf_c_program_correct:
forall (p: Csyntax.program) (tp: Asm.program)
(b: behavior),
transf_c_program p = 0K tp —>
program_behaves (Asm.semantics tp) b ->
exists b’, program_behaves (Csem.semantics p) b’
/\ behavior_improves b’ b.

Shows refinement of observable behaviors beh:
e Reduction of internal nondeterminism
(e.g. choose one evaluation order among the several allowed by C)
e Replacement of run-time errors by more defined behaviors
(e.g. optimize away a division by zero)



Compiler verification patterns (for each pass)

Verified transformation Verified translation validation

transformation transformation

——-

validator
External solver with verified validation

transformation

I = formally verified
checker

B — not verified

untrusted solver



Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in
Coq's specification language, using pure functional style.

e Monads to handle errors and mutable state.

e Purely functional data structures.

Coq's extraction mechanism produces executable Caml code from
these specifications.

Claim: purely functional programming is the shortest path to
writing and proving a program.



The whole Compcert compiler

preprocessing, parsing, AST construction
C source , .
type-checking, de-sugaring
. . -
Register allocation
]

Code linearization heuristics »

assembling
Executable —
linking

Part of the TCB
Not part of the TCB

printing! of
Assembly '
asm syntax

Not proved
(hand-written in Caml)

= ASTC

131dwod payLIBA

Y
AST Asm

Proved in Coq
(extracted to Caml)



(On a Power 7 processor)

Performance of generated code

gcc -03

Bl gcc -00 @l CompCertmm gcc -01

Execution time

A

J9oe41hel
ssz|

v4

spooue
uraad
dwoyd
193519
yoewa
|es10ads
S1gaAaIsu
SA3ISU
Apoqu
j0iq[SpueWw
apI103anuy
yomyuuey
soa41hueuUIq
S8l
yousqewe
soe

Teys

Y3

Hosb

qi




A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are
absent. As of early 2011, the under-development version
of CompCert is the only compiler we have tested for
which Csmith cannot find wrong-code errors. This is not
for lack of trying: we have devoted about six CPU-years
to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler
optimizations within a proof framework, where safety
checks are explicit and machine-checked, has tangible
benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011



Conclusions and perspectives



Ongoing and future work

More

assurance Other source languages
More

optimizations
\ Verifying

» program provers

/ \ & static analyzers

Connections w/
Shared-memory hardware
concurrency verification

“Bootstrapping”
(verified extraction)

Other source languages besides C: experiments in progress with
functional languages, SPARK Ada and SCADE/Lustre.



Ongoing and future work

More

assurance Other source languages
More

optimizations
\ Verifying

» program provers

/ \ & static analyzers

Connections w/
Shared-memory hardware
concurrency verification

“Bootstrapping”
(verified extraction)

Prove or validate more of the trusted base:
preprocessing, lexing, elaboration, assembling, linking, ...



Ongoing and future work

More

assurance Other source languages
More

optimizations
\ Verifying

» program provers

/ \ & static analyzers

Connections w/
Shared-memory hardware
concurrency verification

“Bootstrapping”
(verified extraction)

Add advanced optimizations, esp. loop optimizations.



Ongoing and future work

More

assurance Other source languages
More

optimizations
\ Verifying

» program provers

/ \ & static analyzers

Connections w/
Shared-memory hardware
concurrency verification

“Bootstrapping”
(verified extraction)

Gain formal confidence in the tools that build CompCert.
(Coq's extraction, OCaml compilation.)



Ongoing and future work

More

assurance Other source languages
More

optimizations
\ Verifying

» program provers

/ \ & static analyzers

Connections w/
Shared-memory hardware
concurrency verification

“Bootstrapping”
(verified extraction)

Race-free programs + concurrent separation logic (A. Appel et al)
or: racy programs + hardware memory models (P. Sewell et al).



Ongoing and future work

More

assurance Other source languages
More

optimizations
\ Verifying

» program provers

/ \ & static analyzers

Connections w/
Shared-memory hardware
concurrency verification

“Bootstrapping”
(verified extraction)

Formal specs for architectures & instruction sets, as the missing link
between compiler verification and hardware verification.



Ongoing and future work

More

assurance Other source languages
More

optimizations
\ Verifying

» program provers

/ \ & static analyzers

Connections w/
Shared-memory hardware
concurrency verification

“Bootstrapping”
(verified extraction)

The Verasco project: formal verification of a static analyzer based
on abstract interpretation.



In closing. . .

Critical software deserves the most trustworthy tools
that computer science can produce.

Let's make this a reality!



