
Verified squared:
does critical software deserve verified tools?

Xavier Leroy

INRIA Paris-Rocquencourt

POPL 2011

X. Leroy (INRIA) Verified squared POPL 2011 1 / 50

The software reliability landscape

Software kindImpact of bugs

Ordinary
Frustration

Loss of time

Frequent upgrades
PC software ERP

Sensitive

Loss of money

Bad PR

Getting sued

Data
security

Network
security

Critical
Someone dies

All of the below
MedicalRailways

Nuclear
plants

Airplanes

Fail-safe behaviors No fail-safe

Today’s focus

X. Leroy (INRIA) Verified squared POPL 2011 2 / 50

The software reliability landscape

Software kindImpact of bugs

Ordinary
Frustration

Loss of time

Frequent upgrades
PC software ERP

Sensitive

Loss of money

Bad PR

Getting sued

Data
security

Network
security

Critical
Someone dies

All of the below
MedicalRailways

Nuclear
plants

Airplanes

Fail-safe behaviors No fail-safe

Today’s focus

X. Leroy (INRIA) Verified squared POPL 2011 2 / 50

The software reliability landscape

Software kindImpact of bugs

Ordinary
Frustration

Loss of time

Frequent upgrades
PC software ERP

Sensitive

Loss of money

Bad PR

Getting sued

Data
security

Network
security

Critical
Someone dies

All of the below
MedicalRailways

Nuclear
plants

Airplanes

Fail-safe behaviors No fail-safe

Today’s focus

X. Leroy (INRIA) Verified squared POPL 2011 2 / 50

The software reliability landscape

Software kindImpact of bugs

Ordinary
Frustration

Loss of time

Frequent upgrades
PC software ERP

Sensitive

Loss of money

Bad PR

Getting sued

Data
security

Network
security

Critical
Someone dies

All of the below
MedicalRailways

Nuclear
plants

Airplanes

Fail-safe behaviors No fail-safe

Today’s focus

X. Leroy (INRIA) Verified squared POPL 2011 2 / 50

The software reliability landscape

Software kindImpact of bugs

Ordinary
Frustration

Loss of time

Frequent upgrades
PC software ERP

Sensitive

Loss of money

Bad PR

Getting sued

Data
security

Network
security

Critical
Someone dies

All of the below
MedicalRailways

Nuclear
plants

Airplanes

Fail-safe behaviors No fail-safe

Today’s focus

X. Leroy (INRIA) Verified squared POPL 2011 2 / 50

Running example: fly-by-wire software

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%GH%IE%GG%EJ

1K$?LB$%M%04??"@7$6%=$%N4B%1B$>:89O5$6

!"#$%&'()*+),-,&./$)*$)0123)4567)8)%9:&;<=$;)&9+&$,)=$,),+;(>%$,

!"#$%&'()*+ ,"#-%&'.)*+

/0"1234%&'.)*+%-30"12%
'5)*+

678812%&')*+

9"1:#$32%&'*)*+

;20<<#="1 >320?34$#"
!$#=0"0?12

@233-
A3%1&'*)*+

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%&G%HE%&&%EI

1J59K$?$@:%L%-M6:N?$%L

!"#$%&'($#

)(*+,*+-'./+
0$1&"#/.

!'.2.34#
1$5/

!67+7'($#

789:;+:.</.
0$=#.$(+>".432/
&$>'#'$=

(G. Ladier)

X. Leroy (INRIA) Verified squared POPL 2011 3 / 50

Running example: fly-by-wire software

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%GH%IE%GG%EJ

1K$?LB$%M%04??"@7$6%=$%N4B%1B$>:89O5$6

!"#$%&'()*+),-,&./$)*$)0123)4567)8)%9:&;<=$;)&9+&$,)=$,),+;(>%$,

!"#$%&'()*+ ,"#-%&'.)*+

/0"1234%&'.)*+%-30"12%
'5)*+

678812%&')*+

9"1:#$32%&'*)*+

;20<<#="1 >320?34$#"
!$#=0"0?12

@233-
A3%1&'*)*+

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%3
45
6%
78
49
:6
%8;
6$
8<
;6
2%=
4>
5?
$@
:%>
4@
A97
$@
:9$
B2

#$8"872B"79$8C"98D562>4?%%%EE%F%&G%HE%&&%EI

1J59K$?$@:%L%-M6:N?$%L

!"#$%&'($#

)(*+,*+-'./+
0$1&"#/.

!'.2.34#
1$5/

!67+7'($#

789:;+:.</.
0$=#.$(+>".432/
&$>'#'$=

(G. Ladier)

X. Leroy (INRIA) Verified squared POPL 2011 3 / 50

Timeline

Avro CF 105
(analog)

1958

Concorde
(analog)

1969

Airbus 320
(digital)

1984

Boeing 777
(digital)

1995

!"#$%&

'
%(
)*
+
,
-
%.
*
(
/
0
1
%-
2(
2-
2%
3
4
5
6%
7
84
9:
6%
8;
6$
8<
;
62
%=
4
>
5
?
$
@
:%
>
4
@
A9
7
$
@
:9
$
B2

#$8"872B"79$8C"98D562>4?%%%&&%E%FG%H&%FF%&I

J$6%7;D5:6%75%B4#9>9$B%$?D"8K5;

L (%>$::$%;M4K5$N%OB4#9>9$BP%;:"9:%K5"69?$@:%6Q@4@Q?$%7$%OD5#P%R%S

X. Leroy (INRIA) Verified squared POPL 2011 4 / 50

Functions of FBW softwareAIRBUS FLIGHT CONTROL LAWS

Click Here for printer friendly version.

High AOA
Protection

Load Factor
Limitation

Pitch Attitude
Protection

NORMAL LAW

High Speed
Protection

Flight Augmentation
(Yaw)

Bank Angle
Protection

Low Speed
Stability

Load Factor
Limitation

ALTERNATE LAW

High Speed
Stability

Yaw Damping
Only

 Load Factor
Limitation

ABNORMAL ALTERNATE LAW w/o Speed Stability

 Yaw Damping
Only

DIRECT LAW

FLIGHT CONTROL LAWS SUMMARY

NORMAL LAW

Normal operating configuration of the system. Failure of
any single computer does not affect normal law.

Covers 3-axis control, flight envelope protection, and load

Execute pilot’s commands.

Active damping of oscillations.

Flight assistance: keep aircraft
within safe flight envelope.

X. Leroy (INRIA) Verified squared POPL 2011 5 / 50

Anatomy of FBW systems

Two-part software:

A minimalistic operating system (C)
(Boot, self-tests, communications over buses, static scheduling of
periodic tasks. Generally hand-crafted, sometimes off-the-shelf.)

Mostly: control-command code. (Scade)

Hard real-time.

100k – 1M LOC of C code, but mostly generated from block diagrams.

Asymmetric redundancy (e.g. 3 primary units, 3 secondary).

X. Leroy (INRIA) Verified squared POPL 2011 6 / 50

Control-command laws

“Hello world” example: the PID controller.

Error e(t) = desired position(t)− current position(t).

Action a(t) = Kpe(t) + Ki

∫ t

0
e(t)dt + Kd

d

dt
e(t)

(Proportional) (Integral) (Derivative)

X. Leroy (INRIA) Verified squared POPL 2011 7 / 50

Implementing a control law

Mechanical (pneumatic): Analog electronics:

Software (the current favorite):

previous_error = 0; integral = 0

loop forever:

error = setpoint - actual_position

integral = integral + (error*dt)

derivative = (error - previous_error)/dt

output = (Kp*error) + (Ki*integral) + (Kd*derivative)

previous_error = error

wait(dt)

X. Leroy (INRIA) Verified squared POPL 2011 8 / 50

Block diagrams (Simulink, Scade)

Such code is rarely hand-written, more often generated from diagrams:

For Scade, a graphical notation for the Lustre reactive language:

error = setpoint - position

integral = (0 -> pre(integral)) + error * dt

derivative = (error - (0 -> pre(error))) / dt

output = Kp * error + Ki * integral + Kd * derivative

defining time-indexed sequences via equations.

X. Leroy (INRIA) Verified squared POPL 2011 9 / 50

Lustre: a successful domain-specific language

LUSTRE: A declarative language
for programming synchronous systems*

P. Caspi D. Pilaud N. Halbwachs J. A. Plaice
Laboratoire “Circuits et Systkmes” Laboratoire de GEnie Informatique

BP68, 38402 St Martin d’HBres, FRANCE

Received IO/1386

Abstract

LUSTRE is a synchronous data-flow language for
programming syetema which interact. with their en-
vironments in real-time. After an informal presen-
tation of the language, we describe its semantics by
means of structural inference rules. Moreover, we
ehow how to use this semantics in order to gener-
ate efficient, sequential code, namely, a finite state
automaton which represents the control of the pro-
gram. Formal rules for program transformation are
also presented.

Introduction
This paper presents the language LUSTRE, whose main
application field is the programming of automatic control
and signal processing systems. In this field, design is tra-
ditionally driven by means of two types of tools. First,
specifications are often systems of equations (differential or
finite difference equations, boolean equations, . . .). Second,
implementations are often nets of operators connected with
wires (switches, gates, analog diagrams). Such tools present
several ad&tag- as a basis for a programming language.

l Systems of equations are mathematically tractable
objects. In such systems, variables are interpreted
in the mathematical sense, without any notion of as-
signment, side effect, etc., often carried by variables
in usual programming languages. An equation is then
an invariant assertion, true at each instant.

‘This work was partially supported by a grant from PRC-C3 (CNRS).

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

Both in systems of equations and in operator nets,
there is neither the notion of control nor that of se-
quentiality. The only constraints on the evaluation
order arise from the dependencies between variables.
As a consequence, any implementation, be it aequen-
tial or highly parallel, can be easily derived.

As pointed out above, the considered equations are
generally time invariant: variables may be considered
to be functions of time, and X-E means that at each
instant t, Z: = ct. Hence, such models are likely to
provide a simple and natural way of handling time,
a problem which is never adequately solved in usual
languages, in spite of the work increasingly devoted
to it.

LUSTRE is a programming language founded on these
remarks. A program is a system of equations defining vari-
ables, which are functions from time to their domain of
values. Since we are concerned with discrete systems, time
is projected onto the set of naturals, making variables infi-
nite sequences of values. Furthermore, a program may be
viewed as an operator net, aa is standard for data-flow lan-
guages, with a further assumption called synchrony, which
states that operators respond instantaneously to their in-
put.

Our equational point. of view may be summarized by
the two following principles:

Substitution principle An equation X=E specifies a full
synonymy between the variable X and the expression
E. Thus, in every context, the identifier X may be
replaced by the expression E, and conversely. This
property is very useful in program transformation.

Definition principle Let X=E be the equation defining the
variable X. Then the behavior of X must be com-
pletely specified by this equation and the behavior of
variables appearing in the expression E.

A program defines a function from its input (sequences)
to its output (sequences). From the assumption of syn-
chrony, all functions expressible in the language must sat-
isfy the following properties:

‘0 1987 0-89791-215-2/87/OlIBOl78 750 178

(POPL 1987.)

Matches engineering practice (incl. visual syntax).

Clean semantics.

Low expressiveness: a language of boxes, wires, latches, and clocks.

High potential for verification (model-checking, and more) and
supercompilation (automata-based, and more).

X. Leroy (INRIA) Verified squared POPL 2011 10 / 50

The qualification process (DO-178)

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%''%F%GH%I'%GG%'J

495:7:K@$%L9:A?:L$

!"#$%&'

(
%)
*+
,
-
.
%/
+
)
0
1
2
%.
3)
3.
3%4
56
7%
89
5:
;7
%9<
7$
9=
<7
3%>
5?
6@
$A
;%?
5A
B:8
$A
;:$
C3

#$9"983C"8:$9D":9E673?5@%%%FF%G%HI%JF%HH%F'

K"%=<9:B:?";:5A

L K$%?M"N:;9$%C$%NC67%:@N59;"A;%86%>OPIQR,S2>PI&,
!$A%=5C6@$%T%IF%N"#$7%8$%8$7?9:N;:5A%U%V%G%N"#$7%N569%C$7%"6;9$7W
!$A%?M"9#$%8$%;9"=":C%:A86:;$%U)FR'%T%X%C:#A$7%8$%;$7;%N569%I%C:#A$%8$%?58$%
$@E"9Y6<ZW

Rigorous validation:

Review (qualitative)

Analysis (quantitative)

Testing (huge amounts, from unit tests to flying the plane)

Conducted at multiple levels, from designs to final product.

Meticulous development process; extensive documentation.

X. Leroy (INRIA) Verified squared POPL 2011 11 / 50

Then, a miracle happens:

The aircraft industry shows practical, economic interest
in formal, tool-assisted verification of software!

(Not so much for stronger guarantees, but primarily to save on testing.)

X. Leroy (INRIA) Verified squared POPL 2011 12 / 50

Some success stories in verification of avionics code

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

X. Leroy (INRIA) Verified squared POPL 2011 13 / 50

Some success stories in verification of avionics code

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

X. Leroy (INRIA) Verified squared POPL 2011 13 / 50

Some success stories in verification of avionics code

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

X. Leroy (INRIA) Verified squared POPL 2011 13 / 50

Some success stories in verification of avionics code

Simulink, Scade

C code

Executable
AiT WCET

(precise time bounds)

Astrée
(absence of run-time errors,

incl. floating-point)

Caveat
(program proof) (*)

Rockwell-Collins toolchain
(model-checking + proof)

(*) Motto: “unit proofs as a replacement for unit tests”

X. Leroy (INRIA) Verified squared POPL 2011 13 / 50

Round of applause!

(For putting into practice Hoare logics and abstract interpretation,
long considered as purely academic exercises)

But. . .

X. Leroy (INRIA) Verified squared POPL 2011 14 / 50

Trust in formal verification

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing

?

?

Are verification tools semantically sound?
Are compilers and code gen. semantics-preserving?

X. Leroy (INRIA) Verified squared POPL 2011 15 / 50

Can you trust your compiler?

X. Leroy (INRIA) Verified squared POPL 2011 16 / 50

Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of twenty
commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for each, found
situations in which the compiler generated incorrect code for accessing
volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

We created a tool that generates random C programs, and then spent
two and a half years using it to find compiler bugs. So far, we have
reported more than 290 previously unknown bugs to compiler
developers. Moreover, every compiler that we tested has been found to
crash and also to silently generate wrong code when presented with
valid inputs.

J. Regehr et al, 2010

X. Leroy (INRIA) Verified squared POPL 2011 17 / 50

The DO-178B take on the issue

For code generators:

Either the generator is qualified at the same level of assurance as the
application itself
(strict coding rules; meticulous dev. process; extensive testing)

Or the generated code must be qualified as if hand-written
(manual reviews, traceability, even more testing).

For compilers, neither option is realistic, hence various compromises:

Manual review of generated asm on small representative codes.

Naive, unoptimized compilation.

X. Leroy (INRIA) Verified squared POPL 2011 18 / 50

The semanticist’s take on the issue

Why not formally verify the compiler itself?

After all, compilers have simple specifications:

If compilation succeeds, the generated code should behave as
prescribed by the semantics of the source program.

An idea as old as this speaker. . .

X. Leroy (INRIA) Verified squared POPL 2011 19 / 50

“Old pots make tasty soups” (French proverb)

Mathematical Aspects of Computer Science, 1967

X. Leroy (INRIA) Verified squared POPL 2011 20 / 50

“Plus ça change, . . . ” (American saying)

Machine Intelligence (7), 1972.

X. Leroy (INRIA) Verified squared POPL 2011 21 / 50

A déjà vu. . .

(Even the proof scripts look somewhat familiar)

X. Leroy (INRIA) Verified squared POPL 2011 22 / 50

The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a very large subset of C.

Target language: PowerPC/ARM/x86 assembly.

Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not trying to
prove an existing compiler.

X. Leroy (INRIA) Verified squared POPL 2011 23 / 50

The formally verified part of the compiler

Compcert C Clight C#minor

CminorCminorSelRTL

LTL LTLin Linear

MachAsm

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of variables

instruction

selection

CFG construction

expr. decomp.

register allocation

(Iterated Register Coalescing)

linearization

of the CFG

spilling, reloading

calling conventions

layout of

stack frames

asm code

generation

Optimizations: constant prop., CSE, tail calls, (LCM)

(Instruction scheduling)

X. Leroy (INRIA) Verified squared POPL 2011 24 / 50

Formally verified in Coq

After 50 000 lines of Coq and 4 person.years of effort:

Theorem transf_c_program_is_refinement:

forall p tp,

transf_c_program p = OK tp ->

(forall beh, exec_C_program p beh -> not_wrong beh) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

Behaviors beh = termination / divergence / going wrong
+ trace of I/O operations (syscalls, volatile accesses).

X. Leroy (INRIA) Verified squared POPL 2011 25 / 50

Compiler verification patterns (for each pass)

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified

X. Leroy (INRIA) Verified squared POPL 2011 26 / 50

Programmed in Coq

Compilation algorithms written in Coq’s specification language, in pure
functional style.

Fixpoint transl_expr (map: mapping) (a: expr) (rd: reg) (nd: node)

{struct a}: mon node :=

match a with

| Evar v =>

do r <- find_var map v; add_move r rd nd

| Eop op al =>

do rl <- alloc_regs map al;

do no <- add_instr (Iop op rl rd nd);

transl_exprlist map al rl no

| Eload chunk addr al =>

do rl <- alloc_regs map al;

do no <- add_instr (Iload chunk addr rl rd nd);

transl_exprlist map al rl no

| ...

Executable via automatic extraction to Caml.

X. Leroy (INRIA) Verified squared POPL 2011 27 / 50

The whole Compcert compiler

AST C

AST Asm

C source

AssemblyExecutable

parsing, construction of an AST

type-checking, de-sugaring

V
erifi

ed
co

m
p

iler

printing of

asm syntax

assembling

linking

Type reconstruction

Graph coloring

Code linearization heuristics

Proved in Coq
(extracted to Caml)

Not proved
(hand-written in Caml)

Part of the TCB

Not part of the TCB

X. Leroy (INRIA) Verified squared POPL 2011 28 / 50

Performance of generated code
(On a PowerPC G5 processor)

A
E

S

A
lm

ab
en

ch

B
in

ar
yt

re
es

F
an

n
ku

ch

F
F

T

K
n

u
cl

eo
ti

d
e

N
b

o
d

y

Q
so

rt

R
ay

tr
ac

er

S
p

ec
tr

al

V
M

ac
h

Execution time

gcc -O0

Compcert
gcc -O1
gcc -O3

X. Leroy (INRIA) Verified squared POPL 2011 29 / 50

Current status

The formal verification of realistic compilers is feasible.
(Within the limitations of contemporary proof assistants.)

Much work remains:

Shrinking the TCB
(e.g. verified parsing, validated assembling & linking).

More optimizations.

Front-ends for other languages.
(see T. Ramananandro’s talk for elements of C++).

Concurrency!
(see J. Sevcik’s talk & A. Appel et al’s Verified Software Toolchain).

Connections with source-level verification (next).

X. Leroy (INRIA) Verified squared POPL 2011 30 / 50

Can you trust your verification tools?

X. Leroy (INRIA) Verified squared POPL 2011 31 / 50

Trust in formal verification (again)

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing

X. Leroy (INRIA) Verified squared POPL 2011 32 / 50

Requirements on verification tools
(Static analyzers, program provers, model-checkers)

When used as sophisticated bug-finders: everything goes.
(Unsound static analyzers have their uses, e.g. Coverity.)

When used to establish properties of programs and remove the
corresponding tests: evidence of soundness is required.

DO-178-B: lightweight qualification for verification tools, as they cannot
introduce bugs, just miss the existence of bugs. But why stop here?

X. Leroy (INRIA) Verified squared POPL 2011 33 / 50

A holistic effect with compiler verification

Stronger correctness results:

forall p tp,

transf_c_program p = OK tp ->

(forall beh, exec_C_program p beh -> not_wrong beh) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

Simpler, more precise verification tools:
they know exactly how the compiler implements unspecified behaviors of C.

X. Leroy (INRIA) Verified squared POPL 2011 34 / 50

A holistic effect with compiler verification

Stronger correctness results:

forall p tp,

transf_c_program p = OK tp -> Astree_result p = true ->

(forall beh, exec_C_program p beh -> not_wrong beh) ->

(forall beh, exec_asm_program tp beh -> exec_C_program p beh).

Simpler, more precise verification tools:
they know exactly how the compiler implements unspecified behaviors of C.

X. Leroy (INRIA) Verified squared POPL 2011 34 / 50

Example: static analysis by abstract interpretation
The orthodox presentation:

A collecting semantics + A Galois connection (P(S),⊆)
γ

�
α

(A,v)

From there, abstract operations can be calculated in a
correct-by-construction way.

α(γ (r(X)))
! !Galois connection (9) so that α " γ is reductive"

r(X)
= !by defining Faexp##X$r #= r(X)"
Faexp##X$r .

3 When A = ? is random, we have

α
#
(Faexp#?$)r

= α({v | ∃ρ ∈ γ̇ (r) : ρ & ? %⇒ v})
= !def. (25) of ρ & ? %⇒ v"

α(I)
! !by defining ?# (α(I)"
?#

= !by defining Faexp##?$r #= ?#"
Faexp##?$r .

4 When A = u A′ is a unary operation, we have

α
#
(Faexp#u A′$)r

= α({v | ∃ρ ∈ γ̇ (r) : ρ & u A′ %⇒ v})
= !def. (4) of ρ & u A′ %⇒ v"

α({u v | ∃ρ ∈ γ̇ (r) : ρ & A′ %⇒ v})
! !γ " α is extensive (6), α is monotone (5)"

α({u v | v ∈ γ " α({v′ | ∃ρ ∈ γ̇ (r) : ρ & A′ %⇒ v′})})
! !induction hypothesis (33), γ (4) and α (5) are monotone"

α({u v | v ∈ γ (Faexp##A′$r)})
! !by defining u# such that u#

(p) (α({u v | v ∈ γ (p)})"
u#

(Faexp##A′$r)
= !by defining Faexp##u A′$r #= u#

(Faexp##A′$r)"
Faexp##u A′$r .

5 When A = A1 b A2 is a binary operation, we have

α
#
(Faexp#A1 b A2$)r

= α({v | ∃ρ ∈ γ̇ (r) : ρ & A1 b A2 %⇒ v})
= !def. (27) of ρ & A1 b A2 %⇒ v"

α({v1 b v2 | ∃ρ ∈ γ̇ (r) : ρ & A1 %⇒ v1 ∧ ρ & A2 %⇒ v2})
! !α monotone (5)"

α({v1 b v2 | ∃ρ1 ∈ γ̇ (r) : ρ1 & A1 %⇒ v1 ∧ ∃ρ2 ∈ γ̇ (r) : ρ2 & A2 %⇒ v2})
! !γ " α is extensive (6), α is monotone (5)"

α({v1 b v2 | v1 ∈ γ " α({v | ∃ρ ∈ γ̇ (r) : ρ & A1 %⇒ v}) ∧
v2 ∈ γ " α({v | ∃ρ ∈ γ̇ (r) : ρ & A2 %⇒ v})})

! !induction hypothesis (33), γ (4) and α (5) are monotone"
α({v1 b v2 | v1 ∈ γ (Faexp##A1$r) ∧ v2 ∈ γ (Faexp##A2$r)})

! !by defining b# such that b#
(p1, p2) (α({v1 b v2 | v1 ∈ γ (p1) ∧ v2 ∈ γ (p2)})"

b#
(Faexp##A1$r, Faexp##A2$r)

= !by defining Faexp##A1 b A2$r
#= b#

(Faexp##A1$r, Faexp##A2$r)"
Faexp##A1 b A2$r .

17

(P. Cousot)

X. Leroy (INRIA) Verified squared POPL 2011 35 / 50

Towards a Coq mechanization
(D. Pichardie, 2005, 2008; D. Cachera and D. Pichardie, 2010)

Problem: α functions not computable; poor support for calculational style.

Solution 1: forget about α; use relations:

` concrete-thing ∈ abstract-thing

Solution 2: use calculations on paper and re-prove resulting definitions:

` v1 ∈ A1 ∧ ` v2 ∈ A2 =⇒ ` v1 + v2 ∈ A1 +# A2

Much heroic Coq work remains:

Many, many abstract operations to prove.

Modular construction of abstract domains.

Fixpoints, with widening and narrowing.

Their termination.

X. Leroy (INRIA) Verified squared POPL 2011 36 / 50

Cutting more corners
(D. Pichardie et al, 2010)

Forget about mechanically proving termination.
(Coq + classical logic can reason over partial functions.)

Validate a posteriori a post-fixpoint computed by untrusted code.
(Also reduces the number of abstract operations to prove.)

Computing joins vs. Checking inclusion
(convex hull) (Presburger formula)

X. Leroy (INRIA) Verified squared POPL 2011 37 / 50

Summary

Medium term: good hope for a verified, non-toy static analyzer.
(≈ 1/10 of Astrée, just like CompCert ≈ 1/10 of gcc.)

Similar work in progress on verified program provers.
(E.g. A. Appel et al’s Verified Software Toolchain.)

A vision: what you compile is exactly what you verified.

X. Leroy (INRIA) Verified squared POPL 2011 38 / 50

This is a public service announcement:

Floating-point needs work!

X. Leroy (INRIA) Verified squared POPL 2011 39 / 50

Floating-point arithmetic

A. S. Householder (1904–1993):

“It makes me nervous to fly an airplane since I know they are
designed using floating-point arithmetic.”

X. Leroy (1968–) and many, many others:

“It makes us nervous to fly an airplane since we know they
OPERATE using floating-point arithmetic.”

X. Leroy (INRIA) Verified squared POPL 2011 40 / 50

Floating-point arithmetic

A. S. Householder (1904–1993):

“It makes me nervous to fly an airplane since I know they are
designed using floating-point arithmetic.”

X. Leroy (1968–) and many, many others:

“It makes us nervous to fly an airplane since we know they
OPERATE using floating-point arithmetic.”

X. Leroy (INRIA) Verified squared POPL 2011 40 / 50

Floating-point 101

m · 2e
with |m| < 1

Limited precision for m (e.g. 23 or 52 digits) ⇒ inaccuracies
(Patriot missile failure: 28 casualties)

Limited range for e ⇒ overflow, underflow
(Ariane 5 maiden flight: $500M)

Special values: +∞, −∞, +0.0, −0.0, Not-a-Number.

X. Leroy (INRIA) Verified squared POPL 2011 41 / 50

Accumulated rounding errors (a.k.a. the Patriot bug)

float t = 0.0; while(1) { ... t = t + 0.1; ... }

-10%

-1%

-0.1%

-0.01%

-0.001%

exact

0.001%

0.01%

0.1%

1%

10%

1min 1h 1day 1week

re
la

ti
v
e
 e

rr
o
r

time

"patriot.out"

(C. Marché)

X. Leroy (INRIA) Verified squared POPL 2011 42 / 50

Catastrophic cancellation

float det = (qx - px) * (ry - py)

- (qy - py) * (rx - px);

if (det > 0) return RIGHT;

if (det < 0) return LEFT;

return ALIGNED;

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Infinitely precise computations

For q = (8.1, 8.1) and r = (12.1, 12.1) and p around (1.5, 1.5), the
sign of the determinant should look like:

q

r

p

aligned

oriented

oriented

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Infinitely precise computations

For q = (8.1, 8.1) and r = (12.1, 12.1) and p around (1.5, 1.5), the
sign of the determinant should look like:

q

r

p

aligned

oriented

oriented

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Infinitely precise computations

For q = (8.1, 8.1) and r = (12.1, 12.1) and p around (1.5, 1.5), the
sign of the determinant should look like:

q

r

p

aligned

oriented

oriented

Guillaume Melquiond From interval arithmetic to program certification

Introduction Bounds Rounding Errors Conclusion Motivation Orientation Gappa

Actual single-precision computations

Due to the limited precision of floating-point numbers,
the computed sign may be wrong. It actually looks like:

Guillaume Melquiond From interval arithmetic to program certification
Expected Actual (G. Melquiond)

X. Leroy (INRIA) Verified squared POPL 2011 43 / 50

Unfounded compiler optimizations

A post-it note for compiler writers: (please stick it to your monitor)

8 Thou shalt not assume. . . 4 although you can assume. . .

x == x x == y ⇔ x - y == 0

x <= y ⇔ ¬(x > y) x <= y ⇔ x < y ∨ x == y

x == y ⇒ 1/x == 1/y x == y ⇒ 1+x == 1+y

x / 10 == x * 0.1 x / 8 == x * 0.125

x + (y + z) == (x + y) + z x + y == y + x

x * (y * z) == (x * y) * z x * y == y * x

rnd64(rnd80(op)) == rnd64(op) rnd32(rnd64(op)) == rnd32(op)

X. Leroy (INRIA) Verified squared POPL 2011 44 / 50

Wishy-washy language definitions

E.g. ISO C99:

6.3.1.8[2]: The values of floating operands and of the results of
floating expressions may be represented in greater precision and
range than that required by the type; the types are not changed
thereby.

Gives the C compiler a lot of rope to hang the programmer with.

Witness GCC bug #323 “optimized code gives strange floating point
results”: reported in 2000, dozens of duplicates, 179 comments, still not
acknowledged. . .

. . . and responsible for PHP’s strtod() function not terminating
(→ denial of service on many Web sites).

X. Leroy (INRIA) Verified squared POPL 2011 45 / 50

Wishy-washy language definitions

E.g. ISO C99:

6.3.1.8[2]: The values of floating operands and of the results of
floating expressions may be represented in greater precision and
range than that required by the type; the types are not changed
thereby.

Gives the C compiler a lot of rope to hang the programmer with.

Witness GCC bug #323 “optimized code gives strange floating point
results”: reported in 2000, dozens of duplicates, 179 comments, still not
acknowledged. . .

. . . and responsible for PHP’s strtod() function not terminating
(→ denial of service on many Web sites).

X. Leroy (INRIA) Verified squared POPL 2011 45 / 50

Time for sledgehammer theorems

Theorem (Boldo-Nguyen)

Let � be an operation among addition, subtraction, multiplication,
division, square root, negation and absolute value.
Let � be the rounding mode chosen by the compiler (among 64, 80,
80-then-64, or exact).
Let x = �(y , z) be the exact result of the operation.
Then, the computed result �(x) is such that

If |x | ≥ 2−1022 then �(x) ∈ [x ± 2050 · 2−64 · |x |] \]− 2−1022, 2−1022[

If |x | < 2−1022 then �(x) ∈ [x ± 2049 · 2−1086] ∩ [−2−1022, 2−1022]

X. Leroy (INRIA) Verified squared POPL 2011 46 / 50

Verification of floating-point code

By static analysis:

Non-relational (intervals): not too hard
(widen intervals conservatively).

Relational (polyhedra, octogons): very delicate
(mechanized proofs would be highly welcome).

Specialized (Fluctuat): scaling issues.

By program proof:

Difficult proofs, even with the help of dedicated decision procedures
(e.g. G. Melquiond’s Gappa).

Specifications are unclear to begin with!

X. Leroy (INRIA) Verified squared POPL 2011 47 / 50

Proving a typical Scade symbol: tabulated function

double tabulate(int N, double Xs[N+1], double Ys[N+1], double x)

{
int l = 0, u = N;

while (l + 1 < u) {
int m = (l + u) / 2;

if (x < Xs[m]) u = m; else l = m;

}
double p = (x - Xs[l]) / (Xs[u] - Xs[l]);

return (1 - p) * Ys[l] + p * Ys[u];

}

X. Leroy (INRIA) Verified squared POPL 2011 48 / 50

Xs[l] Xs[u]x

Ys[l]

Ys[u]

result

Proving a typical Scade symbol: tabulated function

double tabulate(int N, double Xs[N+1], double Ys[N+1], double x)

{
int l = 0, u = N;

while (l + 1 < u) {
int m = (l + u) / 2;

if (x < Xs[m]) u = m; else l = m;

}
double p = (x - Xs[l]) / (Xs[u] - Xs[l]);

return (1 - p) * Ys[l] + p * Ys[u];

}

Binary search: business as usual

Pre: Xs[0] < · · · < Xs[N] ∧ Xs[0] ≤ x < Xs[N] ∧ 1 ≤ N < MAX_INT/2
Post: ∃i , 0 ≤ i < N ∧ Xs[i] ≤ x < Xs[i + 1] 4

X. Leroy (INRIA) Verified squared POPL 2011 48 / 50

Xs[l] Xs[u]x

Ys[l]

Ys[u]

result

Proving a typical Scade symbol: tabulated function

double tabulate(int N, double Xs[N+1], double Ys[N+1], double x)

{
int l = 0, u = N;

while (l + 1 < u) {
int m = (l + u) / 2;

if (x < Xs[m]) u = m; else l = m;

}
double p = (x - Xs[l]) / (Xs[u] - Xs[l]);

return (1 - p) * Ys[l] + p * Ys[u];

}

What can we say about the return value? Not much, really!

Post: . . . ∧ min(Ys[i], Ys[i + 1]) ≤ result ≤ max(Ys[i], Ys[i + 1]) 8

Xs[i] x Xs[i + 1] Ys[i] Ys[i + 1] p result

−21022 21022 1.5 · 21022 – – NaN NaN
0 0.5 1 2−1074 2−1074 0.5 0

X. Leroy (INRIA) Verified squared POPL 2011 48 / 50

Xs[l] Xs[u]x

Ys[l]

Ys[u]

result

In closing. . .

X. Leroy (INRIA) Verified squared POPL 2011 49 / 50

In closing. . .

The formal verification of development and verification tools for critical
software

. . . is a fascinating challenge,

. . . appears within reach,

. . . and could have practical importance.

Feel free to join!

X. Leroy (INRIA) Verified squared POPL 2011 50 / 50

	Introduction: critical avionics software
	Compiler verification
	Verified verification tools
	Floating-point woes
	In closing

