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Mathematical models and proofs are essential in many areas of
C.S., for validation as well as for discovery.
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A vicious circle
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Decent proofs

Happy reviewers

“Let’s make it more realistic!”
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Excruciatingly long / fast and loose proofs

Exhausted reviewers
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Machine assistance to the rescue?

Proofs written by computer scientists are boring:
they read as if the author is programming the reader.

(John C. Mitchell)

Who said that the reader must be human?
Proofs can and should be checked by computers.

(The proof assistant community)



In this talk

Three short stories where the use of proof assistants enables C.S.
research to scale properly:

• Programming languages metatheory (POPLmark)

• Deductive verification of critical software (seL4)

• Formally-verified compilation (CompCert)



Part I

The metatheory of programming

languages



Formally defining a programming language

Syntax
(what do programs look like?)

Dynamic semantics
(how programs execute? what do they compute?)

Type system / Static semantics
(what are well-formed programs?)



A trivial language: simply-typed λ-calculus

Syntax: Expr 3 a ::= N | x | λx .a. | a1 a2

Dynamic semantics: (λx .a1) a2 → a1[x ← a2]

Type system:

Γ ` N : nat
(x : τ) ∈ Γ

Γ ` x : Γ(x)

Γ, x : τ ` a : τ ′

Γ ` λx .a : τ → τ ′

Γ ` a1 : τ → τ ′ Γ ` a2 : a2 : τ

Γ ` a1 a2 : τ ′



The metatheory of a programming
language

A pretentious word to refer to important properties that hold for
all well-typed programs, e.g.

• Type soundness: execution never crashes on an undefined
computation

∀a. a→ · · · 6→ N b

• Normalization: execution always terminates

∀a,∃b, a→ · · · → b 6→

Plus: decidability of type-checking; existence of principal types; etc.



Scaling up: System Fsub

Adds support for polymorphism and subtyping as in OO languages.

(x : τ) ∈ Γ

Γ ` x : Γ(x)

Γ, x : τ ` a : τ ′

Γ ` λx .a : τ → τ ′

Γ ` a1 : τ → τ ′ Γ ` a2 : a2 : τ

Γ ` a1 a2 : τ ′

Γ ` a : τ Γ ` τ <: τ ′

Γ ` a : τ ′

Γ, X <: τ ` a : τ ′

Γ ` ΛX <: τ.a : ∀X <: τ. τ ′

Γ ` a : ∀X <: τ1. τ2 Γ ` τ <: τ1

Γ ` a[τ ] : τ2[X ← τ ]



Scaling up: System Fsub

Subtyping rules:

Γ ` τ <: > Γ ` X <: X
Γ ` τ ′1 <: τ1 Γ ` τ2 <: τ ′2

Γ ` τ1 → τ2 <: τ ′1 → τ ′2

Γ ` τ ′1 <: τ1 Γ,X <: τ1 ` τ2 <: τ ′2

Γ ` ∀X <: τ1. τ2 <: ∀X <: τ ′1. τ
′
2

(X <: τ ′) ∈ Γ Γ ` τ ′ <: τ

Γ ` X <: τ



Mind the gap!

Kernel Fsub: type-checking is decidable.

Γ,X <: τ ` τ2 <: τ ′2

Γ ` ∀X <: τ . τ2 <: ∀X <: τ . τ ′2

Full Fsub: type-checking is undecidable.

Γ ` τ ′1 <: τ1 Γ,X <: τ1 ` τ2 <: τ ′2

Γ ` ∀X <: τ1. τ2 <: ∀X <: τ ′1. τ
′
2



Growing pains

So many type systems to explore!

• Type more features: imperative, object-orientation,
concurrency, distribution, . . .

• Type them more precisely: polymorphism, type abstraction,
refinement types, dependent types, . . .

• Extend type safety to low-level languages: virtual machines,
assembly.

Metatheory proofs become intractable:

• Large case analyses (e.g. 20-page appendix).

• Interesting cases are lost in a sea of routine cases.

• The patience of reviewers is exhausted.



The Grail: formalizing real-world
programming languages

Book-sized specifications; hundreds of inference rules.

Very little can be proved about them.



The POPLmark challenge
B.E. Aydemir, B.C. Pierce, S. Weirich, S. Zdancewic, et al, 2005

A vision:

How close are we to a world where every paper on
programming languages is accompanied by an electronic
appendix with machine-checked proofs?

A challenge: mechanize the metatheory of Fsub in the proof
assistant of your choice.

The result: 15 solutions (+/- complete), in 7 proof assistants.



The good news

All solutions handle part 1 of the challenge, which is the most
difficult proof of Fsub’s metatheory.

Theorem (Transitivity of subtyping)

If Γ ` τ1 <: τ2 and Γ ` τ2 <: τ3 then Γ ` τ1 <: τ3.

Proof: induction on the size of τ2 and mutual induction with

Theorem (Narrowing)

If Γ,X <: τ1,∆ ` τ <: τ ′ and Γ ` τ2 <: τ3, then
Γ,X <: τ2,∆ ` τ <: τ ′.

Moreover, the mechanized proofs are not much bigger than a
detailed pencil-and-paper proof.



The bad news

All solutions have a hard time dealing with variable bindings and
invariance by renaming of bound variables (α-equivalence).

∀X . P(X )

= ∀Y . P(Y )

i=n∑
i=0

i2

=

j=n∑
j=0

j2

∫ ∞
0

f (x)dx

=

∫ ∞
0

f (t)dt

x 7→ e−x

= z 7→ e−z

6= e 7→ e−e name capture!
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Approaches to variable bindings

Either: special support in the logic and proof assistant:

• Nominal logic (Pitts et al);

• Higher-Order Abstract Syntax in Twelf.

Or: special encodings so that α-equivalence is equality:

• de Bruijn indices;

• locally nameless techniques;

• parametric HOAS;

• etc.

No “best” approach yet.

Definitions and statements do not look exactly like on paper.



Mechanizing large programming languages

Several successes for practically-important languages:

• Java and the JVM (Klein, Lochbihler, Nipkow)

• Standard ML (Crary, Harper)

• C (Norrish, Leroy, Krebbers)

• Javascript (Gardner et al)

• x86 machine language (Morrisett et al, Myreen, Benton)

These formalizations are usable (and used) to prove specific
programs as well as general metatheoretic results.

15% of POPL submissions now include a machine-checked proof.



Part II

Formal verification of critical software
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Validating critical software

Program testing can be used to show the presence of bugs,
but never to show their absence!

(E.W.Dijkstra, 1972)

Dominant approach: testing.

Alternative on the rise: tool-assisted formal verification:
verify, possibly infer, properties that hold of all possible executions
of a program.

Used in some industrial contexts (airplanes, railways)

• To obtain independent guarantees (besides testing).

• To obtain stronger guarantees (than with testing).

• To save time and money (rigorous testing is expensive).



A panorama of verification tools

Basic safety Full correctness

Specialized logics F.O.logic H.O.logic + induction

Automatic

Interactive

106 LOC

102 LOC

Static analyzers

Model checkers

Deductive program provers

Proof assistants



Example: computing prime numbers
Knuth, The Art of Computer Programming, vol.1

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
int j = 0;

while (j < i ∧ a[j] <=
√
m ) {

if (a[j] divides m) continue loop;

j = j + 1;

}
a[i] = m; i = i + 1;

}

Goal: compute the first n prime numbers.

Algorithm: try successive odd numbers m, striking out those
divisible by primes already found.



Example: computing prime numbers
Knuth, The Art of Computer Programming, vol.1

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
int j = 0;

while (j < i ∧ a[j] <=
√
m ) {

if (a[j] divides m) continue loop;

j = j + 1;

}
a[i] = m; i = i + 1;

}

Static analyzer: can infer 1 ≤ i < n and 0 ≤ j < i inside the loop,
hence array accesses are safe (within bounds).
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m ) {

if (a[j] divides m) continue loop;
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}

Automatic program prover: can prove partial correctness if the user
provides detailed loop invariants and simple axioms about primality
and divisibility. (Termination is harder to prove.)
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Knuth, The Art of Computer Programming, vol.1

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
/* invariant:

∀k , 0 ≤ k < i ⇒ isprime(a[k])
∀p, 2 ≤ p < m ∧ isprime(p) ⇒ ∃k , 0 ≤ k < i ∧ a[k] = p
∀k ,m, 0 ≤ k < j < i ⇒ a[k] < a[j ]

*/

Automatic program prover: can prove partial correctness if the user
provides detailed loop invariants and simple axioms about primality
and divisibility. (Termination is harder to prove.)



Example: computing prime numbers
Knuth, The Art of Computer Programming, vol.1

int a[] = new int[n];

a[0] = 2;

loop:

for (int i = 1, m = 3; i < n; m = m + 2) {
int j = 0;

while (j < i ∧ a[j] <=
√
m ) {

if (a[j] divides m) continue loop;

j = j + 1;

}
...

Knuth’s cunning optimization: the test j < i is redundant and can
be omitted. Can you see why?

Because of Bertrand’s postulate!

Theorem (Chebychev)

For all n ≥ 1, there exists a prime p in [n, 2n].

(Coq proof: Laurent Théry, 2002.)
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Scaling up: the seL4 verified microkernel
(G. Klein et al, NICTA)

The security core of an operating system.

hardware

monolithic kernel
(107 LOC)

App 1 App 2

hardware

micro-kernel
(104 LOC)

OS
services

App 1

OS
services

App 2

protected

no protection

Traditional approach Microkernel approach



Verifying seL4 with Isabelle/HOL
(G. Klein et al, NICTA; ACM TOPLAS 32(1), 2014)

Haskell
prototype

Optimized C
implementation

High-level
abstract specs

Low-level
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Semantics of
C implem.

automatic
generation

automatic
generation

refinement proof
(semi-automatic)

refinement proof
(interactive)

Generic security
properties

proofs
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seL4: a milestone

A dream comes true.
(≈ 15 unsuccessful OS verification projects since the late 1970’s).

No compromise on the performance of the OS.
(≈ 80% of the speed of the fastest unverified L4-style kernel.)

The largest deductive verification of a software system ever:
20 person.year, 200+ KLOC proofs.



Part III

Formally-verified compilation



Trust in software verification

Simulink, Scade

Code generator

C code

Compiler

Executable

Simulation

Model-checking

Program proof

Static analysis

Testing

?

?

The unsoundness risk: Are verification tools semantically sound?

The miscompilation risk: Are compilers semantics-preserving?



Miscompilation happens

NULLSTONE isolated defects [in integer division] in twelve of
twenty commercially available compilers that were evaluated.

http://www.nullstone.com/htmls/category/divide.htm

We tested thirteen production-quality C compilers and, for
each, found situations in which the compiler generated
incorrect code for accessing volatile variables.

E. Eide & J. Regehr, EMSOFT 2008

To improve the quality of C compilers, we created Csmith, a
randomized test-case generation tool, and spent three years
using it to find compiler bugs. During this period we reported
more than 325 previously unknown bugs to compiler
developers. Every compiler we tested was found to crash and
also to silently generate wrong code when presented with valid
input.

X. Yang, Y. Chen, E. Eide & J. Regehr, PLDI 2011



An example of optimizing compilation

double dotproduct(int n, double * a, double * b)

{

double dp = 0.0;

int i;

for (i = 0; i < n; i++) dp += a[i] * b[i];

return dp;

}

Compiled with a good compiler, then manually decompiled back to
C. . .



double dotproduct(int n, double a[], double b[]) {
dp = 0.0;

if (n <= 0) goto L5;

r2 = n - 3; f1 = 0.0; r1 = 0; f10 = 0.0; f11 = 0.0;

if (r2 > n || r2 <= 0) goto L19;

prefetch(a[16]); prefetch(b[16]);

if (4 >= r2) goto L14;

prefetch(a[20]); prefetch(b[20]);

f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1];

r1 = 8; if (8 >= r2) goto L16;

L17: f16 = b[2]; f18 = a[2]; f17 = f12 * f13;

f19 = b[3]; f20 = a[3]; f15 = f14 * f15;

f12 = a[4]; f16 = f18 * f16;

f19 = f29 * f19; f13 = b[4]; a += 4; f14 = a[1];

f11 += f17; r1 += 4; f10 += f15;

f15 = b[5]; prefetch(a[20]); prefetch(b[24]);

f1 += f16; dp += f19; b += 4;

if (r1 < r2) goto L17;

L16: f15 = f14 * f15; f21 = b[2]; f23 = a[2]; f22 = f12 * f13;

f24 = b[3]; f25 = a[3]; f21 = f23 * f21;

f12 = a[4]; f13 = b[4]; f24 = f25 * f24; f10 = f10 + f15;

a += 4; b += 4; f14 = a[8]; f15 = b[8];

f11 += f22; f1 += f21; dp += f24;

L18: f26 = b[2]; f27 = a[2]; f14 = f14 * f15;

f28 = b[3]; f29 = a[3]; f12 = f12 * f13; f26 = f27 * f26;

a += 4; f28 = f29 * f28; b += 4;

f10 += f14; f11 += f12; f1 += f26;

dp += f28; dp += f1; dp += f10; dp += f11;

if (r1 >= n) goto L5;

L19: f30 = a[0]; f18 = b[0]; r1 += 1; a += 8; f18 = f30 * f18; b += 8;

dp += f18;

if (r1 < n) goto L19;

L5: return dp;

L14: f12 = a[0]; f13 = b[0]; f14 = a[1]; f15 = b[1]; goto L18;

}
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Addressing miscompilation

Best industrial practices: more testing; manual reviews of
generated assembly code; turn optimizations off; . . .

A more radical solution: why not formally verify the compiler itself?

After all, compilers have simple specifications:

If compilation succeeds, the generated code should
behave as prescribed by the semantics of the source
program.

As a corollary, we obtain:

Any safety property of the observable behavior of the
source program carries over to the generated executable
code.



An old idea. . .

Mathematical Aspects of Computer Science, 1967



An old idea. . .

Machine Intelligence (7), 1972.



The CompCert project
(X.Leroy, S.Blazy, et al)

Develop and prove correct a realistic compiler, usable for critical
embedded software.

• Source language: a very large subset of C99.

• Target language: PowerPC/ARM/x86 assembly.

• Generates reasonably compact and fast code
⇒ careful code generation; some optimizations.

Note: compiler written from scratch, along with its proof; not
trying to prove an existing compiler.



The formally verified part of the compiler

CompCert C Clight C#minor

CminorCminorSelRTL

LTL Linear Mach

Asm PPCAsm ARMAsm x86

side-effects out

of expressions

type elimination

loop simplifications

stack allocation

of “&” variables

instruction

selection

CFG construction

expr. decomp.

register allocation (IRC)

calling conventions

linearization

of the CFG

layout of

stack frames

asm code generation

Optimizations: constant prop., CSE,

inlining, tail calls



Formally verified using Coq

The correctness proof (semantic preservation) for the compiler is
entirely machine-checked, using the Coq proof assistant.

Theorem transf_c_program_preservation:

forall p tp beh,

transf_c_program p = OK tp ->

program_behaves (Asm.semantics tp) beh ->

exists beh’, program_behaves (Csem.semantics p) beh’

/\ behavior_improves beh’ beh.



Compiler verification patterns (for each pass)

transformation transformation

validator

×

transformation

untrusted solver

×

checker

Verified transformation Verified translation validation

External solver with verified validation

= formally verified

= not verified



Proof effort

15%

Code

8%

Sem.

17%

Claims

54%

Proof scripts

7%

Misc

100,000 lines of Coq.

Including 15000 lines of “source code” (≈ 60,000 lines of Java).

6 person.years

Low proof automation (could be improved).



Programmed (mostly) in Coq

All the verified parts of the compiler are programmed directly in
Coq’s specification language, using pure functional style.

• Monads to handle errors and mutable state.

• Purely functional data structures.

Coq’s extraction mechanism produces executable Caml code from
these specifications.

Claim: purely functional programming is the shortest path to
writing and proving a program.



The whole Compcert compiler
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Performance of generated code
(On a Power 7 processor)

fi
b

q
so

rt ff
t

sh
a1 ae

s

al
m

ab
en

ch

lis
ts

b
in

ar
yt

re
es

fa
n

n
ku

ch

kn
u

cl
eo

ti
d

e

m
an

d
el

br
o

t

n
b

o
d

y

n
si

ev
e

n
si

ev
eb

it
s

sp
ec

tr
al

vm
ac

h

b
is

ec
t

ch
o

m
p

p
er

lin

ar
co

d
e

lz
w

lz
ss

ra
yt

ra
ce

r

Execution time
gcc -O0 CompCert gcc -O1 gcc -O3



A tangible increase in quality

The striking thing about our CompCert results is that the
middleend bugs we found in all other compilers are
absent. As of early 2011, the under-development version
of CompCert is the only compiler we have tested for
which Csmith cannot find wrong-code errors. This is not
for lack of trying: we have devoted about six CPU-years
to the task. The apparent unbreakability of CompCert
supports a strong argument that developing compiler
optimizations within a proof framework, where safety
checks are explicit and machine-checked, has tangible
benefits for compiler users.

X. Yang, Y. Chen, E. Eide, J. Regehr, PLDI 2011



Part IV

Conclusions



In closing. . .

Proof assistants enable unprecedented scaling in many areas of
computer science:

• in size and realism of the formal systems considered;

• in mathematical assurance.

Additional benefits:

• Make research papers easier to write and to read.

• Give a second chance to students/engineers/scientists who are
insecure in their abilities to do mathematics on paper.

• Facilitate collaborative work of the free software kind.



Some points to keep in mind

Mechanized proofs do not eliminate errors, they reduce the errors
to the definitions and statements of theorems.

Proof assistants are addictive and a huge time sink.

Proper engineering of specifications and proofs is crucial.

Fragmentation of the community around multiple theorem provers.
(Just like programming languages.)

Mechanized proofs require maintenance and proper archival.



Go forth
and

mechanize!

For more information on the projects presented:
POPLmark: http://www.seas.upenn.edu/~plclub/poplmark

seL4: http://ssrg.nicta.com.au/projects/seL4/

CompCert: http://compcert.inria.fr/

http://www.seas.upenn.edu/~plclub/poplmark
http://ssrg.nicta.com.au/projects/seL4/
http://compcert.inria.fr/
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