COLLEG
DE FRANC
1530

E
E

Program logics:
reasoning principles for high-assurance software

Introduction

Xavier Leroy
2021-03-04

College de France, chair of software sciences
xavier.leroy@college-de-france.fr



How to make sure that software
behaves correctly?



Conventional methods

Test

» Run the program on well-chosen inputs.
« Compare observed behaviors with expected behaviors.

Review

- Carefully proofread the code, the tests, the design
documents, ...

Analysis

+ Mathematical study of some aspects of the program:
numerical precision, time or space complexity, etc.

« Pencil and paper, or with machine assistance
(static analysis tools).



Limitations of testing

Testing shows the presence, not the absence of bugs.
(E. W. Dijkstra, 1969)

We test a small number of all possible behaviors of the program.
Some bugs trigger very rarely!

Example (carry propagation in a cryptographic library)
Add 2 * ta * tbto c2:c1:c0 while “optimizing” carry propagation

BN_UMULT_LOHI(t0,t1,ta,tb);
t2 = tl+tl; c2 += (t2<t1)71:0;
t1 = t0+t0; t2 += (£t1<t0)71:0;
cO += t1; t2 += (c0<t1)?1:0;
cl += t2; c2 += (c1<t2)71:0;



Limitations of code review

Given enough eyeballs, all bugs are shallow.
(Eric Raymond, 1999)

Reviewers are tired or distracted.

Some codes such as hot fixes are not reviewed much.
Example (the goto fail bug)

if ((err=SSLHashSHA1.update (&hashCtx,&signedParams)) != 0)
goto fail;
goto fail;

EIGTPAS

fail: return err;



Limitations of code analysis

Beware of bugs in the above code;
I have only proved it correct, not tried it.
(Donald E. Knuth, 1977)

Risk of errors in pencil-and-paper analyses
and of unsoundness in static analysis tools.

Possible gap between the analysis and the actual program or its
actual execution context.

Example (Ariane 501)
Overflow in a conversion 64-bit FP number — 16-bit integer.
An analysis conducted in the context of Ariane 4 proved that the

converted quantity, called BH, always fits in 16 bits. The analysis was
invalid in the context of Ariane 5.



Deductive verification (also called program proof)

Logical reasoning that establishes properties that hold for all
possible executions of the program.

Unlike other “formal methods”, the properties established go all
the way up to full functional correctness w.r.t. a specification.

Practical interest:

- Obtaining guarantees stronger than those we can get using
testing and review.

« Finding bugs we cannot find by other means.



Program logics

A program logic provides us with a specification langage and
reasoning principles to reason about program behaviors.

Specifications generally consist in logical assertions about the
program:

- preconditions: hypotheses on inputs
(function parameters; initial values of variables)
 postconditions: guarantees on outputs

(function results; final values of variables)

- invariants: guarantees on the states at a program point
(loop invariants, data structure invariants, ...)



Program logics and deductive verification

Program ) Assertions

program
logic

Verification
conditions

proofs: pencil-and-paper,
automated, or interactive

OK / alarm



Hunting for bugs:
the example of binary search




Binary search

[1]3]4]6]7]8]10]13)14]

1 =20; h=a.length - 1;
while (1 <= h) {

m=(1L+h) /2;

if (a[m] == v) return m;

if (alm] < v) h=m-1; else 1l =m + 1;
}

return -1;



A long history

1 =20; h=a.length - 1;
while (1 <= h) {

m=(l+h) /2;

if (alm] == v) return m;

if (a[m] < v) h=m-1; elsel =m + 1;
}

return -1;

1946 John Mauchly, Moore School Lectures

1960 Derrick H. Lehmer publishes the modern algorithm

1986 Jon Bentley, Programming pearls, chapter 4

2004 Bugreport: java.util.Arrays.binarySearch() will throw an
ArrayIndexOut0fBoundsException if the array is large.

2006 Joshua Bloch, Nearly All Binary Searches and Mergesorts are
Broken.

10



The source of the bug: an arithmetic overflow

m=(1+h) / 2;

We have 0 <1 <h < a.length.
1 + hcan overflow if a.length is large enough.

In Java, 1 + h becomes negative, as well as m, hence a[m] raises
an “out of bounds” exception.

In C, we have a so-called undefined behavior. Often, the program
continues with the wrong value of m. Worse things can happen.

A simple fix: m=1+¢kh-1) / 2;

1



A bug that is hard to find

Test:
« We rarely test on very big inputs.
+ A 64-bit machine and several Gb of RAM are required to
trigger this bug.
Review:
+ The formula (I + h)/2 is so familiar as to raise no suspicion.
+ Reviewers are likely to suggest “optimizing” [+ (h — [)/2
as (l+h)/2.
Analyses:
« Avariation interval analysis can detect the problem.

12



Deductive verification of binary search
using the Frama-C WP tool.

13



The course and the seminar




Objectives for the course

Understand the principles of program logics and the recent
developments in this area.

Leitmotiv: which logics for which features of programming

languages?
(variables, pointers, concurrency, higher-order, etc)

14



Objectives for the seminar

Demonstrate implementations of program logics in
industrial-strength verification tools.

Discuss new verification problems and new ideas to tackle them.

15



1. The birth of program logics
Variables and loops: Hoare logic
Pointers and data structures: separation logic

Shared-memory concurrency: concurrent separation logic

oo BN

Extensions of separation logic: fractional permissions, ghost
state, stored locks, ...

6. Logics for weakly-consistent shared memory

7. Logics for functional, higher-order languages

16



The seminar

11/03

18/03

25/03

01/04

08/04

15/04

Loic Correnson (CEA).

Les logiques de programmes a ['épreuve du réel: tours et détours
avec Frama-C/WP

Yannick Moy (Adacore).

Preuve auto-active de programmes en SPARK

Bart Jacobs (K. U. Leuven).

VeriFast: Semi-automated modular verification of concurrent C
and Java programs using separation logic

Francois Pottier (Inria).

Raisonner a propos du temps en logique de séparation
Jacques-Henri Jourdan (CNRS).

Protocoles personnalisés en logique de séparation: ressources
fantomes et invariants dans la logique Iris

Philippa Gardner (Imperial College London).

Gillian: Compositional Symbolic Testing and Verification

17



	Introduction
	Example: binary search
	The course and the seminar

