
Programming = proving?
The Curry-Howard correspondence today

Seventh lecture

Forcing :
just another program transformation?

Xavier Leroy

Collège de France

2019-01-09

Or voici qu’il y a huit mois Kan, travaillant sur un adjoint à lui (voir D. Kan,
Adjoint Functors, Transactions, V, 3,18) montra par induction, croit-on, (il
raisonnait — a-t-il dit à Jaulin — sur un grand cardinal, par “forcing” pour
part) la

Proposition Soit G soit H soit K (H ⊂ G, G ⊃ K) trois magmas (nous suivons
Kurosh) où l’on a a(bc) = (ab)c; où pour tout a, x→ xa, x→ ax sont
“sûrs”, sont monos, alors on a G ' H× K si G = H ∪ K; si H, si K sont
invariants; si H, K n’ont qu’un individu commun H ∩ K =

Las! Kan mourut avant d’avoir �ni son job. Donc à la �n, l’on n’a toujours
pas la solution (1).

G. Perec, La disparition, pp. 62–63 (1969)

2

I

The continuum hypothesis

Cardinals

A generalization (by Cantor) of the notion of number of elements
to in�nite sets.

Two sets X and Y have the same cardinal if and only if there exists a
bijection h between X and Y.

4

Cardinals

The order between cardinals:

card(X) = card(Y) if there exists a bijection X → Y.
card(X) ≤ card(Y) if there exists an injection X → Y.
card(X) < card(Y) if there exists an injection X → Y but no injection
Y → X

Theorem (Cantor, 1874, 1891)

card(X) < card(P(X)) = card(X → {0, 1}) for all set X.

Corollary: card(N) < card(R).

5

Two kinds of in�nity

Countable in�nity Continuous in�nity
N R
Z P(N)

Q C
N× · · · × N R× · · · × R

�nite words on a �nite alphabet N→ {0, 1, . . . , k}
�nite words on N N→ N

mathematical formulas
computer programs

Turing machines
computable functions

6

The continuum hypothesis (CH)

There is no cardinal between countable in�nity and continuous in�nity.

¬∃X, card(N) < card(X) < card(P(N))

In other words: every subset of R is either �nite, or countable, or in
bijection with R.

7

The generalized continuum hypothesis (GCH)

Enumerating in�nite cardinals: (uses the axiom of choice)

ℵ0 = card(N) ℵα+1 = the smallest cardinal > ℵα ℵλ = sup
α<λ
ℵα

By Cantor’s theorem: ℵα+1 ≤ 2ℵα for all α.

Continuum hypothesis: ℵ1 = 2ℵ0

Generalized continuum hypothesis: ℵα+1 = 2ℵα for all α.

8

History of the problem

1878: G. Cantor states the continuum hypothesis. He could never
prove it.

1900: D. Hilbert lists CH �rst in his list of 23 open problems.
1938: K. Gödel proves that GCH is consistent with ZFC set theory.
1964: P. Cohen proves that the negation of CH is consistent with

ZFC. To this end, he develops an entirely new approach:
forcing. He receives the Fields medal in 1966.

1970: W. B. Easton proves consistency of a generalization of ¬CH:
for all α, ℵα+1 < 2ℵα .

9

Independence of the continuum hypothesis

(Generalized) continuum hypothesis is therefore independent of ZF,
Zermelo-Fraenkel set theory, meaning:

We can assume CH to be true (take it as an axiom) and no
contradiction (logical inconsistency) follows.
We can assume CH to be false (take its negation as an axiom) and no
contradiction follows.
As a corollary, we cannot prove CH nor ¬CH from the axioms of ZF.

Another example: the axiom of choice is independent of ZF.
(Proved at the same time as independence of CH by Gödel and by Cohen.)

10

Models of set theory

ZF set theory:
A symbol “∈” and 8 axioms:
Extensionality
Pairing
Comprehension
Union
Power set
In�nity
Replacement
Foundation

The structure of groups:
Three symbols “1”, “·” and
“−1” and three identities:

(x · y) · z = x · (y · z)
1 · x = x = x · 1

x · x−1 = 1 = x−1 · x

A model of set theory:
A collection of objects and a predicate
∈ that satisfy the 8 axioms.

A group:
A set G and operations
(1, ·,−1) that satisfy the 3
identities.

11

Models of set theory

The existence of a model of ZF proves the consistency of ZF axioms
(we cannot prove absurdity ⊥).

Conversely: if ZF is consistent, it has a model (Gödel, 1930).

The existence of a model of ZF satisfying an hypothesis H shows that ZF +H
is consistent, and therefore that we cannot prove ¬H from ZF axioms.

Gödel’s 1938 proof: given a model M of ZF, build an inner model L ⊆ M that
satis�es CH.

Cohen’s 1964 proof: given a model M of ZF, build an extension of this model
M[G] ⊃ M that satis�es ¬CH.

12

Models of set theory

The existence of a model of ZF proves the consistency of ZF axioms
(we cannot prove absurdity ⊥).

Conversely: if ZF is consistent, it has a model (Gödel, 1930).

The existence of a model of ZF satisfying an hypothesis H shows that ZF +H
is consistent, and therefore that we cannot prove ¬H from ZF axioms.

Gödel’s 1938 proof: given a model M of ZF, build an inner model L ⊆ M that
satis�es CH.

Cohen’s 1964 proof: given a model M of ZF, build an extension of this model
M[G] ⊃ M that satis�es ¬CH.

12

Models of set theory

The existence of a model of ZF proves the consistency of ZF axioms
(we cannot prove absurdity ⊥).

Conversely: if ZF is consistent, it has a model (Gödel, 1930).

The existence of a model of ZF satisfying an hypothesis H shows that ZF +H
is consistent, and therefore that we cannot prove ¬H from ZF axioms.

Gödel’s 1938 proof: given a model M of ZF, build an inner model L ⊆ M that
satis�es CH.

Cohen’s 1964 proof: given a model M of ZF, build an extension of this model
M[G] ⊃ M that satis�es ¬CH.

12

Models of set theory

The existence of a model of ZF proves the consistency of ZF axioms
(we cannot prove absurdity ⊥).

Conversely: if ZF is consistent, it has a model (Gödel, 1930).

The existence of a model of ZF satisfying an hypothesis H shows that ZF +H
is consistent, and therefore that we cannot prove ¬H from ZF axioms.

Gödel’s 1938 proof: given a model M of ZF, build an inner model L ⊆ M that
satis�es CH.

Cohen’s 1964 proof: given a model M of ZF, build an extension of this model
M[G] ⊃ M that satis�es ¬CH.

12

Gödel’s constructible sets

Let (M,∈) be a model of ZF.

If X is a set from this model, we write Def(X) the set of sets de�nable by
logical formulas Φ where all variables (quanti�ed or free) range over X:

Def(X) =
{
{x ∈ X | (X,∈) |= Φ(x) }

}
De�ne by trans�nite induction:

L0 = ∅ Lα+1 = Def(Lα) Lλ =
⋃
α<λ

Lα

In other words: Lα is all the sets that we can construct using only members
of Lβ with β < α.

13

Gödel’s constructible sets

If (M,∈) is a model of ZF, and Ord the collection of its ordinals, we de�ne
L =

⋃
α∈Ord Lα. Then, (L,∈) is a model of ZF. Moreover:

L satis�es the axiom of choice.
(Every set A of L is well ordered by an order induced by ordinal order.)

L satis�es the generalized continuum hypothesis.
(For all α, P(Lα) ∩ L ⊆ Lβ for a β “not much bigger than” α. It follows
that 2ℵγ ≤ ℵγ+1 and therefore ℵγ+1 = 2ℵγ .)

14

Cohen’s generic extensions

In Gödel’s approach, we start from a model M and we keep only the
“well-behaved” sets of M (those that are constructible), thus eliminating
“wild” sets that could have intermediate cardinals and thus invalidate CH.

Cohen’s approach is dual: we start from a model M and we adjoin it a new
set G that will “in�ate P(N)” so much that ℵ0 < ℵ1 < 2ℵ0 in the resulting
model M[G].

15

Extension of an algebraic structure

A familiar mathematical concept. For instance:

If we add an element X to a ring A, we also add 2X, −X, X2, X3, . . . , and
we get A[X], the ring of polynomials over A.

If we extend the �eld R with an element i such that i2 = −1, we also
add all the x + iy, and we get C.

Careful! An extension can be inconsistent! For instance:

If we extend the ordered �eld R with an element i such that i2 = −1,
we contradict the property ∀x, x2 ≥ 0 which was true before the
extension.

16

Extension of an algebraic structure

A familiar mathematical concept. For instance:

If we add an element X to a ring A, we also add 2X, −X, X2, X3, . . . , and
we get A[X], the ring of polynomials over A.

If we extend the �eld R with an element i such that i2 = −1, we also
add all the x + iy, and we get C.

Careful! An extension can be inconsistent! For instance:

If we extend the ordered �eld R with an element i such that i2 = −1,
we contradict the property ∀x, x2 ≥ 0 which was true before the
extension.

16

Cohen’s proof

Let M be a transitive countable model of ZF.

Let k be a set of M such that M |= card(k) = ℵ2.

Extend M with a new element G that is a “generic” function from k to
P(N), giving M[G].

Show that M[G] is a model of ZF.

Show that M[G] |= “function G is injective”, and therefore that
M[G] |= card(k) ≤ card(P(N)) = 2ℵ0 .

Show that cardinals are preserved by the extension, and therefore
that M[G] |= card(k) = ℵ2.

Conclude M[G] |= ℵ0 < ℵ1 < ℵ2 ≤ 2ℵ0 , and therefore M[G] |= ¬CH.

17

II

Forcing

Forcing conditions

Constructing the model extension M[G] is not very hard; but how can we
reason in this model?
What are the properties of G?
How to prove that a logical formula is true in M[G]?

Cohen’s idea: we can describe G and its properties through �nite
approximations (but as precise as we want) that live in M and that we call
forcing conditions.

19

Forcing conditions

Dangerous object being handled: M[G].
Handles of the remote manipulator: forcing conditions.

20

Forcing conditions

De�nition
A set of forcing conditions is a partially-ordered set (C,4).
q 4 p means that condition q is “�ner” than condition p, or equivalently
that q implies p.

Example
If the generic element G is a set of integers, we take as forcing conditions p
the �nite functions from integers to {0, 1}, such as {4 7→ 1, 13 7→ 0}.

p(n) = 1 means “n belongs to G”
p(n) = 0 means “n does not belong to G”

We order conditions by reverse inclusion: q 4 p def
= p ⊆ q.

21

Forcing predicates

Given a logical formula A that mentions elements of M[G], we say that A is
forced by condition p, and write p
W A, if:

p
W n ∈ Ḡ i� p(n) = 1
p
W A ∧ B i� p
W A and p
W B
p
W ¬A i� ∀q 4 p, ¬(q
W A)

p
W ∀x ∈ X. A(x) i� p
W A(x) for all x ∈ X

Remark: if p
W A then q
W A for all q 4 p.

Theorem
1- For every extension M[G] and every formula A,

M[G] |= A if and only if there exists p ∈ G such that M |= (p
W A).
2- For every p, there exists an extension M[G] such that p ∈ G.

22

Example of use

Lemma
The generic set of integers G contains in�nitely many prime numbers.

Proof.
We have to show M[G] |= ∀m,∃n, n ∈ Ḡ ∧ n ≥ m ∧ n prime.
By the forcing theorem, it su�ces to show (in M)

∅
W ∀m,∃n, n ∈ Ḡ ∧ n ≥ m ∧ n prime
that is ∅
W ∀m,¬(∀n,¬(n ∈ Ḡ ∧ n ≥ m ∧ n prime))

that is ∀m,∀p,∃q 4 p, ∃n, q(n) = 1 ∧ n ≥ m ∧ n prime

The function p being �nite and the set of prime numbers in�nite, we can
always �nd an n ≥ m prime and outside the domain of p. We then take
q = p ∪ {n 7→ 1} and we have q 4 p and q(n) = 1.

23

Example of use

If G is the function k→ P(N) from Cohen’s proof, we take as forcing
conditions the �nite functions k× N→�n {0, 1}, ordered by reverse
inclusion.

We de�ne p
W n ∈ Ḡ(x) i� p(x, n) = 1.

Exercise: show that G is injective: M[G] |= ∀x1, x2, x1 6= x2 ⇒ G(x1) 6= G(x2).

24

Ideas that resonate

Forcing (Cohen, 1963–1964)
Set theory; classical logic.

Kripke models (Kripke, 1959–1965)
Modal logics, intuitionistic logic.

The (pre-)sheave constructions (Lawvere and Tierney, 1971–1972)
Category theory, topos.

25

Kripke models

A relation p
K A, “formula A is true in world p”.

A world p ≈ a set of facts (atomic propositions).

Worlds are ordered: q 4 p,
reads as “world q is accessible from world p”
and implies that q contains all the facts of p.

26

Intuitionistic Kripke models

p
K F(a1, . . . , an) i� F(a1, . . . , an) ∈ Facts(p)

p
K A ∧ B i� p
K A and p
K B
p
K A ∨ B i� p
K A or p
K B
p
K A⇒ B i� for all q 4 p, q
K A implies q
K B

p
K ¬A i� ∀q 4 p, ¬(q
K A)

p
K ∀x. A(x) i� for all x, p
K A(x)

p
K ∃x. A(x) i� there exists x such that p
K A(x)

Monotonicity property:

p
K A ∧ q 4 p⇒ q
K A

(In red, the “minimal modi�cation” that ensures monotonicity.)

27

Intuitionistic Kripke models

p
K F(a1, . . . , an) i� F(a1, . . . , an) ∈ Facts(p)

p
K A ∧ B i� p
K A and p
K B
p
K A ∨ B i� p
K A or p
K B
p
K A⇒ B i� for all q 4 p, q
K A implies q
K B

p
K ¬A i� ∀q 4 p, ¬(q
K A)

p
K ∀x. A(x) i� for all x, p
K A(x)

p
K ∃x. A(x) i� there exists x such that p
K A(x)

Monotonicity property:

p
K A ∧ q 4 p⇒ q
K A

(In red, the “minimal modi�cation” that ensures monotonicity.)

27

Kripke models and modal logic

Kripke introduced these models (classical or intuitionistic) to study modal
logics. Indeed, modalities have a natural interpretation in terms of
quanti�cation over accessible worlds:

p
K �A i� ∀q 4 p, q
K A

p
K ♦A i� ∃q 4 p, q
K A

28

Intuitionistic Kripke models

Intuitionistic Kripke models are also “the right model” for intuitionistic
logic, because:

Every formula A provable in intuitionistic logic is true in every world of
every Kripke model: p
K A.

Classical laws (excluded middle, double negation elimination) are
invalid in some worlds of some Kripke models.

Example
Let F be an atomic formula. Consider the two worlds p0, p1

p1 4 p0 Facts(p0) = ∅ Facts(p1) = {F}

We have

p0 6
K F
p0 6
K ¬F (because p1
K F)
p0 6
K F ∨ ¬F

29

Kripke models and forcing

There are striking similarities between
forcing conditions and worlds;
the relation p
W A, “condition p forces formula A”
and the relation p
K A, “world p satis�es formula A”.
(To the point that some authors read p
K A as “p forces A”.)

This leads to a theory of intuitionistic forcing based on Kripke models that
proves Cohen’s independence results for intuitionistic set theory.
(M. Fitting, Intuitionistic logic model theory and forcing, 1969)

30

Kripke models and forcing

Example
We take as worlds p the �nite functions N→�n {0, 1}, interpreted by
Facts(p) = {“n ∈ G” | p(n) = 1}.

We cannot show directly ∅
K “G contains in�nitely many prime numbers”,
but we can show one of its double negations,

∅
K ∀m,¬¬(∃n, n ∈ G ∧ n ≥ m ∧ n prime)

that is ∀m, ∀p, ∃q 4 p, q
K ∃n, n ∈ G ∧ n ≥ m ∧ n prime
that is ∀m, ∀p, ∃q 4 p,∃n, q(n) = 1 ∧ n ≥ m ∧ n prime

31

Double negation and forcing

More generally, we recover the laws of the forcing predicate
W by
composing
K with the Gödel-Gentzen negative translation (see lecture of
Dec 5th 2018):

[[A⇒ B]] = [[A]]⇒ [[B]]

[[A ∧ B]] = [[A]] ∧ [[B]] [[A ∨ B]] = ¬¬([[A]] ∨ [[B]])

[[∀x. A]] = ∀x. [[A]] [[∃x. A]] = ¬¬∃x. [[A]]

De�ning p
W A as p
K [[A]], we have, as expected,
p
W A ∧ B i� p
W A and p
W B
p
W A ∨ B i� ∀q 4 p, ∃r 4 q, r
W A or p
W B

Moreover, [[A]]⇔ ¬¬A, and therefore
∅
K ¬¬A if and only if there exists p such that p
W A

32

III

Internalizing forcing
in a type theory

Forcing and type theory

What forcing / Kripke models / the pre-sheave construction bring to type
theory:

Independence results.
(E.g. of Voevodsky’s univalence axiom.)

Tools for categorical logic.
(E.g the “cubical” model for univalence by Coquand et al.)

Tools for programming and semantics.
(E.g. general recursive types or step-indexing.)

34

Forcing and type theory

What type theory and similar Curry-Howard approaches bring to forcing:

A presentation based on transformations (encodings) of an extended
type theory TT[G] to the initial type theory TT.
(Like the negative translations to encode classical logic in
intuitionistic logic, lecture of Dec 5th 2018.)

The transformation also applies to proof terms, thus guaranteeing the
logical consistency of the approach.
(Like Bernardy et al’s encoding of parametricity, lecture of Dec 19th
2018.)

35

Forcing and type theory

Recent work: (references at end of lecture)

A. Miquel (2011) and L. Rieg (2014), inspired by J.-L. Krivine:
classical forcing for the logic PAω (≈ Fω + call/cc).

⇒ seminar of Jan 16th 2019

G. Jaber, N. Tabareau and M. Sozeau (2012):
intuitionistic forcing for CC + universes + Σ,
internalization of the presheave construction.

G. Jaber, G. Lewertowski, P.-M. Pédrot, N. Tabareau, M. Sozeau (2016):
intuitionistic forcing for Coq,
quasi-monadic transformation, in call by name.

36

Outline of the transformation
(Following Jaber, Tabareau, Sozeau, LICS 2012)

Assume given a type P of worlds (a.k.a. forcing conditions)
and a preorder 4.

To each proposition A we associate a proposition [[A]]p indexed by a
world p, similar to p
K A (“A holds in world p”).

To each proof ` a : A we associate a proof p : P ` [a]p : [[A]]p.

The translation is directed by the usual property of implication:

p
K A⇒ B i� ∀q 4 p, q
K A⇒ q
K B

Expressed with dependent products: (with Pp
def
= {q : P | q 4 p})

[[Πx : A. B]]p = Π(q : Pp). Π(x : [[A]]q). [[B]]q

37

The forcing monad

Let’s try to express this as a monadic transformation in a higher-order
monad T. We can write

[[A→ B]]p = T (λq. [[A]]q → [[B]]q) p

where
T A = λ(p : P). Π(q : Pp). A q

We can view this “forcing monad” as an asynchronous I/O monad:
p is the log of inputs already received;
q 4 p means that we can have received 0, 1 or several new inputs;
every computation in this monad must be ready to receive new inputs,
hence Π(q : Pp) . . .

38

The forcing monad

T A = λ(p : P). Π(q : Pp). A q

This is not the environment monad

T A = P→ A

because the environment p changes during computation,
non-deterministically but monotonically.

This is not the monotonic state monad

T A = Π(p : P). {(a, q) : A× P | q 4 p}

because, in the state monad, the state change p→ q is initiated by the
computation, while in the forcing monad the state change is imposed by
the outside world.

39

Towards a translation

[λ(x : A). B]p = λ(q : Pp). λ(x : [[A]]q). [B]q

[A B]p = [A]p p [B]p

Since types are terms, we must de�ne [[·]] as a function of [·]:

[[A]]p = [A]p p
[Π(x : A). B]p = λ(q : Pp). Π(r : Pq). Π(x : [[A]]r). [[B]]r

[U]p = λ(q : Pp). U

What about variables [x]q?

A variable can be used in a di�erent world q than the world p where it was
bound!

40

Morphisms

The interpretation [A]p of a type is not just a function f : Pp → � but also a
morphism θ q r : f q→ f r that maps the interpretation at world q to the
interpretation at world r 4 q.

q f−−−−→ f q

4

y yθ q r
r f−−−−→ f r

In the case where A is a proposition, θ is the proof of monotonicity of
forcing: p
K A ∧ q 4 p⇒ q
K A.

In the case where A is a “type that computes”, we additionally want
functoriality properties for θ, namely: θ q q = id and θ q s = θ r s ◦ θ q r.

41

Morphisms

We simultaneously de�ne the translation of types [[A]]p and the morphisms
θ(A)p→q from [[A]]p to [[A]]q.

[A]p : Σf : Pp → �.
{θ : Π(q : Pp). Π(r : Pq). f q→ f r | functorialp(θ)}

[[A]]p = π1([A]p)

θ(A)p→q = π2([A]p) p q

Finally, the translation of a variable is

[x]σp = θ(type(σ, x))world(σ,x)→p(x)

in an environment σ : variable→ type× world.

42

Technical issues

These morphisms are obvious in category theory but raise equality-related
issues in type theory.

In particular: if two types are convertible A =βη B,
their translations are generally not convertible.

Γ ` M : A A =βη B

Γ ` M : B

43

Translation, version 2
(Jaber, Lewertowski, Pédrot, Tabareau, Sozeau, LICS 2016)

We can get rid of these morphisms by translating Π function types in “call
by name”, that is, by leaving �exible the world of the argument.

by value [[Πx : A. B]]p = Πq : Pp. Πx : [[A]]q. [[B]]q

by name [[Πx : A. B]]p = Πx : (Πq : Pp. [[A]]q). [[B]]p

Translating variables:

by value [x]σp = θ(type(σ, x))world(σ,x)→p(x)

by name [x]σp = x p

No need for morphisms θ; it su�ces that the σ environment proves that
p 4 world(σ, x).

Additional bene�t: if A =βη B then [[A]]p =βη [[B]]p.

44

Using the translation for forcing

The translations [·] make it possible to mechanically transport the
de�nitions and theorems of TT (the initial type theory, e.g. Coq) to TT[G]
(its extension).

(Coq plug-ins have been developed to automate this process.)

To declare a generic element G of type A in the extension, it su�ces to
manually de�ne (in TT) a term G f of type ∀p, [[A]]p

Example
To get a generic set of integers G : nat→ Prop, we take
P = Finfun.t nat bool and we de�ne

G f = λ(p : P). λ(q : Pp). λ(n : nat). Finfun.app q n = Some true

45

IV

Forcing on natural numbers

Forcing on natural numbers
(Also called “internal logic of the topos of trees” by Birkedal et al)

A simple example of forcing conditions / Kripke worlds is

P def
= N naturally ordered by q 4 p def

= q ≤ p

An intuitive interpretation in terms of time:
p
K A reads “A is true now and during p days”.

47

The � modality and Löb’s rule

The �A modality reads “later A” and is de�ned by
0
K �A p + 1
K �A if p
K A

In other words: �A is true today for p days if A is true tomorrow for p− 1
days.

In this modal logic, Löb’s rule is valid:
�A⇒ A

A

Proof.
Assume p
K �A⇒ A. We have (q
K �A)⇒ (q
K A) for all q ≤ p.
We show q
K A for all q ≤ p by induction over q:
0
K A since 0
K �A.
If q < p and (q
K A), then (q + 1
K �A), therefore (q + 1
K A).

48

Generalization: a �xed-point operator

We can declare the following terms in the forcing extension, just by giving
terms that inhabit the translations of their types:

� : Type→ Type

fix : ∀(A : Type), (�A→ A)→ A
next : ∀(A : Type), A→ �A

fix eq : ∀(A : Type).∀(f : �A→ A). fix A f = f (next A (fix A f))

(Constructions: by induction over p.)

fix is therefore the proof term for Löb’s rule, but it also gives an
interesting �xed-point operator.

49

General recursive types

By specializing fix on a universe, say A = Set, we can construct
µ : (Set→ Set)→ Set

unfold : ∀(F : Set→ Set), µ F → F (� µ F)

fold : ∀(F : Set→ Set), F (� µ F)→ µ F

as well as proofs of µ F = F(� µ F) and fold F ◦ unfold F = id and
unfold F ◦ fold F = id.

The type µ F is therefore equivalent to the recursive Caml type t

type t = C of t F unfold (C x) = x fold x = C x

No hypotheses are made on the F type constructor: it is not necessarily
increasing, nor contractive.

50

General recursive types

Dangerous object being handled: a recursive type such as T = T → T,
which endangers termination.

Handles of the remote manipulator: the terms produced by translation [·].

51

Going further

The general recursive types obtained by forcing make it possible to give
simple denotational semantics to Turing-complete languages (no strong
normalization). For instance:

D = D→ D for pure λ-calculus;
D = (Loc→ D)→ P(Val) for mutable references.

More generally: the naive idea of “counting days” and the less naive idea of
the “later” modality (�) resonate with a powerful semantic technique:
step-indexing, described in the next lecture.

52

V

Further reading

Further reading

Introductions to forcing in set theory:

Timothy Y. Chow, A beginner’s guide to forcing, Contemporary Mathematics
(479), 2008. https://arxiv.org/abs/0712.1320
Robert S. Wolf, A tour through mathematical logic, chapter 6.
Carus Mathematical Monographs, 2005.

Forcing as a translation for propositions and proofs:

A. Miquel, Forcing as a Program Transformation, LICS 2011.
https://www.fing.edu.uy/~amiquel/publis/lics11.pdf

G. Jaber, N. Tabareau, M. Sozeau, Extending Type Theory with Forcing,
LICS 2012. https://hal.inria.fr/hal-00685150/
G. Jaber, G. Lewertowski, P.-M. Pédrot, N. Tabareau, M. Sozeau,
The De�nitional Side of the Forcing, LICS 2016.
https://hal.inria.fr/hal-01319066

54

https://arxiv.org/abs/0712.1320
https://www.fing.edu.uy/~amiquel/publis/lics11.pdf
https://hal.inria.fr/hal-00685150/
https://hal.inria.fr/hal-01319066

	The continuum hypothesis
	Forcing
	Forcing and type theory
	Forcing on natural numbers
	Further reading

