Programming = proving?
The Curry-Howard correspondence today

Fifth lecture

Can we change the world?
Imperative programming,
monadic effects, algebraic effects

Xavier Leroy

Collége de France

2018-12-12

Effects in programming
and in semantics

Pure functional programming

Executing a program is computing its final result, also called normal form
or value.

We can also observe that the program does not terminate (divergence).
(Except if the type system guarantees termination.)

Programming “in the real world”

Executing a program has an effect on the outside world:
@ displaying things on the screen, writing files, ...
@ communicating over the network

@ reading sensors, controlling actuators.

An imperative, “cooking recipe” view of programming:
Executing a program has an effect on the computer:
@ assigning variables or array elements;
@ allocating, modifying, freeing data structures;

@ jumping to another control point (exceptions, continuations,
backtracking).

Semantics for effects

What formal semantics can we give to languages with effects?

In particular, which denotational semantics?

syntactic element
(expression, command, function)

denotational semantics

mathematical object:
pure lambda-term,
Scott domain,
2-player game, etc.

Semantics for mutable state

A command x = x+1 is viewed as a state transformer:
. x = x+1 .
state wherexisn —————— statewherexisn+1

The denotation of a command c is therefore a function S — S
from the state s : S at the beginning of ¢'s execution
to the state s, : S at the end of c¢’s execution.

Ex: a sequence ¢q; ¢, is the composition of denotations [c,] o [¢1].
Likewise, the denotation of an expression with effects e : T is a function

ST xS, state“before” — (value, state “after).

Note: this technique of passing the current state as extra argument and
extra result allows us to program imperative algorithms in pure functional
languages (Haskell, Agda, Coq).

Semantics for other effects

We can change the shape of results: for an expressione : T,
@ [e] is a set of T = non-determinism
@ [e] is a value of type T or an exception = exceptions.

We can add one or several continuations:
@ [e] = Ak...: control operators, non-local goto;
@ [e] = ARsuccess-ARsaiure - - -: €xceptions, backtracking.

This is all ad hoc and not modular: adding one effect changes the whole
semantics. Can we be more abstract and more modular?

Monads

Monads

A metaphysical concept
(Plato, Leibniz, ...)

A structure in category theory
(Godement's “standard construction”; Mac Lane)

A semantic tool to describe languages with effects
(Moggi, 1989)

A technique to program with effects in a pure language
(Wadler, 1991; the Haskell community)

A tool to write programs with effects and reason over them.

The computational lambda-calculus

(Eugenio Moggi, Computational lambda-calculus and monads, LICS 1989; Notions of
computations and monads, Inf. Comput. 93(1), 1991.)

To model effectful programming, Moggi was looking for a “computational”
lambda-calculus and its program equivalence principles.

He chose to separate clearly
@ values (results of computations) from

@ computations (which eventually produce values).

A computation that produces a value of type A has type T A.

The computational lambda-calculus

Various choices for T correspond to known denotational semantics for
various effects:
Non-determinism: TA = P(A)
Exceptions: TA=A+E (E type of exceptions)
Mutable state: TA=S—>AXS (S type of states)

Continuations TA=(A—R)— R (Rtype of results)

The monad structure

To give semantics to effectful languages, we need two base operations on
computations:

@ret:A—TA (injection)

ret v is the trivial computation that produces value v, without effects.

@ bind: TA—- (A—TB)—~TB (sequential composition)
bind a (Ax.b) performs computation a, binds its result value to x,
then performs computation b, and returns its result.

(The name “monad” is a bit of a misnomer: modulo notations, (T, ret,bind) is a
Kleisli triple, equivalent to a monad in category theory.)

Monad laws

bind (retVv)f=fv
bindaret =a

bind (bind a f) g = bind a (Ax. bind (f x) g)

(left neutral)
(right neutral)

(associative)

Alternate presentation of monads

In category theory, a monad is a triple (T, 7, 1) where

n:A—=TA u:T(TA)—-TA T(f):TA—->TBIiff:A—B

Both presentations are related by taking ret = n and

bind af = u(T(f) a)
@ a=binda (A\y.y)
T(f) = Aa. bind a (Ax. ret(f x))

An example of monad: non-determinism

TA=P(A)
retv = {v}
bindaf = | fx

Xea

Specific operations for non-determinism:

fail =0
chooseab=aUb

An example of monad: exceptions

TA=A+E (E = type of exception values)

ret v = inj,(v)
bind (inj,(v))f = f v
bind (inj,(e)) f = inj,(e) (exception propagation)

Specific operations for exceptions:

raise e = inj,(e)

try awith x — b = match a with inj,(x) — inj,(x) | inj,(x) = b

An example of monad: mutable state

TA=S—5AXS (S = type of states)

ret v = Xs.(v,s)
bindaf = As;.let (x,5;) = as;inf xs;

Specific operations: (¢ = memory locations)

get £ = As. (s(¢),s)
set Lv=As.(0),s{l <+ v})

An example of monad: continuations

TA=(A—R)—R (R = type of the final result)

retv= AR Rv
bindaf = k. a (Ax. f xR)

Control operators:

callcc f = AR.f (AW.AR.RV)R
Cf =R f(AVAR. Rv) (Axx)

Monads that combine several effects

State + exceptions: TA=S— (A+E) xS

Stat + continuations: TA=S—(A—S—R)—R

Continuations + exceptions: TA=((A+E)—R) —R
orTA=(A—R)— (E—R)—R

Exercise: write ret and bind for these 4 monads.

See also: the monad transformers, a more systematic approach to
combining effects.

Even more monads

Environment (reader monad): TA = Env — A
retv=J)e.v

bindaf = Xe.f (ae)e
Logging (writer monad): TA =A X string
retv=(v,"")
bindaf = let (x,51) = ainlet (y,s;) =f x in (y,$1.52)
Distributions: TA =P(A x I) (= non-determinism + probabilities)
retv={(v,1)}
bindaf = {(yap'l X pZ) ‘ (X7p1) €a, (y7p2) EfX}
choose p ab = {(a,p); (b,1—p)}
Expectations: TA=(A—1)—1 (= continuations + probabilities)
retv=Au. pv
bindaf = Au.a (M. fxp)
choosepab=Au.px(au)+(1—p) x(bup)

20

The computational lambda-calculus

M,N::=x| Ax.M|MN lambda-calculus
| ... products, sums, inductive types
| val M trivial computation
| let x <= M in N sequence of 2 computations
| ... specific operations of the monad

For a given monad (T, ret, bind), the semantics is obtained by
interpreting val M by ret M and let x <= M in N by bind M (Ax. N).
Equivalences:

(AX.M) N = M{x < N} (B)
MX.Mx=M (n)
let x <= val M in N = N{x « M}
letx<=Minvalx=M
letx < (lety<MinN)inP=1lety < Minletx < NinP

21

Example program

In the non-determinism monad.

All the ways to insert an element x in a list 1:

let rec insert x 1 =
choose (val (x :: 1))
(match 1 with
| [1 -> fail

| h :: t -> let t’ « insert x t in val (h :

All the permutations of a list 1:

let rec permut 1 =
match 1 with
[[1 ->val (1]
| h :: t -> let t’ < permut t in insert h t’

:)

22

The monadic transformation

Transforms an impure functional language with implicit effects (Caml,
Scheme, etc) to computational lambda-calculus with monadic effects.

Makes explicit monadic effects and evaluation strategy.

Call by value
[cst]y = val cst
[M.M], = val(Ax. [M]v)
[x]v = val x
[MN], = let f < [M]y in
leta< [N]yinfa

23

The monadic transformation

Transforms an impure functional language with implicit effects (Caml,
Scheme, etc) to computational lambda-calculus with monadic effects.

Makes explicit monadic effects and evaluation strategy.

Call by value Call by name
[cst]y = val cst [cst]n = val cst
[Mx. M], = val(Ax. [M]v) [M.M], = val(lx. [M],)
[x]v = val x [x]n = x
[MN]y = let f < [M]y in [MN], =1let f < [M]5 in
leta< [N]yinfa f [N]n

Note: CPS transformation = monadic transformation + continuation monad.

23

The monadic transformation

Effect on types:

[A] =T A"
(A—=B) = {

A* — [B]

[A] — [8]

(call by value)
(call by name)

2%

The logic behind monads

Curry-Howard for monads

In the spirit of Curry-Howard: what do monads and monadic
transformations mean when viewed as propositions and transformations
of propositions and proofs?

@ For specific monads (continuations, exceptions):
interesting “logical” interpretations.

@ In general: a connection with modal logics.

26

Continuation monad and classical logic

As seen in the previous lecture:

Call-by-name monadic translation
for the continuation monad TA = (A — R) - R = g —RA
= relative negative translation

from classical logic to minimal logic.

[Alr = —r —rA [P = Qlr = —r & ([P]r = [Q]r)
[PAQlr=-r—r([PlrA[Q]r) [PV Qlr=—r—r([P]rV [Q]r)
|[VX. P]]R = TR TR VX. |IP]]R |[E|X P]]R = TR TR 3x. |[P]]R

The callcc operation of the monad corresponds to Clavius's law, and the
C operation to double negation elimination.

27

Exception monad and ex falso quodlibet

Call-by-name monadic translation
for the exception monad TA=A+E
= a translation from intuitionistic logic to minimal logic.

[L]=E [A] = AV E if A atomic
[P=q]=([P]=1[Q]) VE
[PAQ]=([P]A]Q]) VE [Pval=([P]VvIQ]) VE
[vx.P] = (vx.[P]) VE [3x.P] = (3x.[P]) VE

The rule L = P, ex falso quod libet, becomes derivable after translation:

E=---VE
It corresponds to the raise operation of the monad.

28

Monad = modality?

ret: A—>TA
bind: TA—(A—TB)—TB

The types for the ret and bind monad operations are reminiscent of rules
of modal logic, viewing the type constructor T as a modality.

29

Modal logics

Qualify logical propositions by modalities that describe aspects of truth.

For example, following Aristotle, we can distinguish necessary truths (P,
contingent truths A, and possible truths OP.

The O and ¢ modalities are connected in classical logic:
O-P < QP O—P «— 0P

They can be interpreted in various ways:
@ Alethic: [= necessarily, ¢ = possibly.
@ Temporal: (I = forever, { = eventually.
@ Geographic: O = everywhere, { = somewhere.

Other modalities can be considered, for instance “known by agent i” in
epistemic logics.

30

Modal logics

Many different axiomatizations, depending on the intended meaning of
modalities.

Example: in modal logic S4, the rules for [are:

CIP if Pis a classical tautology
O(P= Q) = (OP = Q)
Op=P

Op = OOp

The rules for ¢ follow from the definition OP % =O-P.

—_ e~
>N 4 R 2
—_—— O =

31

Monad = modality?

ret: A—>TA
bind: TA—(A—TB)—TB

The type of ret can be read as A = QA, suggesting that T is the {
modality, “possibly”.

However, the type of bind is logically false: X QA = (A = OB) = 0B.

Symmetrically, if T is read as the I modality, “necessarily”, the type of
bind is valid, but not that of ret: X A = [A.

32

The lax modality O

(Mendler, 1991; Fairtlough and Mendler, 1997, 2003)

Introduced by Mendler in the context of formal verification of hardware
circuits, the OP modality can be read as “P is true under some conditions”,
or as C = P for an implicit condition C.

It is characterized by the axioms

P= OP (1
OOP= OP (M)
(P=Q) = (OP = 0Q) (Ext)
OPAOQ= O(PAQ) (S)

33

Monad = lax modality
(Benton, Bierman, de Paiva, JFP(8), 1998)

The type constructor T of a monad corresponds to the lax modality O. The

axioms of the modality are realized by terms of the computational
lambda-calculus.

val: P= OP
M. lety<xiny: OOP= OP
M.Ax. letv < xinval(fv): (P= Q)= (OP = 0OQ)
Ax. let vqi <= m(x) in

letv; = mp(x)in : OPAOQ= O(PAQ)
val(v1,v2)

34

Another modal encoding
(Pfenning and Davies, MSCS(11), 2001)

We can also encode the types of a monadic language using the standard [
and ¢ modalities:

[t] = ¢ for base types
[A — B] = O[A] = [B]
[T A] = OU[A]

Temporal logic intuitions:

@ avalue of type A is stable against future effects
= U[A], “forever A”;

@ a computation of type A, after performing effects, will eventually
produce a value of type A
= OO[A], “eventually, forever A".

35

IV

Monads that support logic

Dependent types, preconditions, postconditions

In a dependently-typed language (like Agda, Coq, or F*), we can write very
precise types, such as

Vx:A. P(x) — B function takingan x : A
and a proof of P(x)
{y:Blay)} pairofay : Band

a proof of Q(y)

Vx:A.P(x) = {y:B|Q(x,y)} function A — Brespecting
the precondition P
and the postcondition Q

Example: Euclidean division.

div: V(a b: nat), b >0 ->{q | dr, a=b*gq+r AO0O<=1r<Db}

37

State monad: invariants, monotonic evolution

TA=S—>AXS

We can enforce an invariant Inv : S — Prop over states by replacing S by a
subset type Sjny:

TA=Sp —AXSn with Sp,={s:S]|Invs}
We can also enforce monotonic evolution of states w.r.t. an order
Ord:S — S — Prop:

TA=VY(s:S), Ax{s:S|ordss'}

38

A monotonic state: time

Assume the state is just a timestamp. We can guarantee that computations
do not “go back in time” using the monad

TA=VY(t:2), Ax{t:Z|t<t}

A computation ¢ : T A in this monad automatically guarantees that
cty = (V, tz) =1 >t
This greatly helps establishing uniqueness properties of timestamps:

let t1 < timestamp in

let x < f ... in
let t2 < timestamp in
(t1, x, t2)

Regardless of f’s effects, we know that t1 < t2 and therefore t1 # t2.

39

A monotonic state: time

Monad operations are more complex and contain proof terms:

Definition T(A: Type) := forall (t: Z), A * t’ : Z | t <= ¢’

Definition ret (A: Type) (a: A) : T A :=
fun (t: Z) => (a, exist _ t (Z.le_refl t)).
Definition bind (A B: Type) (a: T A) (f: A->TB) : TB :=
fun (t1: z2) =>
let ’(x, exist _ t2 pl2) a tl in
let ’(y, exist _ t3 p23) f x t2 in
(y, exist _ t3 (Z.le_trans tl1 t2 t3 pl2 p23)).

Definition timestamp : T Z :=
fun (t: Z) => (t, exist _ (Z.succ t) (Z.le_succ_diag_r t)).

40

Hoare Type Theory (HTT)

(Nanevski et al, ICFP 2008, POPL 2010.)

Instead of fixing in advance expected properties of one state (Inv) or two
states (Ord), we can also parameterize the state monad by any
precondition P and any postcondition Q.

pre el S — Prop

d
post A éfA—>S—>S—>Prop

ST : pre — V(A : Type), post A — Type

STPAQd:QfV(s1 :S), Psy — {(a,s;) :Ax S| Qas;sy}

A computation ¢ : ST P A Q is the functional, monadic equivalent of a
command c satisfying the Hoare triple {P} c {Q}:

evaluated in an initial state s satisfying P, the computation c produces a
value a and a final state s, satisfying Q.

A

Typing the operations

We can give frighteningly precise types to the operations of the state
monad:
ret : V(A : Type)(v:A),ST(As1.T)A (AX,51,5.52 =S1 AX =V)
get : V(A : Type)(l: locA),
ST (Asq1. valid [s1) A (MX,$1,52. S = S1 A X = get lsy)
set : V(A : Type)(l: loc A)(v : A),
ST (Asq. valid [sq) unit (Ax,S1,5;. 5, = setlvs; Ax =tt)
bind : V(A B: Type)(P; : pre)(Q, : postA)(P, : A — pre)(Q; : A — post B),
STP,AQ; — (Y(a:A),ST(P,a)B(Qa)) = STPBQ

where P = Asq. Pys1AVa,s;.Q1as15, = P, s,
and Q = A\b,sq,s3.3a,s5,. Q1 as1s, AQyabs;ss.

%)

Weakest preconditions and predicate transformers

Since Dijkstra (1975), we know that for any command c and postcondition Q,
there exists a weakest precondition P such that {P} c {Q}.

It can be defined as a function of cand Q: P = wp(c, Q).
In other words: the behavior of command c is entirely characterized by the

predicate transformer Q — wp(c, Q), that is, a function
W : postcondition — weakest precondition.

43

The Dijkstra monad
(Swamy et al, PLDI 2013, POPL 2016)

A state monad ST A W that describes computations producing values of
type A and satisfying the predicate transformer W.

pre o S — Prop
post A d:efA — S — Prop
wptransf A =4 post A — pre
ST : V(A : Type), wptransf A — Type

STAWd:er(Q :postA)(s1:S), WQs; — {(a,s2) :AxS|Qas; s}

44

Typing operations of the Dijkstra monad

The types for the operations of the Dijkstra monad are slightly simpler
than those of the HTT monad, and better support inference by unification.
ret : V(A : Type)(x:A),STA(AQ.Qx)
get : V(A : Type)(l: loc A),
STA(AQ.)s. valid[s A Q(get s)s)
set : V(A : Type)(l: loc A)(v: A),
ST unit (AQ.Xs. valid [SA Qtt (set lvs))
bind : V(A B : Type)(W; : wptransf A)(W, : A — wptransf B),
STAW, — (¥(a : A),ST B (W, a)) — ST B (A\Q. W, (A\a. W; a Q))

Moreover, the “Dijkstra monad” approach extends to other effects
(partiality, exceptions) and to their combinations = the F* language.

45

vV

Algebraic effects
and effect handlers

Where do effects come from?

Moggi's computational lambda-calculus, and more generally the monadic
approach, accounts for propagation and sequencing of effects in a generic
manner (independently of the kind of effects considered).

Can we account (in a generic manner too) for the base operations that
create effects? For example,

@ Input/output: print, read
@ Exceptions: raise
@ Mutable state: set, get

@ Non-determinism: choose, fail.

Plotkin and Power (2003) introduce an algebraic presentation of these
operations that create effects.

47

Algebraic structures

In mathematics, an algebraic structure is a set equipped with operations
that satisfy identities (equations).

Example: a group is a set G with three operations:
a constant 1, a binary operation -, a unary operation ~7,
satisfying the identities

48

Algebraic abstract types

In computing, an algebraic abstract type is an abstract type
(= a type name + operations) specified by equations over the operations.

Example: functional arrays (operations get, set)

geti(setivt)=v
geti(setjvt)=getit ifi#j

Example: stacks (operations empty, push, pop, top)

top (pushvs)=v
pop (pushvs)=s

49

Algebraic effects

(Plotkin, Power, Pretnar, et al; 2003-)

Values: vi=x|cst]| Ax. M

Computations: M,N ::=valv trivial computation
| let x <=M in N sequence of 2 computations
|vv/ application
| op(V;y. M) effectful operation

The term op(vy ... vy; y. M) stands for an operation that produces an effect.
The values v; are the parameters. The operation produces a result value
that is bound to y in continuation M.

Notation: op(V') = op(V;y.val(y)) (trivial continuation).

Semantically, we have the equivalence op(V,y. M) = let y <= op(V) in M.

50

Example: input/output

(Pretnar, An introduction to algebraic effects and handlers, MFPS 2015)

Operations: print that takes a string and readint that returns an integer.

readint ()

let _ <« print("A") in
let n < readint() in
if n <= 0 then
(let _ < print("B") 3 0
in val (-n))

else print("B") print("B")
val (n+1) ‘ ﬁ

Intuitive semantics: a tree of actions, with operations at the nodes and
values (or L) at the leaves.

51

Equations over effects

The 1/0 effects are “free”: after an output, all inputs remain possible. This
is not the case for other effects. For mutable state (operations get and set
over locations /), we have at least the following equations:

set(,v; _.get((;z.M)) = set(4,v; _.M{z < v})
set(l,v; _.get({';z.M)) = get((';z.set({,v; . M)) ifl #/

For completeness we can add

get(l;y.get(l;2.M)) = get(l;y. M{z <+ y}) (double read)
get(l;y.set(l,y; M) =M (read then rewrite)
set(l,vq; _.set(l,vy; . M)) = set(l,vy; . M) (double write)
get(l;y.get(;z.M)) = get({;z.get(;y. M) if 0 #4
set(l,v;y.set(¢',V;z.M)) = set(¢',V;z.set((,v;y. M)) ifl' #/

52

Handling effects

For 1/0 or mutable state, we can imagine that effects are executed by the
operating system or the runtime system of the language.

Can we enable the program to handle (“execute”) itself some of the effects
it produces?

53

Exception handling

raise(e) can be viewed as an operator producing the “exception e” effect.
It can be handled by the construct

tryawithx — b

that catches exceptions raised by a and then evaluates b (the exception
handler).

Some languages (Common Lisp, Dylan) allow the handler to restart the
computation at the point where the exception was raised. We can model
this by a parameter k to the handler, bound to the continuation of the
raise(e) exception:

try a with (x,R) — if ... then kR 0 else b

/! s

(resume with value 0 for the raise) (abort with value b)

54

Effect handlers

Values: vi=x|cst]| Ax. M
Computations: M, N ::=valv
| letx <= MinN
A%
| op(V;y. M)

| with H handle M
H = { val(x) = Myq;
op1(X; R) — Mq;

Handlers:

opn(X; R) — My }

In with H handle M,

trivial computation
sequencing of 2 computations
application

effectful operation

effect handler

o if M performs op;(V;y. N), the M; case is evaluated with X = vV and

k= MAy.N;

@ if M evaluates val v, the M, case is evaluated with x = v.

55

Examples of effect handlers

Exception handling:

with { val(x) — val(x);

raise(e; k) — if ... then k 0 else b }
handle a

Invert the order of print operations performed:

with { val(x) — val(x);

print(s; k) — let _ < k() in print(s) }
handle a

Collect print operations in a character string:

with { val(x) — val(x, "");
print(s; k) — let (x, acc) < k(O
in val (x, concat s acc) }

(This changes the type of the computation: from Ato A x string.)

56

Examples of effect handlers

Non-determinism by backtracking:
(choose() is an effect that returns true or false non-deterministically)

with { val(x) — val(x);
choose(_; k) — with { fail(_; k’) — k false }
handle k true }

Mutable state:

with { val(x) — As. (%, s);
get(1l; k) — As. (k (lookup 1 s)) s;
set(l, v; k) — As. (k (O) (update 1 v s) }

(This changes the type of the computation: fromAto S — A x S.)

57

Ongoing work on algebraic effects

Static typing that keeps tracks of effects, for example

Value types: A:z=1|A XAy |A— C|C = C, (handler type)
Computation types: C ::= Al{op1,...,0pn}

Language designs and implementations:
o Eff https://www.eff-lang.org
@ Frank https://github.com/frank-lang/frank

@ Multicore OCaml nttps://github.com/ocamllabs/ocaml-multicore/wiki

58

https://www.eff-lang.org
https://github.com/frank-lang/frank
https://github.com/ocamllabs/ocaml-multicore/wiki

Vi

Concluding remarks

Monadic effects, algebraic effects

A success for the “categorical” approach to programming languages.

The view that “category theory comes, logically, before the -
calculus” led us to consider a categorical semantics of computa-
tions first, rather than to modify directly the rules of 5n-conversion
to get a correct calculus.

(E. Moggi, Notions of Computations and Monads, 1991)

Not a success for the “Curry-Howard” approach:
the connections with mathematical logic are weak.

60

VII

Further reading

Further reading

Programming with monads:

@ All About Monads, https://wiki.haskell.org/All_About_Monads

Programming and proving with Dijkstra monads:

@ Verified programming in F*, https://wuw.fstar-lang.org/tutorial/

Algebraic effects and effect handlers:
@ Matija Pretnar, An Introduction to Algebraic Effects and Handlers,
tutorial, MFPS 2015, https://www.eff-lang.org/handlers-tutorial.pdf
@ Andrej Bauer, Algebraic effects and handlers, OPLSS 2018 summer

school, https://www.cs.uoregon.edu/research/summerschool/summer18/

lectures/bauer_notes.pdf

62

https://wiki.haskell.org/All_About_Monads
https://www.fstar-lang.org/tutorial/
https://www.eff-lang.org/handlers-tutorial.pdf
https://www.cs.uoregon.edu/research/summerschool/summer18/lectures/bauer_notes.pdf
https://www.cs.uoregon.edu/research/summerschool/summer18/lectures/bauer_notes.pdf

	Effects
	Monads
	The logic behind monads
	Monads that support logic
	Algebraic effects
	Conclusions
	Further reading

