
Programming = proving?
The Curry-Howard correspondence today

First lecture

The paths to discovery:
the Curry-Howard correspondence, 1930–1970

Xavier Leroy

Collège de France

2018-11-21

The path to Curry-Howard

The lambda-calculus
Initially a logic (terms = propositions!), evolved into the �rst functional
programming language.

Intuitionistic logic
Birth of the idea of “proof terms” that materialize proofs.

Simple types
From Russell’s type theory to simply-typed lambda-calculus.

Curry, 1957
Propositions = types; provability = inhabitation
(in the special case of combinatory logic).

Howard, 1969–1980
Propositions = types; proofs = programs;
cut elimination = reductions.

2

I

The lambda-calculus

The lambda-notation

Circa 1930, Alonzo Church introduces the notation λx. e meaning
“the function that maps parameter x to expression e”.

Today we write x 7→ e. However, this notation, popularized by Bourbaki,
was introduced later.

These notations λx. e or x 7→ e are useful to clarify the way
mathematicians talk about functions. . .

“ the function x2 ” x 7→ x2 or λx. x2

“ the function x2 + y2 ” (x, y) 7→ x2 + y2 or λx.λy. x2 + y2

“ the family of functions cx2 ” c 7→ (x 7→ cx2) or λc.λx. cx2

4

Computing with the lambda-notation

Two main computation rules:

α-conversion: renaming a bound variable.

λx.M =α λy.M{x← y} if y not free in M

β-conversion: replacing the formal parameter by the actual argument in a
function body.

(λx.M)(N) =β M{x← N}

In ordinary mathematics we write:

Consider the function f(x) = x + 1. We have that f(2) = 3.

The lambda-notation decomposes this computation in multiple steps:

f(2) = (λx. x + 1) (2) =β 2 + 1 = 3

5

Why lambda?

Dana Scott tells that he once wrote Church

Dear professor Church: why “lambda”?

and received the following reply

Eeny, meeny, miny, moe.

Rosser tells that Church progressively simpli�ed the notation x̂e that is
used in Russell and Whitehead’s Principia Mathematica:

x̂e → ∧xe → λxe → λx[e] → λx.e

6

A lambda to bind them all

In λx.e, variable x is said to be “bound” and can be renamed without
changing the meaning.

Bound variables appear in various mathematical notations:

{x | P(x)} ∀x, P(x) ∃x, P(x)

⋃
n∈N

A(n)
n∏
i=1

i
∞∑
n=0

1
n2

lim
n→∞

un
∫ b

a
f(x)dx

7

A lambda to bind them all

Church proposes to treat all these notations as operators taking a
lambda-abstraction as argument:

∀x, P(x) ≡ ∀(λx. P(x)) (or just ∀P)

∃x, P(x) ≡ ∃(λx. P(x))∑∞
n=0

1
n2 ≡ sum(0,∞, λn. 1

n2)∫ b
a f(x)dx ≡ integr(a, b, λx. f(x))

This way, there remains only one construct that binds variables:
lambda-abstraction.

This is the birth of what is known today as Higher-Order Abstract Syntax.

8

Church’s �rst lambda-calculus (1932, 1933)

A logic, proposed as an alternative to set theory, where
predicates and propositions are written in lambda-notation;
predicates can take predicates as arguments (higher-order logic);
every set A can, therefore, be represented by its membership
predicate x 7→ x ∈ A.

(This is a “propositions = terms” presentation.)

9

Sets = predicates

Operations over sets can easily be expressed in terms of predicates and
predicate applications:

Membership: x ∈ A ≡ A x (application)
Comprehension: {x | P(x)} ≡ P
Empty set: ∅ ≡ λx. 0
Singleton: {x} ≡ λy. x = y
Binary union: A ∪ B ≡ λx. A x ∨ B x
General union:

⋃
x∈A B(x) ≡ λy. ∃x, A x ∧ B x y

Russell’s paradox can be expressed as well:

λx.¬(x x) the set of all x such that x /∈ x . . .
(λx.¬(x x)) (λx.¬(x x)) . . . belongs to itself?

10

Church’s �rst lambda-calculus
A. Church, Postulates for the Foundation of Logic, Annals of Math. 33(2), 1932.
A. Church, Postulates for the Foundation of Logic, Annals of Math. 34(4), 1933.

Terms: M,N ::= x variable
| λx.M function abstraction
| M N function application
| Π(M,N) ∀x,M x⇒ N x
| Σ(M) ∃x,M x
| &(M,N) M and N
| ˜(M) not M
| ι(M) an x such that M x
| A(M,N) ???

+ 5 deduction rules, including α-conversion and β-conversion
+ 37 axioms (36 in version 2).

11

Logical inconsistency

Russell’s paradox can be expressed: taking U = (λx. ¬(x x)) (λx. ¬(x x)),
we have U =β ¬U. This does not cause inconsistency because Church’s
logic is a minimal intuitionistic logic.

Logical inconsistency is proved by:
Kleene and Rosser, 1935.
A complex encoding of Richard’s paradox.
Curry, 1942.
Let A be a proposition. Consider D = λx. x x⇒ A and U = D D.
Then U⇔ (U⇒ A), which implies A.

This is the end of (untyped) lambda-calculus as a logic.
But other applications appear. . .

12

The pure lambda-calculus

Circa 1935, Church and his students Kleene and Rosser study the “pure”
lambda-calculus, without logical connectives:

M,N ::= x | λx.M | M N

α-equivalence and β-reduction (= oriented conversion):

λx.M =α λy.M{x← y} (λx.M) N→β M{x← N}
(y not free in M)

A notion of computation appears: iterate β-reduction until an irreducible
“normal form” N is reached.

M→β M1 →β M2 →β · · · →β N 6→β

13

Good properties of reductions

Theorem (Church and Rosser, 1935)
β-reduction is con�uent.

A
B

C
D

∗

∗

∗

∗

Example

(λx. (λy. x y) N) M
(λy.M y) N

(λx. x N) M
M N

Corollary
If it exists, the normal form of a term is uniquely de�ned.

14

Lambda-calculus and computability

Church (1936) shows the �rst undecidability results
(= cannot be computed by a general recursive function):

Whether a term M has a normal form is undecidable.
Corollary: Hilbert’s decision problem (Entscheidungsproblem) has no
solution.

Kleene (1935) and Turing (1937) show equivalences between
general recursive functions (Herbrand, Gödel, Kleene);
functions computable by a Turing machine;
functions de�nable as a λ-term
via Church’s encoding of natural numbers (1933):

n ≡ λf . f ◦ · · · ◦ f︸ ︷︷ ︸
n times

≡ λf . λx. f (f (· · · (f x)))︸ ︷︷ ︸
n times

15

Lambda-calculus and functional languages

The pure lambda-calculus as the common ancestor and as the kernel of
functional programming languages:

functional language = pure lambda-calculus
+ reduction strategy
+ data types
+ type system (if applicable)

LISP 1.5 (1960) refers to Church and writes (LAMBDA ...) for anonymous
functions. However, its semantics (dynamic scoping of bindings) does not
follow β-reduction.

Landin (1965) proposes ISWIM, an extended lambda-calculus, as the basis
for The next 700 programming languages.

A�er 1970, all functional languages contain lambda-calculus as a kernel:
Common Lisp, Scheme, SML, Caml, Haskell, . . .

16

II

Intuitionistic logic

Intuitionism and intuitionistic logic

Intuitionism: a philosophy of mathematics developed by L. E. J. Brouwer
(1881–1966). Requires all mathematical objects to be accessible to
intuition. Rejects non-constructive proofs, actual in�nity, and Hilbert’s
axiomatic approach.

Intuitionistic logic: family of logics studied by Heyting, Glivenko, Gödel,
Kolmogorov. Formalizes the “only constructive proofs” aspect of
intuitionism.

18

Constructive proofs vs. non-constructive proofs

How to prove “there exists x ∈ A such that P(x)” ?

1 Constructively: we de�ne an element a of A from the
2 By contradiction: we assume ∃x ∈ A. P(x) false, that is, we assume
∀x ∈ A. ¬P(x) true, and we deduce a contradiction.

For an intuitionist, the �rst proof is the only valid way to show that
∃x ∈ A. P(x) is true.
The second proof only shows that ∃x ∈ A. P(x) is not absurd,
which is a weaker result.

19

An intuitionistic adventure
(inspired by G. Dowek, Computation, Proof, Machine)

In the train back from the Netherlands, someone drops me a note:
The French classicist logicians want to kill you. Get o� at the last
stop before the French border.
Note: the train may make extra unplanned stops.

At which stop should I get o� the train?

The set A of all stops outside France is 1- nonempty (Brussels ∈ A),
2- totally ordered, and 3- �nite; hence, it contains a maximal element;
this is “my” stop.

However, this proof is not constructive and fails to give me an e�ective
criterion to decide at each stop whether to get o� or stay. . .

20

Excluded middle

The excluded middle principle (tertium non datur, tiers exclu):

P ∨ ¬P for all proposition P

Equivalent to double negation elimination:

¬¬P⇒ P for all proposition P

This is the principle for proofs by contradiction.

Intuitionistic logic rejects excluded middle (and the many equivalent
rules).

21

Truth vs provability

Classical logic: every proposition is a priori true or false.
Mathematical proof establishes which of these two cases apply.

Hence, for example, reasoning by truth tables in the propositional
fragment:

P Q P⇒ Q Q⇒ P (P⇒ Q) ∨ (Q⇒ P)

0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 1 1 1

22

Truth vs provability

Classical logic: every proposition is a priori true or false.
Mathematical proof establishes which of these two cases apply.

Intuitionistic logic: a proposition can be proved;
or its negation can be proved;
otherwise we do not know anything about the proposition.

22

The BHK interpretation
(Brouwer, Heyting, Kolmogorov)

Provability is characterized by the existence of a construction of the
proposition.

There exists a construction of > (“true”).
There exists no construction of ⊥ (“false”).
A construction of P1 ∧ P2 is a pair (c1, c2)
where c1 is a construction of P1 and c2 a construction of P2.
A construction of P1 ∨ P2 is a pair (i, c)
where i ∈ {1, 2} and c is a construction of Pi.

23

The BHK interpretation

A construction of P1 ⇒ P2 is a “process” that, given a construction of
P1, produces a construction of P2.

We can elaborate the word “process” in several ways:

arbitrary mathematical function (not always constructive)
algorithm (a very intuitionistic idea!)
recursive function (→ Kleene’s realizability)
lambda-term (→ Curry-Howard).

24

The BHK interpretation

A construction of ¬P, treated like P⇒ ⊥, is an algorithm that, from a
(hypothetical) construction of P produces a non-existent object.

Note: the existence of a construction of ¬P is much stronger than the
non-existence of a construction of P.

A construction of ∀x, P(x) is an algorithm that, given a value for x,
produces a construction of P(x).
A construction of ∃x, P(x) is a pair (a, construction of P(a)).

25

Back to excluded middle

Let TM be the set of all Turing machines. Consider

Q def
= ∀m ∈ TM, terminates(m) ∨ ¬terminates(m)

Q follows immediately from excluded middle (P ∨ ¬P for all P).

Yet, a construction of Q would be an algorithm that, given a Turing machine
m, returns (1, c) if m terminates and (2, c) otherwise.

Since the halting problem is undecidable, such an algorithm does not exist.

Excluded middle is therefore not constructive, since there is no
construction that validates it.

(This construction would be a universal decision procedure!)

26

A formalization of intuitionistic logic

Manipulates intuitionistic sequents of the form Γ ` P
(read: “under hypotheses Γ we can deduce P”.)

Comprises axioms (“this sequent is true”) and inference rules
(“if the sequents above are true, then the sequent below is true”).
For example:

P ` P
Γ ` P Γ ` Q

Γ ` P ∧ Q

27

Rules of intuitionistic logic

Implication: (“I” stands for Introduction, “E” for Elimination)

Γ1, P, Γ2 ` P (Ax)

Γ, P ` Q
(⇒I)

Γ ` P⇒ Q

Γ ` P⇒ Q Γ ` P
(⇒E, modus ponens)

Γ ` Q

Conjunction:

Γ ` P Γ ` Q
(∧I)

Γ ` P ∧ Q

Γ ` P ∧ Q
(∧E1)

Γ ` P

Γ ` P ∧ Q
(∧E2)

Γ ` Q

28

Rules of intuitionistic logic

Disjunction:

Γ ` P
(∨I1)

Γ ` P ∨ Q

Γ ` Q
(∨I2)

Γ ` P ∨ Q

Γ ` P ∨ Q Γ, P ` R Γ,Q ` R
(∨E)

Γ ` R

Negation:
Γ ` ⊥

(⊥E, ex falso quodlibet)

Γ ` P

29

III

Types

Types

Folk wisdom:
Don’t compare apples to oranges.
On n’additionne pas des choux et des carottes.

Physical wisdom: dimensional analysis

d = v.t dist = dist homogeneous, possibly correct
d = v/t dist 6= dist.time−2 not homogeneous, always false

31

Types in programming languages

To detect and reject some programming errors.

"foo"(12) (character string 6= function)
cos(45, "degrees") (wrong number of arguments)

As partial speci�cations of data structures and module interfaces.

type ’a tree = Leaf of ’a | Node of ’a tree * ’a tree

val assoc: ’a -> (’a * ’b) list -> ’b

To clarify the meaning of programs and facilitate compilation.

integer n

real x

n = n * 2 + 1 (integer arithmetic)
x = x * 2 + 1 (�oating-point arithmetic)

32

Types in mathematical logic

In elementary mathematics: an intuitive notion.
For example, in Euclidean geometry, a point is not a line,
and we never talk about the intersection of two points.

In naive set theory: no types a priori.

For example, the encoding of natural numbers n + 1 def
= n ∪ {n}.

But we get paradoxes such as Russell’s: {x | x /∈ x}.

Type theories: add types to a logic to rule out paradoxes.
Typing is a sort of superego forbidding certain forms of logical in-
cest of the kind x ∈ x.

(J.-Y. Girard, The blind spot)

33

Russell’s type theory
(1908; used in Principia Mathematica, 1910–1912)

Russell states a “vicious circle principle”:

Whatever involves all of a collection must not be one of the collec-
tion.

To this end, he associates an order (a natural number) to each object of the
theory, in such a way that

order of a set > order of the elements of the set (no x ∈ x)
order of a quanti�er ∀x.P > order of variable x (predicativity)

34

Russell’s rami�ed types

Function types t annotated by natural numbers a:

ta ::= 00 base propositions
| (ta1

1 , . . . , t
an
n) a predicate of arity n

with a > max(a1, . . . , an)

Informal but complicated typing rules.

Types are too intensional: equivalent logical formulas have di�erent
orders.

A reductibility axiom (for every formula F there exists a formula G⇔ F
whose order is minimal) that fails to convince.

De-rami�cation e�orts (Ramsey (1926), Hilbert and Ackermann, . . .) to get
rid of orders and keep only simple types (function types).

(Kamareddine, Laan, Nederpelt, A modern perspective on type theory, part 1.)

35

Church’s simple theory of types
(A. Church, A Formulation of the Simple Theory of Types, J. Symbolic Logic 5(2), 1940.)

A grammar of well-typed terms, indexed by their types.

Types: α, β ::= i natural numbers
| o logical propositions
| α→ β functions from α to β

Terms: M,N ::= xα variable
| (λxα. Mβ)α→β abstraction
| (Mα→β Nα)β application
| ¬o→o logical negation
| ∧o→o→o conjunction
| ∀(α→o)→o universal quanti�cation
| ι(α→o)→α an x such that P(x)

Plus: α-conversion, β-conversion.
Plus: an axiomatization of Peano arithmetic.

36

The simply-typed lambda-calculus

The modern presentation separates the syntax of terms from
the typing judgment Γ ` M : α
(read: term M has type α under hypotheses Γ).

Terms: M,N ::= x | λx:α.M | M N

Typing rules:

Γ1, x : α, Γ2 ` x : α

Γ, x : α ` M : β

Γ ` λx:α.M : α→ β

Γ ` M : α→ β Γ ` N : α

Γ ` M N : β

Types for the constants used by Church:

¬ : o→ o ∀α : (α→ o)→ o
∧ : o→ o→ o ια : (α→ o)→ α

37

Types and reductions

Theorem (Subject reduction)
If Γ ` M : α and M→β M′, then Γ ` M′ : α

Theorem (Strong normalization)
If Γ ` M : α, all sequences of β-reductions starting with M are �nite.

Corollary: the simply-typed lambda-calculus is not Turing-complete.

38

IV

The Curry-Howard correspondence

Combinatory logic

As early as 1930, Curry studies combinatory logic: a variant of the
λ-calculus without abstraction λx.M, but with combinators prede�ned by
their conversion rules. For example:

Terms: M,N ::= M N | S | K | I
Rules: I x = x

K x y = x
S x y z = x z (y z)

Every λ-term can be encoded in combinatory logic if a suitable combinator
basis is provided, such as S, K, I.

Typing combinatory logic using simple types:

M : α→ β N : α

M N : β

I : α→ α K : α→ β → α

S : (α→ β → γ)→ (α→ β)→ (α→ γ)

40

Curry’s correspondence

On pages 313–314 of their book Combinatory logic (1958), Curry and Feys
remark that, if we read the arrow in type τ1 → τ2 like the implication
P⇒ Q between propositions,

The types for the combinators S, K, I are the axioms that de�ne
implication in a Hilbert-style logic:

I : α→ α P⇒ P
K : α→ β → α P⇒ Q⇒ P
S : (α→ β → γ)→ (P⇒ Q⇒ R)⇒

(α→ β)→ (α→ γ) (P⇒ Q)⇒ (P⇒ R)

The typing rule for function application is modus ponens:

M : α→ β N : α

M N : β

P⇒ Q P

Q

41

Curry’s correspondence

Via Curry’s correspondence, a proposition P is provable if and only if the
corresponding type α is inhabited, that is, there exists a closed term with
type α.

42

Howard’s manuscript
W. A. Howard, The formulae-as-types notion of construction, 1969

Extends and modernize Curry’s result:
Lambda-calculus instead of combinatory logic.
Intuitionistic sequents instead of Hilbert-style axioms.
Treats the connectors ∧, ∨, ¬ in addition to⇒;
discusses the quanti�ers ∀ and ∃.
Correspondence between reduction over terms and cut elimination
over proofs.

First circulated as photocopies of hand-written notes.
Eventually published (identically) in 1980 in the book
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and
Formalism.

43

Curry-Howard: implication

Γ1, x : A, Γ2 ` x : A

Γ, x : A ` M : B

Γ ` λx.M : A→ B

Γ ` M : A→ B Γ ` N : A

Γ ` M N : B

44

Curry-Howard: implication

Γ1,

x :

A, Γ2 `

x :

A

Γ,

x :

A `

M :

B

Γ `

λx.M :

A⇒ B

Γ `

M :

A⇒ B Γ `

N :

A

Γ `

M N :

B

Γ is Γ without variable names, for example x : A, y : A = A, A.

44

Curry-Howard: conjunction

Extend the lambda-calculus with pairs and projections:

Types: A, B ::= . . . | A× B
Terms: M,N ::= . . . | 〈M,N〉 | π1 M | π2 M

Γ ` M : A Γ ` N : B

Γ ` 〈M,N〉 : A× B

Γ ` M : A× B

Γ ` π1 M : A

Γ ` M : A× B

Γ ` π2 M : B

45

Curry-Howard: conjunction

Extend the lambda-calculus with pairs and projections:

Types: A, B ::= . . . | A× B
Terms: M,N ::= . . . | 〈M,N〉 | π1 M | π2 M

Γ `

M :

A Γ `

N :

B

Γ `

〈M,N〉 :

A ∧ B

Γ `

M :

A ∧ B

Γ `

π1 M :

A

Γ `

M :

A ∧ B

Γ `

π2 M :

B

45

Curry-Howard: disjunction

Extend the lambda-calculus a sum type and the corresponding operations
(see lecture 3 on week 2):

Types: A, B ::= . . . | A + B
Terms: M,N ::= . . . | inj1 M | inj2 M

| match M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end

Γ ` M : A

Γ ` inj1 M : A + B

Γ ` N : B

Γ ` inj2 N : A + B

Γ ` M : A + B Γ, x1 : A ` N1 : C Γ, x2 : B ` N2 : C

Γ ` match M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end : C

46

Curry-Howard: disjunction

Extend the lambda-calculus a sum type and the corresponding operations
(see lecture 3 on week 2):

Types: A, B ::= . . . | A + B
Terms: M,N ::= . . . | inj1 M | inj2 M

| match M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end

Γ `

M :

A

Γ `

inj1 M :

A ∨ B

Γ `

N :

B

Γ `

inj2 N :

A ∨ B

Γ `

M :

A ∨ B Γ,

x1 :

A `

N1 :

C Γ,

x2 :

B `

N2 :

C

Γ `

match M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end :

C

46

Curry-Howard: absurdity

Extend the lambda-calculus with an empty type and an “eliminator” for
this type (see lecture 3 on week 2):

Types: A, B ::= . . . | ⊥
Terms: M,N ::= . . . | match M with end

Γ ` M : ⊥

Γ ` match M with end : A

(The syntax match M with end is the one used in Coq and comes from the
fact that type ⊥ can be de�ned as an inductive type with zero
constructors.)

47

Curry-Howard: absurdity

Extend the lambda-calculus with an empty type and an “eliminator” for
this type (see lecture 3 on week 2):

Types: A, B ::= . . . | ⊥
Terms: M,N ::= . . . | match M with end

Γ `

M :

⊥

Γ `

match M with end :

A

(The syntax match M with end is the one used in Coq and comes from the
fact that type ⊥ can be de�ned as an inductive type with zero
constructors.)

47

What does β-reduction corresponds to?

Howard (1980) notices that β-reduction corresponds to cut elimination in
the implicative fragment (⇒) of the logic.

...
Γ, x : A ` M : B

Γ ` λx.M : A→ B

...
Γ ` N : A

Γ ` (λx.M) N : B
becomes

...
Γ ` N : A

...

Γ ` M{x← N} : B

48

What does β-reduction corresponds to?

Howard (1980) notices that β-reduction corresponds to cut elimination in
the implicative fragment (⇒) of the logic.

...
Γ,

x :

A `

M :

B

Γ `

λx.M :

A⇒ B

...
Γ `

N :

A

Γ `

(λx.M) N :

B
becomes

...
Γ `

N :

A

...

Γ `

M{x← N} :

B

48

Cuts

A cut is an intermediate statement (a lemma) that we prove even though it
is not a subformula of the �nal statement (the theorem).

Example (A proof with a cut)
We show P, then P⇒ Q, and we conclude Q.
P is a cut.

Example (A proof without cuts)
We show P, then Q, and we conclude P ∧ Q.
P and Q are subformulas of P ∧ Q and therefore not cuts.

49

Cut elimination

Cut elimination = rewrite a proof until it contains no cuts.

A cut-free proof has no mathematical value.
(A nice proof has lemmas and intermediate results!)

Cut elimination helps showing that a logic is consistent (there are no
cut-free proofs of “false”).

50

Cut elimination

For the implicative fragment (⇒) it su�ces to transform the derivation as
follows:

...
Γ, P ` Q

(⇒I)

Γ ` P⇒ Q

...
Γ ` P

(⇒E)

Γ ` Q
becomes

...
Γ ` P

...

Γ ` Q

Intuition: we used a lemma P to prove a theorem Q. We get rid of P by
replacing every use of P in the proof of Q by a copy of the proof of P.

When this transformation cannot be applied any more, the derivation is
cut-free and has the subformula property.

51

Reductions and cut elimination

Howard observes that a term in β-normal form corresponds to a cut-free
demonstration in the fragment (⇒) of the logic.

The result extends to conjunctions.

Reduction rules for products:

π1 〈M,N〉 → M π2 〈M,N〉 → N

A term in normal form for these rules and for β correspond to a cut-free
demonstration in the fragment (⇒,∧) of the logic.

52

Reductions and cut elimination

If we add ∨ and ⊥, the result no longer holds: the usual reduction rules for
sums

match injk M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end→ Nk{xk ← M}

do not su�ce to eliminate all cuts. We need to add many unusual
reduction rules to handle the so-called “commutative cuts” (Prawitz, 1965).
For example, in the case of >:

(match M with end) N → match M with end

πi (match M with end) → match M with end

match (match M with end) with . . . end → match M with end

53

Reductions and cut elimination

And for disjunction:

(match M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end) N
→ match M with inj1 x1 ⇒ N1 N | inj2 x2 ⇒ N2 N end

πi (match M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end)

→ match M with inj1 x1 ⇒ πi N1 | inj2 x2 ⇒ πi N2 end

match (match M with inj1 x1 ⇒ N1 | inj2 x2 ⇒ N2 end)
with inj1 y1 ⇒ P1 | inj2 y2 ⇒ P2 end

→ match M with

inj1 x1 ⇒ (match N1 with inj1 y1 ⇒ P1 | inj2 y2 ⇒ P2 end)
| inj2 x2 ⇒ (match N2 with inj1 y1 ⇒ P1 | inj2 y2 ⇒ P2 end)

54

V

Summary

Curry-Howard in 1970

An isomorphism between simply-typed λ-calculus and intuitionistic logic
that equates

types and propositions;
terms and proofs;
reductions and cut elimination.

Is this just a coincidence?

Is the result speci�c to simply-typed λ-calculus?
Can we extend it to richer programming languages?

Is the result speci�c to intuitionistic logic?
Can we extend it to other logics? to classical logic?

Some answers in the forthcoming lectures!

56

VI

Further reading

Further reading
Popularization:

Gilles Dowek. Computation, Proof, Machine. Cambridge University
Press, 2015.
Palmström. The Lambda Calculus for Absolute Dummies (like myself),
2012. http://palmstroem.blogspot.com/2012/05/
lambda-calculus-for-absolute-dummies.html

Reference material:
Jean-Yves Girard. The blind spot: Lectures on logic. European
Mathematical Society, 2011. Mainly chapters 4 and 5.
Benjamin Pierce. Types and Programming Languages. MIT Press, 2002.
Mainly chapters 5, 9, 11 and 12.
Morten Heine Sørensen, Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism. 1998. Chapters 1 to 5.
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf

58

http://palmstroem.blogspot.com/2012/05/lambda-calculus-for-absolute-dummies.html
http://palmstroem.blogspot.com/2012/05/lambda-calculus-for-absolute-dummies.html
https://disi.unitn.it/~bernardi/RSISE11/Papers/curry-howard.pdf

	The lambda-calculus
	Intuitionistic logic
	Types
	Curry-Howard
	Summary
	Further reading

