
Type inference with algebraic universes in the
Calculus of Inductive Constructions

Hugo Herbelin

INRIA-Futurs, LIX, F-91128 Palaiseau

Abstract. We describe an algebraic system of universes and a type-
checking algorithm for universe constraints in a version of the extended
calculus of constructions with inductive types. The use of algebraic uni-
verses ensures that the graph of constraints only contains universes al-
ready present in the term to type. This algorithm, used in the type-
checker of the Coq proof assistant, refines Huet and Harper-Pollack al-
gorithms for typical ambiguity.

The Extended Calculus of Constructions (ECC) [11] is a type theory ex-
tending the Calculus of Constructions (CC) [3, 5] with a stratified cumulative
hierarchy of type universes, and Σ-types. We call CCω the extension of CC with
the hierarchy of ECC but without Σ-types.

CCω can be seen as a Pure Type System (PTS) [1, 13] extended with subtyp-
ing. The signature of CCω as a PTS contains the impredicative sort of propo-
sitions Prop and a stratified hierarchy of predicative types Typei, for i ≥ 1.
The sort of propositions itself is in Type1 and the stratification is expressed
by the axioms Typei : Typei+1. The subtyping is generated from the inclusion
Prop ⊂ Type1 and Typei ⊂ Typei+1, by extension to products, covariantly on
the codomain.

CCω differs from the “Generalised” Calculus of Constructions (GCC) [4]
which extends the Calculus of Constructions with a slightly weaker cumulative
hierarchy of type universes (it does not have Prop ⊂ Type1 and it is not compat-
ible with products). Thanks to its compatibility with products, the hierarchy of
CCω (comparatively called fully cumulative in Luo [11]) is easier to work with.

Along the formulae-as-type paradigm, types in Prop denotes propositions
and terms typed of these types are proofs of these propositions.

Thanks to the normalisation of ECC [11], hence of CCω, type inference and
type checking in CCω are decidable (terms of CCω are written à la Church with
explicitly typed abstractions).

Type checkers for CCω (or GCC) have been implemented on computer from
1985 [8, 12] (with further extensions leading to the Coq [2] and LEGO proof
assistants). To abstract over the use of type universe levels, Huet [10] proposed
to introduce some form of typical ambiguity in the type checker of CCω: each time
a reference to a type universe is given, its level is left anonymous (i.e. the user
writes Type without mentioning the level) and the type checker handles a graph
of constraints between anonymous universes and relies on a decidable graph

algorithm of non-circularity check to ensure the mapping of anonymous universes
to actual numerical levels. Similarly, Pollack introduced typical ambiguity in the
type-checker of GCC, but still retaining the possibility of using explicit level of
universes. The theory of anonymous universes in GCC has been carefully studied
(among other related concepts) by Harper and Pollack [9].

Both algorithms use universe variables that are associated to every occurrence
of Type occurring in a derivation of some judgement Γ ` t : T . The derivation
enforces constraints on the universe variables and the derivation is sound iff the
graph of constraints is acyclic (i.e. if the universe variables are mappable to
positive integers so that the constraints are true).

The current paper refines Huet’s algorithm for Coq by reducing the size of
the graph of constraints. This is achieved by using algebraic universe levels in
a free algebra generated by the numerical levels, a successor operator suc and
a maximum-of-two-integers operator max. As a result, the graph of constraints
for a type inference problem Γ ` t : ? only contains nodes for the occurrences of
Type occurring in Γ and t. All other occurrences, the ones occurring inside the
derivation and the ones occurring in the type of t (if typable) are algebraic ex-
pressions built on the formers. We call CCa

ωd the extension of CCω with algebraic
universes to which definitions also are added.

In the first section, we give a type-directed presentation of CCa
ωd. In the

second section, we explore the form of the algebraic constraints that appear in
derivations of CCa

ωd. Especially, we show that under special reasonable condi-
tions, constraints between algebraic universes are reducible without time com-
plexity penalty to simple constraints between universe variables only. The third
section addresses the issue of the Calculus of Inductive Constructions (CCI) as
implemented in the Coq proof assistant [2]. Especially, the previous analysis is
extended to the subset of CCI that is relevant for the question of type universes.
We conclude with a few remarks.

1 CCa
ωd: type-checking CCω with algebraic universes

We present an extension of CC with Luo’s full cumulative hierarchy of universes,
and definitions. Our presentation is syntax-directed, in the same vein as Harper-
Pollack’s presentation of GCC (e.g. Tables 4 or 9 in [9]) or, implicitly, as Luo’s
type inference algorithm (Definition 6.2.2 in [11], see also Table 5-3 in [12]).
Since it is syntax-directed, a derivation Γ ` t : T can directly be interpreted as
a type inference algorithm taking an inference problem Γ ` t : ? as input and
returning, if successful, a type T of t.

More generally, our system does not only include type universes at given
numerical levels. It also has universes at floating levels represented by universe
variables so that the a type inference problem Γ ` t : ? actually returns a judge-

ment Γ
C
` t : T where T is a type for t and C is a graph of constraints on the

universe variables to be satisfied to ensure the typability of t. In case all universe
variables are distinct in Γ and t, this gives a system similar to the system with
anonymous universes (where each anonymous universe is associated to a fresh

universe variable) in Harper-Pollack [9] (Table 8, or Table 12 for a system with
definitions). However, in our system, the inferred type T , if any, is not a type
scheme built on fresh universe variables, but an algebraic expression built on the
universe variables occurring in Γ and t. And similarly for the set of constraints C.

1.1 Syntax

Let i ranges over numerical universes (i ∈ N∗). Let α ranges over an infinite
set of universe variables. An atomic universe is either a numerical universe or
a universe variable. An algebraic universe is an expression built from atomic
universes by means of a formal successor function suc and a formal maximum
function max.

l ::= i | α
e ::= l | suc(e) | max(e, e)

A sort in CCa
ωd is either a type universe or the propositional sort Prop.

s ::= Type(e) | Prop

To define terms, we assume the existence of an infinite set of variable names
whose inhabitants are written x, y, z, ... The terms are defined by the following
grammar.

t, u, v, T, U, V ::= x | ∀x : t.t | λx : t.t | (t t) | s

We consider terms up to α-conversion. By t{u/x} we denote the capture-
avoiding substitution of x by u in t.

Typing contexts, or simply contexts, are lists of declarations, of the form
x : T , or definitions, of the form x := t : T . Formally, a context is defined by the
grammar

Γ ::= ε | Γ, x : t | Γ, x := t : T

where ε denotes an empty context (left implicit, unless it causes an ambiguity).
We write (x : T) ∈ Γ (respectively (x := t : T) ∈ Γ to say that the corresponding
declaration (respectively definition) is part of Γ .

1.2 Conversion, subtyping and constraints

Typing in CCa
ωd is up to conversion. Since the system has definitions the con-

vertibility is not only based on β-reduction but also on δ-reduction whose effect
is to replace variables defined in the context by their value. Thanks to the strong
normalisation of ECC and the confluence of β-reduction (which obviously still
holds in presence of δ-reduction), convertibility of typed terms can be decided
by reduction to weak head normal form. For this, it is useful to characterise the
set of weak head normal forms. We first define evaluation contexts E as follows.

E ::= [] | E t

with notation E[t] to denote the replacement of the hole of E by t. Due to the
presence of definitions, the characterisation of weak head normal forms is relative
to a context Γ that can contains definitions. We say that t is a weak head normal
form (shortly whnf) relatively to Γ in the following cases.

– w is a “constructed value”, i.e. an expression of the form ∀x : t.t, or λx : t.t
or s

– w is an expression E[x] with x not defined in Γ

The relation t weak head reduces to w relatively to Γ , written t ↓Γ w is induc-
tively defined by the following clauses.

t in weak head normal form

t ↓Γ t

E[u{t/x}] ↓Γ w

E[(λx : T.u)t] ↓Γ w

(x := t : T) ∈ Γ E[t] ↓Γ w

E[x] ↓Γ w

Convertibility involves algebraic constraints which consist of equalities and
inequalities relating algebraic universes. We say that a constraint is purely arith-
metical if it does not involve universe variables. Purely arithmetical constraints
are directly evaluable in N∗ by respectively interpreting suc and max as the suc-
cessor and maximum functions. We write N |= e = e′ (or N |= e ≤ e′) to express
that e and e′ are purely arithmetical and that the constraint is true in N. A
constraint between atomic universes only is called atomic.

An assignment σ of universe variables is a mapping from the set of universe
variables to the set of strictly positive integers. The interpretation σ(e) of an
algebraic universes e along an assignment σ is defined by interpreting suc and
max respectively as the successor and maximum functions on positive numbers.
If t is a term, the assignment σ(t) is a term obtained by applying σ on the type
universes. Similarly for the assignment σ(Γ) of a context Γ .

The interpretation of a set of constraint along an assignment σ is defined by
interpreting the inequalities and equalities on the set of positive numbers. We
say that σ validates the constraint set C, and we write σ |= G, if the equalities
and inequalities of C, interpreted in N, are true. If there exists an assignment
that validates C we say that C is stratifiable.

Convertibility on whnf and on terms is mutually inductively defined by the
following clauses.

Type(e)
{e=e′}
=w Type(e′)

N |= e = e′

Type(e) ∅=w Type(e′) Prop
∅=w Prop

t1
C1= t′1 t2

C2= t′2

∀x : t1.t2
C1∪C2=w ∀x : t′1.t

′
2

t1
C1= t′1 t2

C2= t′2

λx : t1.t2
C1∪C2=w λx : t′1.t

′
2

t1 ↓Γ w1 t2 ↓Γ w2 w1
C=w w2

t1
C= t2

for all k, tk
Ck= t′k

xt1 ... tn

⋃
k

Gk

=w xt′1 ... t′n

Subtyping is covariant on the codomain of products and includes universe
cumulativity. On applications and abstractions it is equivalent to convertibility.
Subtyping is mutually and inductively defined on whnf-terms and terms by the
following clauses:

Type(e)
e≤e′

≤w Type(e′)

N |= e ≤ e′

Type(e)
∅
≤w Type(e′)

Prop
∅
≤w Type(e) Prop

∅
≤w Prop

T ′
1
C1= T1 T2

C2
≤ T ′

2

∀x : T1.T2

C1∪C2
≤w ∀x : T ′

1.T
′
2

λx : T1.t2
C=w λx : T ′

1.t
′
2

λx : T1.t2
C
≤w λx : T ′

1.t
′
2

t1 ↓Γ w1 t2 ↓Γ w2 w1

C
≤w w2

t1
C
≤ t2

E[x] C=w E′[x]

E[x]...tn
C
≤w E′[x]

1.3 Typing rules

Since the typing rules involve convertibility and subtyping, they also involve

constraints. The syntax-directed presentation is so that the sequent Γ
C
` t : T

can be read as a function depending of Γ and t that returns, if possible, both a
type T for t and a constraint set C to be satisfied.

The notation Γ
C
` t : s in premises means that there exists a sort s such that

Γ
C
` t : T and T ↓Γ s. Similarly, the notation Γ

C
` t : ∀x : T1.T2 in premises

means that there exists T1 and T2 such that Γ
C
` t : T and T ↓Γ ∀x : T1.T2).

Since all products are valid in CCa
ωd (i.e. CCa

ωd is full as a PTS), we only need
two-level judgements. Especially, in the typing rule of abstraction the product
∀x : T.T ′ is necessarily valid.

Γ1, x : t, Γ2

∅
` x : t Γ1, x := t : T, Γ2

∅
` x : T

Γ
C
` t : s Γ, x : t

C′

` t′ : s′

Γ
C∪C′

` (∀x : t.t′) : Prod(s, s′)

Γ
C
` T : s Γ, x : T

C′

` t′ : T ′

Γ
C∪C′

` (λx : T.t′) : (∀x : T.T ′)

Γ
C
` t : (∀x : T1.T2) Γ

C′

` t′ : T ′ T ′ C
′′

≤ T1

Γ
C∪C′∪C′′

` (t t′) : T2{t′/x}

Γ
∅
` Type(e) : Type(suc(e)) Γ

∅
` Prop : Type(1)

with Prod(s, s′) defined by

– Prod(s, Prop) = Prop
– Prod(Prop, Type(e)) = Type(e)
– Prod(Type(e), Type(e′)) = Type(max(e, e′))

We also define a judgement expressing that a context is valid relatively to a
set of constraints.

Γ
C1

` Γ
C2

` T : s

Γ, x : T
C1∪C2

`

Γ
C1

` Γ
C2

` t : T Γ
C3

` T ′ : s T
C4
≤wΓ T ′

Γ, x := t : T ′
C1∪C2∪C3∪C4

`

In contrast with Harper-Pollack, we do not have universe polymorphism for
definitions (see [9], Table 12): definitions share the same universe levels and add
more constraints than if expanded.

If the universes in Γ , t and T are purely arithmetical, the typing system
collapses to the operational presentation of CCω with definitions in the style
of Harper-Pollack’s operational presentation of GCC. Indeed, we have a result
similar to Harper-Pollack’s Theorem 3.3.

Proposition 1.

1. Γ ` in CCωd iff Γ
∅
` in CCa

ωd

2. Γ ` t : T in CCωd iff there exists T ′ such that, in CCa
ωd, Γ

∅
` t : T ′ and Γ

∅
`

and T ′ ∅
≤wΓ T

where CCωd is CCω (rules as in Luo [11] but without Σ-types) extended with
the rules

Γ1, x := t : T, Γ2 `

Γ1, x := t : T, Γ2 ` x : T

Γ ` t : T

Γ, x := t : T `

Proof. The proof is standard by induction. It relies on the confluence of the βδ
reduction and on its strong normalisation for the typed terms.

1.4 Type-checking with anonymous universes

The hierarchy of countable universes is far more powerful than what is proba-
bly needed in practise to formalise mathematics. One would probably live well
with two or three universes. In spite of that, it is also quite convenient to live
with typical ambiguity, as introduced by Russell and Whitehead, for which it

is implicitly admitted that there exists a disambiguation of the universes that
respects the stratification.

The implementation of typical ambiguity is the purpose of Huet [10] and one
of the objectives of Harper-Pollack [9].

In practise, users of the type-checkers for CC with universes just write an
anonymous Type while the type-checker internally binds the anonymous Type to
some Type(α) where α is a fresh universe variable. Evaluable constraints between
integers are then replaced by formal constraints between universe variables, and
an algorithm ultimately checks if there exists an assignment of the universe
variables by positive integers that validates the constraints.

The previous type system can be used to check the validity of context (or of
a judgement) in presence of anonymous universes. One just has to replace each
occurrence of an anonymous universe by a fresh universe variable and to use the
type system as a validity-checker (or a type inference algorithm). Given Γ where
the anonymous universes have been replaced by variables, if the type system

produces a derivation of Γ
C
`, then the validity of Γ is reduced to the stratifi-

ability of C. Indeed, we have a result similar to Harper-Pollack’s Theorems 5.2
and 6.5.

Proposition 2. Let σ an assignment. We have.

1. σ(Γ)
∅
` iff Γ

C
` for some C such that and σ |= C

2. σ(Γ)
∅
` σ(t) : T iff Γ

C
` t : T ′ for some C such that σ |= C and some T ′ such

that σ(T ′) = T .

More generally, the above proposition holds not only if Γ and t contain
universe variables but also if they contain arbitrary algebraic universes.

Proof. The proof is by induction. The interesting cases are the convertibility and
subtyping cases involving type universes. Also, the cases involving max and suc
relates the formal and effective roles of these operators.

We now turn on to the decision of the stratifiability of constraints.

2 Solving stratifiability

2.1 Structure of the sets of constraints

We now study the form of constraints in judgements. Especially, we are interested

in the form of the algebraic constraints in C for the judgements Γ
C
` or Γ

C
` t : T

when Γ and t only contains atomic universes. It turns out that the central
notions here are the notions of conclusion-algebraic term and of atomically-
upper-bounded constraints.

A term t is called non-algebraic if all occurrences of Type(e) in t have the
form Type(l). A term t is called conclusion-algebraic if its weak-head normal
form is. A whnf-term w is called conclusion-algebraic in the following cases:

– w is Type(e) or Prop
– w is E[x] or w = λx : T.t which are non-algebraic
– w is ∀x : T.T ′ and T is non-algebraic while T ′ is conclusion-algebraic

We say that an algebraic universe e is of depth 0 if it is atomic or of the form
max(e′, e′′) with e′ and e′′ of depth 0. We say that an algebraic universe e is of
depth 1 if it is of depth 0, or of the form suc(e′) with e′ of depth 0, or of the
form max(e′, e′′) with e′ and e′′ of depth 1.

Thanks to the associativity of the maximum function, to the distributivity of
the successor over the maximum and to the evaluation rules of these functions
on integers, any algebraic universes of depth 1 can be represented in a way that
respects its numerical interpretation using a n-ary maximum operator as follows

max(i, α1, . . . , αn, suc(α′1), . . . , suc(α′n)) .

If, in the first clause defining conclusion-algebraic terms, e is of depth 1, we
say that t is depth-1 conclusion-algebraic.

An algebraic constraint is said atomically-upper-bounded if it is an equality
of the form l = l′ or an inequality of the form e ≤ l. It is depth-1 atomically-
upper-bounded if e is of depth 1 in e ≤ l. We have the following properties

Lemma 1.

1. If t
C=w t′ with t and t′ non-algebraic, then C has only constraints of the form

l′ = l.

2. If t
C
≤w t′ with t′ non-algebraic and t conclusion-algebraic then C has only

atomically-upper-bounded constraints.

3. If t
C
≤w t′ with t′ non-algebraic and t depth-1 conclusion-algebraic then C has

only depth-1 atomically-upper-bounded constraints.

Proof. The first part is trivial by induction. The second part, by induction, relies
on the characterisation of algebraic terms.

Based on the properties of the subtyping algorithm, we have:

Proposition 1 Let Γ such that for all (x : T) ∈ Γ or (x := t : T) ∈ Γ , T is

depth-1 conclusion-algebraic. Let t be non algebraic. If Γ
C
` t : T then

1. T is depth-1 conclusion-algebraic
2. C only contains depth-1 atomically-upper-bounded constraints

Proof. The proof proceeds by induction on the derivation of Γ
C
` t : T , using

Lemma 1 for the application case.

As a consequence, for problems involving typical ambiguity (i.e. for problems
where the universes are atomic and all universe variables are distinct) we have

Corollary 1 If Γ and t are non algebraic and Γ
C
` t : T then T is depth-1

conclusion-algebraic and C is depth-1 atomically-upper-bounded.

This result is important from a time complexity point of view. Indeed con-
straints that are atomically-upper-bounded can be decomposed into conjunction
of atomic constraints without having to consider the stratifiability of disjoint sets
(hence without requiring backtracking). This results in a stratifiability problem
not more complex than Coq Huet’s algorithm based on variables, but on a light-
ened graph that does not any longer mention those universes that occur only in
the inferred types, universes on which no upper constraints apply and that are
useless.

Proposition 3. If C is a set of atomically-upper-bounded algebraic constraints,
there is a set C′ of atomic constraints such that C is stratifiable iff C′ is stratifi-
able.

Proof. Because max(i, α1, . . . , αn, suc(α′1), . . . , suc(α′n)) ≤ l is equivalent to

i ≤ l ∧ α1 ≤ l ∧ . . . ∧ αn ≤ l ∧ α′1 < l ∧ . . . ∧ α′n < l .

Set of atomic constraints can be seen as oriented graphs whose nodes are
the numerical universes and universe variables occurring in the constraints, and
whose oriented edges represent either greater-or-equal or strictly-greater con-
straints. We write |C| for the set of atomic constraints associated to the depth-1
atomically-upper-bounded set C.

2.2 Stratifiability of graphs of atomic constraints

A cycle is any oriented path in the graph that traverses at least one “strictly
greater” edge.

Lemma 2. A set of constraints C is stratifiable iff |C| has no cycle

We first describe how to ensure that a set of atomic constraints of the form
α = α′, α ≤ α′ or α < α′ has no cycle. This is an abstract presentation of the
algorithm implemented in Coq.

A graph of atomic constraints is represented as a set of classes of equal
universes α̂ each of them equipped with

– A set U≥
α̂ denoting the set of universes explicitly required to be greater or

equal to the universes in α̂.
– A set U>

α̂ denoting the set of universes explicitly required to be strictly
greater to the universes in α̂.

We write ↑≥α for the set of universe variables greater or equal to the universe
variable α. It corresponds to the transitive closure of U≥

α̂ . It can be computed
from the family of sets U≥ and U> in time O(mn) at worst, where n is the
number of equivalence classes and m the number of edges.

We write ↑>
α for the set of universe variables strictly greater to the universe

variable α. It corresponds to the subset of the transitive closure of U≥
α̂ that

follows at least one > edge. It can also be computed in time O(mn) at worst.
We write ↑α′

α for the set of universes that are greater or equal to α and less
or equal to α′. It can also be computed in time O(mn) at worst.

Let G a graph that has no cycle. We enumerate sufficient conditions so that
the extension of G with a constraint l = l′, l ≤ l′ or l < l′ has no cycle. Let
G′ be the extended graph. We write U≥′

α̂ (respectively U>′

α̂) for the new set of
universes explicitly required to be greater or equal (respectively strictly greater)
to the universe α.

– G ∪ {α = α′} has no cycle iff α 6∈↑>
α′ and α′ 6∈↑>

α . Moreover,
• if α′ ∈↑≥α then

∗ the new common equivalence class of α and α′ is α̂ ∪ α̂′∪ ↑α′

α ,
∗ U≥′

α̂ =
⋃

β∈↑α′
α

U≥
β̂

∗ U>′

α̂ =
⋃

β∈↑α′
α

U>

β̂

• if α ∈↑≥α′ then similarly with ↑α
α′ .

• if α 6∈↑≥α′ and α′ 6∈↑≥α then
∗ the new common equivalence class of α and α′ is α̂ ∪ α̂′,
∗ U≥′

α̂ = U≥
α̂ ∪ U≥

α̂′

∗ U>′

α̂ = U>
α̂ ∪ U>

α̂′

– G ∪ {α > α′} has no cycle iff α′ 6∈↑≥α . Moreover, if α 6∈↑>
α′ , we have U>′

α̂′ =
U>

α̂′ ∪ {α}
– G ∪ {α ≥ α′} has no cycle iff α′ 6∈↑>

α . Moreover,
• if α′ ∈↑≤α , then

∗ the new common equivalence class of α and α′ is α̂ ∪ α̂′∪ ↑α′

α ,
∗ U≥′

α̂ =
⋃

β∈↑α′
α

U≥
β̂

∗ U>′

α̂ =
⋃

β∈↑α′
α

U>

β̂

• if α′ 6∈↑≤α , then U≥′

α̂′ = U≥
α̂′ ∪ {α}

To extend the previous algorithm to the case of constraints the form α = i,
α ≤ i, α < i, i ≤ α and i < α, we associate two extra informations to each class
of equal universes.

– An integer lα̂ intended to be a lower bound to the universes in α̂.
– An optional integer uα̂ explicitly required to be an upper bound to the

universes in α̂.

These informations, that have to be updated each time a constraint is added
(even for constraints not mentioning numerical levels), allow to determine easily
whether a constraint involving an integer is consistent.

3 Type-checking CIC with algebraic universes

We now focus on the Calculus of Inductive Constructions (CCI) such as im-
plemented in the Coq system [2]. This calculus has constructions for fixpoints,
cofixpoints, case analysis, inductive and coinductive types, constructors in in-
ductive and coinductive types, local definitions and a “cast” operator to force
the exact type of a term. It also has an extra sort Set of type Type1 and included
in Type(1). Products in the sort Set are predicative or not, depending on the
version of Coq considered. We restrict our study to inductive and coinductive
types that are the only constructions equipped with special conditions regarding
the universes. We also only consider the predicative version of the sort Set

The extra sort Set, in its predicative version, has type Type1 and is a subtype
of Type1. This can be expressed by adding the level 0 to the grammar of atomic
levels to which correspond the following extra typing and subtyping rules.

Γ
∅
` Set : Type(1) Set

∅
≤w Type(e) Set

∅
≤w Prop

Specifications of (co-)inductive types are declared in the context. We consider
specifications of mutually defined (co-)inductive types so that the grammar of
contexts is extended as follows:

Γ ::= . . . | Γ, I :=b S

S ::= {Ii(
−−−→
x : T)(−−−→xi : Ti) : si :=

−−−−−→
Cij : T ′

ij}

Specifications of (co-)inductive types defines block of mutually (co-)inductive
types. In the specification {Ii(

−−−→
x : T)(−−−→xi : Ti) : si :=

−−−−−→
Cij : T ′

ij}, the context −−−→x : T
represents the type of the global parameters of the family. It is common to all
types of the block. For each i, the context−−−→xi : Ti represents the type of the specific
parameters of each Ii in the family and si is the sort of Ii

−→x−→xi . Otherwise said, Ii

has type ∀−−−→x : T .∀−−−→xi : Ti.si. The constructors CI
ij of Ii have the respective types

∀−−−→x : T .T ′
ij . The conclusion of each T ′

ij has the form Ii
−→x−→uij with −−−−→

uij : Ti. Other
occurrences of the Ii can occur in T ′

ij in “strictly positive” positions. In I :=b S,
b is a boolean telling if it is a specification of inductive or coinductive types. The
validity of (co-)inductive types specification is expressed by the following rule:

Γ
C
` −−−→x : T ,

for all i : Γ,
−−−→
x : T

Ci

` −−−→
xi : Ti,

for all i, j : (Γ,
−−−→
x : T ,

−−−−−−−−−−−−−−−→
Ii : ∀−−−→x : T .∀−−−→xi : Ti.si

Cij

` T ′
ij : sij),

for all i, j, Tij satisfies the strict positivity criterion for −→Ii ,
C′ = C ∪

⋃
i Ci ∪

⋃
ij Cij ∪

⋃
ij cstind(sij ≤ si),

purely arithmetical constraints in
⋃

ij cstind(sij ≤ si) are true

Γ, I :=b {Ii(
−−−→
x : T)(−−−→xi : Ti) : si :=

−−−−−→
Cij : T ′

ij}
C′

`

where Γ
C
` −−−→x : T is inductively defined by (ε denotes an empty sequence)

Γ
∅
` ε

Γ
C
` −−−→x : T Γ,

−−−→
x : T

C′

` T ′ : s

Γ
C∪C′

` −−−→
x : T , x′ : T ′

and cstind(s ≤ s′) is defined by

cstind(Prop ≤ s′) = ∅
cstind(s ≤ Prop) = ∅ (impredicativity of Prop)
cstind(Type(e) ≤ Type(e′)) = {e ≤ e′} (e and e′ not both purely arithmetical)

We refer to Coquand-Paulin [6] or the Coq reference manual [2] for an exact
description of the strict positivity criterion (it has no other effect on the universes
constraints than the ones given in the rule above).

Among others constructions, the terms of the CIC include expressions for
constructors and (co-)inductive types.

t ::= . . . | Ii | CI
ij | . . .

The corresponding typing rules are

Γ1, I :=b {Ii(
−−−→
x : T)(−−−→xi : Ti) : si :=

−−−−−→
Cij : T ′

ij}, Γ2

∅
` CI

ij : ∀−−−→x : T .T ′
ij

Γ1, I :=b {Ii(
−−−→
x : T)(−−−→xi : Ti) : si :=

−−−−−→
Cij : T ′

ij}, Γ2

∅
` Ii : ∀−−−→x : T .∀−−−→xi : Ti.si

The properties of CCa
ωd extend to the Set-predicative Calculus of Inductive

Constructions.

Proposition 2 Let Γ such that all I :=b {Ii(
−−−→
x : T)(−−−→xi : Ti) : si :=

−−−−−→
Cij : T ′

ij}
or x : T or x := t : T in Γ are such that T and all si are depth-1 conclusion-
algebraic, and −→T and all −→Ti and −→Tij are non algebraic. Let t be non algebraic. If

Γ
C
` t : T then

– T is depth-1 conclusion-algebraic
– C contains only depth-1 atomically-upper-bounded constraints

Corollary 2 If Γ and t are non algebraic and Γ
C
` t : T then T is depth-1

conclusion-algebraic and C is depth-1 atomically-upper-bounded.

4 Remarks

Contravariant subtyping. Luo [11] mentioned an alternative definition of subtyp-
ing that is contravariant with respect to the domain of products. The modified
rule is

T ′
1

C1
≤ T1 T2

C2
≤ T ′

2

∀x : T1.T2

C1∪C2
≤w ∀x : T ′

1.T
′
2

The properties of the sets of constraints in CCa
ωd still hold with this modified

rule.

Modules. The Coq proof assistant is equipped with a module system. Courant [7]
points out that to ensure a true modularity when refining the signature of a
module, it would be necessary to declare constraints in the signatures (and not
only at the global level as it is the case in Coq version 8.0 [2]). Would it then be
worth to let the users refer to algebraic universes?

Explicit numerical universes. Algebraic universes (as described in this paper) are
used internally in the Coq proof assistant since version 7.1 but version 8.0 [2]
still does not allow the user to use numerical universes. Our analysis is a step
towards proving that it can be offered without increase of the complexity of the
stratifiability algorithm.

References

1. Stefano Berardi. Type dependence and constructive mathematics. PhD thesis,
Universitá di Torino, 1990.

2. The Coq Development Team. Coq 8.0 reference manual, 2004.
3. Thierry Coquand. Une Théorie des Constructions. PhD thesis, Université Paris 7,

January 1985.
4. Thierry Coquand. An analysis of Girard’s paradox. In Symposium on Logic in

Computer Science. IEEE Computer Society Press, 1986.
5. Thierry Coquand and Gérard Huet. The Calculus of Constructions. Information

and Computation, 76(2/3), 1988.
6. Thierry Coquand and Christine Paulin-Mohring. Inductively defined types. In

P. Martin-Löf and G. Mints, editors, Proceedings of Colog’88, volume 417 of Lecture
Notes in Computer Science. Springer-Verlag, 1990.

7. Judicaël Courant. Explicit universes for the Calculus of Constructions. In Vic-
tor A. Carreño, César A. Muñoz, and Sofiène Tahar, editors, Theorem Proving in
Higher Order Logics: 15th International Conference, TPHOLs 2002, volume 2410
of Lecture Notes in Computer Science, pages 115–130, Hampton, VA, USA, August
2002. Springer-Verlag.

8. Project Formel. The Calculus of Constructions. documentation and users’s guide.
version 4.10. Technical Report 110, INRIA, Rocquencourt, France, August 1989.

9. Robert Harper and Robert Pollack. Type checking with universes. Theoretical
Computer Science, 89(1):107–136, 1991.

10. Gérard Huet. Extending the Calculus of Constructions with Type:Type, 1987.
11. Zhaohui Luo. An Extended Calculus of Constructions. PhD thesis, University of

Edinburgh, 1990.
12. Robert Pollack. The Theory of LEGO, a Proof Checker for the Extended Calculus

of Constructions. PhD thesis, University of Edinburgh, 1994.
13. Jan Terlouw. Een nadere bewijstheoretische analyse van gstt’s. Technical report,

Faculty of Mathematics and Computer Science, University of Nijmegen, Nether-
lands, April 1989.

