
MPRI course 2-4

“Functional programming languages”

Answers to the exercises

Xavier Leroy

Part I: Operational semantics

Exercise I.1 Note that terms that can reduce are necessarily applications a = a1 a2. This is
true for head reductions (the βv rule) and extends to reductions under contexts because non-trivial
contexts are also applications. Since values are not applications, it follows that values do not reduce.

Now, assume a = E1[a1] = E2[a2] where a1 and a2 reduce by head reduction and E1, E2 are
evaluation contexts. We show E1 = E2 and a1 = a2 by induction over the structure of a. By the
previous remark, a must be an application b c. We argue by case on whether b or c are applications.

• Case 1: b is an application. b is not a λ-abstraction, so a cannot head-reduce by βv, and
therefore we cannot have Ei = [] for i = 1, 2. Similarly, b is not a value, therefore we cannot
have Ei = b E′i. The only case that remains possible is Ei = E′i c for i = 1, 2. We therefore
have two decompositions b = E′1[a1] = E′2[a2]. Applying the induction hypothesis to b, which
is a strict subterm of a, it follows that a1 = a2 and E′1 = E′2, and therefore E1 = E2 as well.

• Case 2: b is not an application but c is. b cannot reduce, so the case Ei = E′i c is impossible.
c is not a value, so the case Ei = [] is also impossible. The only possibility is therefore that b
is a value and Ei = b E′i. The result follows from the induction hypothesis applied to c and
its two decompositions c = E′1[a1] = E′2[a2].

• Case 3: neither b nor c are applications. The only possibility is E1 = E2 = [] and a1 = a2 = a.

Exercise I.2 For each proposed rule a→ b, we expand the derived forms in a (written ≈ below),
perform reductions with the rules for the core constructs, then reintroduce derived forms in the
result when necessary. For the let rule, this gives:

(let x = v in a) ≈ (λx.a) v → a[x← v]

by βv-reduction. For if/then/else:

if true then a else b ≈ match True() with True()→ a | False()→ b

→ a

if false then a else b ≈ match False() with True()→ a | False()→ b

→ match False() with False()→ b

→ b

1

by match-reduction. Note that the second rule actually corresponds to two reductions in the base
language. Finally, for pairs and projections:

fst(v1, v2) ≈ (match Pair(v1, v2) with Pair(x1, x2)→ x1) → x1[x1 ← v1, x2 ← v2] = v1
snd(v1, v2) ≈ (match Pair(v1, v2) with Pair(x1, x2)→ x2) → x2[x1 ← v1, x2 ← v2] = v2

again by match reductions.

Exercise I.3 Assume 1 2 ⇒ v for some v. There is only one evaluation rule that can conclude
this:

1⇒ λx.c 2⇒ v′ c[x← v′]⇒ v

1 2⇒ v

but of course 1 evaluates only to 1 and not to any λ-abstraction.
Now, assume that we have a derivation a′ ⇒ v. By examination of the rules that can conclude

this derivation, it can only be of the following form:

λx.x⇒ λx.x λx.x⇒ λx.x

...

(x x)[x← λx.x] = a′ ⇒ v

(λx. x x) (λx. x x)⇒ v

Therefore, any derivation D of a′ ⇒ v contains a sub-derivation D′ of a′ ⇒ v that is strictly smaller
than D. Since derivations for the ⇒ predicate are finite, this is impossible.

The difference between these two examples is visible on their reduction sequences: a is an
erroneous evaluation (a term that does not reduce but is not a value), while a′ reduces infinitely.
The evaluation relation does not hold in either of these two cases.

Exercise I.4 The base case for the induction is a = (λx.c) v′ → c[x← v′] = b. We can build the
following derivation of a⇒ v from that of b⇒ v:

λx.c⇒ λx.c v′ ⇒ v′ c[x← v′] = b⇒ v

a = (λx.c) v′ ⇒ v

using the fact that v′ ⇒ v′ for all values v′ (check it by case over v′).
The first inductive case is a = a′ c → b′ c = b where a′ → b′. The evaluation derivation for

b⇒ v is of the following form:

b′ ⇒ λx.d c⇒ v′ d[x← v′]⇒ v

b′ c⇒ v

Applying the induction hypothesis to the reduction a′ → b′ and the evaluation b′ ⇒ λx.d, it follows
that a′ ⇒ λx.d. We can therefore build the following derivation:

a′ ⇒ λx.d c⇒ v′ d[x← v′]⇒ v

a′ c⇒ v

2

which concludes a⇒ v as claimed.
The second inductive case is a = v′ a′ → v′ b′ = b where a′ → b′. The evaluation derivation for

b⇒ v is of the following form:

v′ ⇒ λx.c b′ ⇒ v′′ c[x← v′′]⇒ v

v′ b′ ⇒ v

Applying the induction hypothesis to the reduction a′ → b′ and the evaluation b′ ⇒ v′′, it follows
that a′ ⇒ v′′. We can therefore build the following derivation:

v′ ⇒ λx.c a′ ⇒ v′′ c[x← v′′]⇒ v

v′ a′ ⇒ v

which concludes a⇒ v as claimed.

Exercise I.5 A convenient representation for contexts E is as Caml functions taking a term a
and returning the term E[a].

type context = term -> term

let top : context = fun x -> x

let appleft (c: context) (b: term) : context = fun x -> App(c x, b)

let appright (a: term) (c: context) : context = fun x -> App(a, c x)

The decomposition of a term a into a context and a subterm that potentially reduces follows
the same reasoning as in exercise I.1. The base cases are 1- a is not an application, and 2- a is an
application of a value to a value. In these cases, the context must be the “top” context. Otherwise,
we have a application a = a1 a2 and we hunt for a potential redex in a1, unless a1 is already a
value in which case we should look into a2.

let rec decomp = function

| App(a, b) ->

if isvalue a then

if isvalue b then

(top, App(a, b))

else

let (c, b’) = decomp b in (appright a c, b’)

else

let (c, a’) = decomp a in (appleft c b, a’)

| a ->

(top, a)

Reductions at head and under contexts:

3

let head_reduce = function

| App(Lam(x, a), v) when isvalue v -> Some(subst x v a)

| _ -> None

let reduce a =

let (c, a’) = decomp a in

match head_reduce a’ with

| Some a’’ -> Some (c a’’)

| None -> None

Iterated reductions:

let rec evaluate a =

match reduce a with None -> a | Some a’ -> evaluate a’

Concerning efficiency, this interpreter has the same (bad) complexity as the SOS-based inter-
preter from the lecture. It is slightly less efficient in practice because the context must be explicitly
constructed by decomp, then applied in reduce. Instead, the SOS-based interpreter combines the
three phases (decompose, head-reduce, reconstruct by applying context) in one single traversal.

Exercise I.6 For question 1, define I = λx.x and take a = (I I) (I I). We can reduce on the
left of the top-level application to a1 = I (I I). But we can also reduce on the right, obtaining
a2 = (I I) I.

For question 2, the reduction sequences built during the proof of theorem 3 happen to use only
left-to-right reductions, but remain valid with non-deterministic reductions. Concerning theorem 4,
the proof of the second inductive case (see exercise I.4) never uses the hypothesis that the left part
of the application is a value, therefore it remains valid if the reduction rule (app-r) is replaced by
(app-r’). We therefore have the following equivalences:

a
∗→ v with the left-to-right evaluation strategy

if and only if a⇒ v

if and only if a
∗→ v with the non-deterministic evaluation strategy.

Question 3: in light of question 2, we must look for a term that does not evaluate to a value,
but instead diverges or causes an error. An example is a = (1 2) ω, where ω is a term that
diverges. With left-to-right reductions, a cannot reduce and is not a value, therefore its evaluation
terminates immediately on an error. With non-deterministic reductions, we can choose to reduce
infinitely often in ω, the argument part of the top-level evaluation, therefore observing divergence.

4

Part II: Abstract machines

Exercise II.1

N (n) = ACCESS(n); APPLY

N (λ.a) = GRAB;N (a)

N (a b) = CLOSURE(N (b));N (a)

We represent function arguments and values of variables by zero-argument closures, i.e. thunks.
The ACCESS instruction of Krivine’s machine is simulated in the ZAM by an ACCESS (which fetches
the thunk associated with the variable) followed by an APPLY (which jumps to this thunk, forcing
its evaluation). The GRAB ZAM instruction behaves like the GRAB of Krivine’s machine if we never
push a mark on the stack, which is the case in the compilation scheme above. Finally, the PUSH

instruction of Krivine’s machine and the CLOSURE instruction of the ZAM behave identically.

Exercise II.2 Quite simply:

C(n, k) = ACCESS(n); k

C(λ.a, k) = CLOSURE(GRAB; T (a)); k

C(let a in b, k) = C(a, GRAB; C(b, ENDLET; k))

C(a a1 . . . an, k) = PUSHRETADDR(k); C(an, . . . C(a1, C(a, APPLY)))

The T schema is adjusted accordingly:

T (λ.a) = GRAB; T (a)

T (let a in b) = C(a, GRAB; T (b))

T (a a1 . . . an) = C(an, . . . C(a1, T (a)))

T (a) = C(a, RETURN) (otherwise)

Exercise II.3 At the level of the instruction set, we can add a COND(c1, c2) instruction that tests
the boolean value at the top of the stack and continues execution with one of two possible instruction
sequences, c1 if the boolean is true, c2 otherwise. The transitions for this new instruction can be:

Machine state before Machine state after

Code Env Stack Code Env Stack

COND(c1, c2); c e true.s c1 e s

COND(c1, c2); c e false.s c2 e s

In the compilation scheme, the translation of if/then/else in tail-call position is straightforward:

T (if a then a1 else a2) = C(a, COND(T (a1), T (a2))

An if/then/else in non-tail-call position is more delicate. The naive approach just duplicates the
continuation code k in both arms of the conditional:

C(if a then a1 else a2, k) = C(a, COND(C(a1, k), C(a2, k)))

5

However, this can cause code size explosion if many conditionals are nested. Another approach
uses PUSHRETADDR and RETURN to share the continuation code k between both branches:

C(if a then a1 else a2, k) = PUSHRETADDR(k); C(a, COND(C(a1, RETURN), C(a2, RETURN)))

Yet another solution modifies the dynamic semantics (the transition rule) for COND, so that the
code c that follows the COND is not discarded, but magically appended to whatever arm is taken:

Machine state before Machine state after

Code Env Stack Code Env Stack

COND(c1, c2); c e true.s c1.c e s

COND(c1, c2); c e false.s c2.c e s

In this case, compilation without code duplication is straightforward:

C(if a then a1 else a2, k) = C(a, COND(C(a1, ε), C(a2, ε)); k)

However, it looks like the machine is generating new code sequences on the fly during execution,
which is not very realistic. To address this issue, “real” abstract machines (like Caml’s or Java’s)
introduce conditional and unconditional branch instructions that skip over a given number of in-
structions.

Exercise II.4 Since the machine state decompiles to a, the machine state is of the form

code = C(a′)
env = C(e′)

stack = C(a1[e1] . . . an[en])

and a = a′[e′] a1[e1] . . . an[en].
Since the machine is stopped (cannot make a transition), we are in one of the two following

cases:

1. A GRAB instruction on an empty stack, meaning that n = 0 and C(a′) = GRAB; c for some
code c. By examination of the compilation scheme, it follows that a′ = λa′′. Therefore,
a = (λa′′)[e′] is a value.

2. An ACCESS(m) instruction where C(e′)(m) is undefined. By examination of the compilation
scheme, it follows that a′ = m. Therefore, a = m[e′] a1[e1] . . . an[en] is not a value and
cannot reduce, since m[e′] cannot reduce (e′(m) is undefined).

Exercise II.5 We write D(c, S) = a to mean that the symbolic machine, started in code c and
symbolic stack S, stops on the configuration (ε, a.ε). By definition of the transitions of the symbolic
machine, this partial function D satisfies the following equations:

D(ε, a.ε) = a

D(CONST(N).c, S) = D(c,N.S)

D(ADD.c, b.a.S) = D(c, (a+ b).S)

D(SUB.c, b.a.S) = D(c, (a− b).S)

6

By definition of decompilation, the concrete machine state (c, s) decompiles to a iff D(c, s) = a.
We start by the following technical lemma that shows the compatibility between symbolic

execution and reduction of one expression contained in the symbolic stack.

Lemma 1 (Compatibility) Let s be a stack of integer values, a an expression and S a stack
of expressions. Assume that D(c, S.a.s) = r and that a → a′. Then, there exists r′ such that
D(c, S.a′.s) = r′ and r → r′.

Proof: By induction on c and case analysis on the first instruction and on S. The interesting case
is c = ADD; c′.

If S is empty, we have s = n.s′ for some n and s′, and r = D(ADD; c′, a.n.s′) = D(c′, (n+ a).s′).
Note that n+ a→ n+ a′. By induction hypothesis, it follows that there exists r′ such that r → r′

and D(c′, (n+a′).s′) = r′. This is the desired result, since D(ADD; c′, a′.n.s′) = D(c′, (n+a′).s′) = r′.
If S = b.ε is empty, we have r = D(ADD; c′, b.a.s) = D(c′, (a + b).s′). Note that a + b → a′ + b.

The result follows by induction hypothesis.
If S = b1.b2.S

′, we have r = D(ADD; c′, b1.b2.S
′.a.s) = D(c′, (b2 + b1).S

′.a.s′). The result follows
by induction hypothesis. 2

Lemma 2 (Simulation) If the HP calculator performs a transition from (c, s) to (c′, s′), and
D(c, s) = a, there exists a′ such that a

∗→ a′ and D(c′, s′) = a′.

Proof: By case analysis on the transition.

Case CONST transition: (CONST(N); c, s)→ (c, N.s). We haveD(CONST(N); c, s) = D(c, N.s) since
the symbolic machine can perform the same transition. Therefore by definition of decompilation,
the two states decompile to the same term. The result follows by taking a′ = a.

Case ADD transition: (ADD; c, n2.n1.s) → (c, n.s) where the integer n is the sum of n1 and n2.
We have a = D(ADD; c, n2.n1.s) = D(c, b.s) where b is the expression n1 + n2. Since b → n, the
compatibility lemma therefore shows the existence of a′ such that a→ a′ and D(c, n.s) = a′. This
is the desired result.

Case SUB transition: similar to the previous case. 2

Lemma 3 (Initial state) The state (C(a), ε) decompiles to a.

Proof: We show by induction on a that the symbolic machine can perform transitions from
(C(a).k, S) to (k, a.S) for all codes k and symbolic stack S. (The proof is similar to that of
theorem 10 in lecture II.) The result follows by taking k = ε and S = ε. 2

Lemma 4 (Final state) If the machine stops on a state (c, s) that decompiles to the expression
a, then (c, s) is a final state (ε, n.ε) and a = n.

Proof: By case analysis on the code c. If c is empty, by definition of decompilation we must have
s = n.ε and a = n for some integer n. If c starts with a CONST(N) instruction, the machine can
perform a CONST transition and therefore is not stopped. If c starts with an ADD or SUB instruction,
the stack s must contain at least two elements, otherwise the symbolic machine would get stuck
and the decompilation of (c, s) would be undefined. Therefore, the concrete machine can perform
an ADD or SUB transition and is not stopped. 2

7

Exercise II.6 We show that for all n and a, if a⇒∞, there exists a reduction sequence of length
≥ n starting from a. The proof is by induction over n and sub-induction over a. By hypothesis
a⇒∞, there are three cases to consider:

Case a = b c and b ⇒ ∞. By induction hypothesis applied to n and b, we have a reduction
sequence b

∗→ b′ of length ≥ n. Therefore, a = b c
∗→ b′ c is a reduction sequence of length ≥ n.

Case a = b c and b ⇒ v and c ⇒ ∞. By theorem 3 of lecture I, b
∗→ v. By induction hypothesis

applied to n and c, we have a reduction sequence c
∗→ c′ of length ≥ n. Therefore, a = b c

∗→ v c
∗→

v c′ is a reduction sequence of length ≥ n.

Case a = b c and b ⇒ λx.d and c ⇒ v and d[x ← v] ⇒ ∞. By theorem 3 of lecture I, a
∗→ λx.d

and b
∗→ v. By induction hypothesis applied to n− 1 and d[x← v], we have a reduction sequence

d[x← v]
∗→ e of length ≥ n− 1. Therefore,

a = b c
∗→ (λx.d) c

∗→ (λx.d) v → d[x← v]
∗→ e

is a reduction sequence of length ≥ 1 + (n− 1) = n.

Exercise II.7 For question (1), we show that ∀a, En(a) ≤ En+1(a) by induction over n. The base
case n = 0 is obvious since E0(a) = ⊥. For the inductive case, we assume the result for n and
consider En+1(a) by case over a. The non-trivial case is a = b c. We know (induction hypothesis)
that En(b) ≤ En+1(b) and En(c) ≤ En+1(c).

If En(b) = ⊥ or En(c) = ⊥, then En+1(a) = ⊥ and the result is obvious.
Otherwise, En+1(b) = En(b) and En+1(c) = En(c), from which it follows that either En+2(a) =

err = En+1(a), or En+2(a) = En+1(d[x ← v′]) and En+1(a) = En(d[x ← v′]) for the same d and v′,
and the result follows by induction hypothesis.

We then conclude that En(a) ≤ Em(a) if n ≤ m by induction on the difference m − n and
transitivity of ≤.

Consider now the sequence (En(a))n∈N for a fixed a. Either ∀n, En(a) = ⊥, or ∃n, En(a) 6= ⊥.
In the first case, the sequence is constant and equal to ⊥, hence limn→∞ En(a) = ⊥. In the second
case, for all m ≥ n, Em(a) ≥ En(a) 6= ⊥, that is, Em(a) = En(a). The sequence is therefore constant
starting from rank n, hence limm→∞ Em(a) is defined and equal to En(a).

This limit corresponds to the behavior of the eval Caml function, in the following sense: if the
limit is a value v, eval a terminates and returns v; if the limit is err, eval a terminates on an
uncaught exception Error; and if the limit is ⊥, eval a loops.

For question (2), we show that a ⇒ v implies ∃n, En(a) = v by induction on the derivation of
a⇒ v. The cases a = N and a = λx.b are trivial: take n = 1. For the case a = b c, the induction
hypothesis gives us integers p, q, r such that

Ep(b) = λx.d Eq(c) = v′ Er(d[x← v′] = v

Taking n = 1 + max(p, q, r) and using the monotonicity of E , we have that En(b c) = v.
Conversely, we show that En(a) = v implies a ⇒ v by induction over n and case analysis over

a. Again, the cases a = N and a = λx.b are trivial: we must have v = a. For the case a = b c, the
fact that En+1(a) = v (and not err neither ⊥) implies that

En(b) = λx.d En(c) = v′ En(d[x← v′] = v

8

The result follows by induction hypothesis applied to these three computations, and an application
of the (app) rule.

For question (3), we show ∀a, a ⇒∞ implies En(a) = ⊥ by induction over n. The case n = 0
is trivial. Assuming this property for n, we consider the evaluation rule that concludes a ⇒ ∞.
For instance, if a = b c and b⇒∞, by induction hypothesis, En(b) = ⊥, from which it follows that
En+1(a) = ⊥. The proof is similar for the other two rules.

For the converse implication (∀n, En(a) = ⊥ implies a⇒∞), see the paper Coinductive big-step
semantics.

9

Part III: Program transformations

Exercise III.1 The translation rule for λ-abstraction needs to be changed:

[[λx.a]] = tuple(λc, x. let x1 = field1(c) in
. . .
let xn = fieldn(c) in
[[a]],

x1, . . . , xn)

so that the variables x1, . . . , xn are not just the free variables of λx.a, but all variables currently
in scope. To do this, the translation scheme should take the list of such variables as an additional
argument V :

[[x]]V = x

[[λx.a]]V = tuple(λc, x. let x1 = field1(c) in
. . .
let xn = fieldn(c) in
[[a]]x.V ,

x1, . . . , xn)

where V = x1 . . . xn

[[a b]]V = let c = [[a]]V in field0(c)(c, [[b]]V)

[[let x = a in b]]V = let x = [[a]]V in [[b]]x.V

Exercise III.2 For a two-argument function λx.λx′.a, the two-argument method apply2 will
be defined as return [[a]]. The one-argument method apply will build an intermediate closure
(corresponding to λx′.a) which, when applied, will call back to apply2.

Symmetrically, for a one-argument function λx.a, we define apply as return [[a]] and apply2

as calling apply on the first argument, then applying again the result to the second argument.
We encapsulate this construction in the following generic classes, from which we will inherit

later:

abstract class Closure {

abstract Object apply(Object arg);

Object apply2(Object arg1, Object arg2) {

return ((Closure)(apply(arg1))).apply(arg2);

}

}

abstract class Closure2 extends Closure {

Object apply(Object arg) {

return new PartialApplication(this, arg);

}

abstract Object apply2(Object arg1, Object arg2);

}

class PartialApplication extends Closure {

Closure2 fn; Object arg1;

10

PartialApplication(Closure2 fn, Object arg1) {

this.fn = fn; this.arg1 = arg1;

}

Object apply(Object arg2) {

return fn.apply2(arg1, arg2);

}

}

Now, the class generated for a two-argument function λx.λy.a of free variables x1, . . . , xn is

class Cλx.λy.a extends Closure2 {
Object x1; ...; Object xn;
Cλx.λy.a(Object x1, ..., Object xn) {

this.x1 = x1; ...; this.xn = xn;
}
Object apply2(Object x, Object y) { return [[a]]; }

}

The class generated for a one-argument function λx.a of free variables x1, . . . , xn is

class Cλx.λy.a extends Closure {
Object x1; ...; Object xn;
Cλx.a(Object x1, ..., Object xn) {

this.x1 = x1; ...; this.xn = xn;
}
Object apply(Object x) { return [[a]]; }

}

Finally, the translation of expressions receives one additional case for curried applications to two
arguments:

[[a b c]] = [[a]].apply2([[b]], [[c]])

Exercise III.3 Quite simply,

[[match a with x→ a | exception y → c]] = match [[a]] with V (x)→ [[b]] | E(y)→ [[c]]

Note that try a with x→ b can then be viewed as syntactic sugar for

match a with y → y | exception x→ b

Exercise III.4

N / s⇒ N / s λx.a / s⇒ λx.a / s

a / s⇒ λx.c / s1 b / s1 ⇒ v′ / s2 c[x← v′] / s2 ⇒ v / s′

a b / s⇒ v / s′

a / s⇒ v / s′

ref a / s⇒ ` / s′ + ` 7→ v

a / s⇒ ` / s′

!a / s⇒ s′(`) / s′

a / s⇒ ` / s1 b / s1 ⇒ v / s′

(a := b) / s⇒ () / s′ + ` 7→ v

11

Exercise III.5 After the assignment

fact := λn. if n = 0 then 1 else n * (!fact) (n-1)

the reference fact contains a function which, when applied to n 6= 0, will apply the current contents
of fact, that is, itself, to n − 1. Therefore, the function !fact will compute the factorial of its
argument.

More generally, a recursive function µf.λx.a can be encoded as

let f = ref (λx. Ω) in

f := (λx. a[f ←!f]);
!f

In an untyped setting, any expression Ω will do. In a typed language, Ω must have the same type
as the function body a. A simple solution is to define Ω as an infinite loop (of type ∀α.α) or as
raise of an exception (idem).

Programming exercise III.6 As suggested in the slides, we will use integers as unique identifiers
for store locations, and applicative finite maps indexed by integers to capture the current contents
of the store.

module IMap = Map.Make(struct type t = int let compare = Pervasives.compare end)

Assume given a type value for the values associated to integer locations by store contents. We
will see later how to define this type. Then, the type of stores is:

type store = { nextkey: int; contents: value IMap.t }

and the empty store is

let store_empty = { nextkey = 0; contents = IMap.empty }

A location designating a value of type ’a is a record of a unique integer (its key) and two functions
to mediate between types ’a and value:

type ’a location = {

key: int;

inj: ’a -> value;

proj: value -> ’a

}

Reading and writing operations:

let store_read (l: ’a location) (s: store) : ’a =

assert (l.key < s.nextkey);

l.proj (IMap.find l.key s.contents)

let store_write (l: ’a location) (newval: ’a) (s: store) : store =

assert (l.key < s.nextkey);

{ nextkey = s.nextkey;

contents = IMap.add l.key (l.inj newval) s.contents }

12

Creating fresh locations is more delicate, because we need to invent the correct inj and proj

morphism. This is tied to the actual definition of type value. To help forge intuitions, let’s start
by restricting ourselves to two types of stored values, int and string:

type value = Int of int | String of string

Allocating and initializing a location for an integer is, then,

let store_alloc_int (initval: int) (s: store) : int location * store =

let l =

{ key = s.nextkey;

inj = (function x -> Int x);

proj = (function Int x -> x | _ -> assert false) } in

(l, { nextkey = s.nextkey + 1;

contents = IMap.add l.key (Int initval) s.contents })

Likewise, we can allocate and initialize locations for strings by replacing int by string and Int

by String in the code above:

let store_alloc_string (initval: string) (s: store) : string location * store =

let l =

{ key = s.nextkey;

inj = (function x -> String x);

proj = (function String x -> x | _ -> assert false) } in

(l, { nextkey = s.nextkey + 1;

contents = IMap.add l.key (String initval) s.contents })

But in general we want stored values of arbitrary types, not just int and string! To achieve
this, we can use an extensible datatype for the type value. (Extensible datatypes were introduced
in OCaml version 4.02.) That is, a type that starts with zero constructors, and can be extended
dynamically with new constructors during program execution. The following declares the extensible
datatype of values:

type value = ..

Now, we can write a store_alloc function that works for any type. It extends the type value with
a new constructor V of the right type, then plays the same tricks as in store_alloc_int above,
using the new constructor V instead of the fixed constructor Int.

let store_alloc (type a) (initval: a) (s: store) : a location * store =

let module M = struct type value += V of a end in

let l =

{ key = s.nextkey;

inj = (function x -> M.V x);

proj = (function M.V x -> x | _ -> assert false) } in

(l, { nextkey = s.nextkey + 1;

contents = IMap.add l.key (M.V initval) s.contents })

13

Even though all constructors of type value are named V, they have distinct identities: a fresh
constructor, distinct from all previously allocated ones, is generated every time the let module

above is evaluated.
In OCaml prior to version 4.02, there are no user-defined extensible datatypes. However, the

type exn of exception values is a predefined extensible datatype. So, just take

type value = exn

let store_alloc (type a) (initval: a) (s: store) : a location * store =

let module M = struct exception V of a end in

...

Exercise III.7

[[a op b]] = λk. [[a]] (λva. [[b]] (λvb. k(va op vb)))

[[C(a1, . . . , an)]] = λk. [[a1]] (λv1. . . . [[an]] (λvn. k(C(v1, . . . , vn))))

[[match a with C(x1, . . . , xn)→ b | . . .]]
= λk. [[a]] (λv. match v with C(x1, . . . , xn)→ [[b]] k | . . .

Exercise III.8 We use a global reference to maintain a stack of continuations expecting exception
values.

let exn_handlers = ref ([]: exn cont list)

let push_handler k =

exn_handlers := k :: !exn_handlers

let pop_handler () =

match !exn_handlers with

| [] -> failwith "abort on uncaught exception"

| k :: rem -> exn_handlers := rem; k

At any time, the top of this stack is the continuation that should be invoked to raise an exception.

let raise exn =

throw (pop_handler ()) exn

Now, we should arrange that the continuation at the top of the exception stack always branches
one way or another to the with part of the nearest try. . . with. We encode try. . . with as a call
to a library function trywith:

[[raise a]] = raise a

[[try a with x→ b]] = trywith (λ .a) (λx.b)

The tricky part is the definition of the trywith function. In pseudo-code:

14

let trywith a b =

push_handler <a continuation that evaluates b of its
argument and returns from trywith>;

let res = a () in

pop_handler ();

res

This way, if a () evaluates without raising exceptions, we push a continuation that will never
be called, compute a (), pop the continuation and return the result of a (). If a () raises an
exception e, the continuation will be popped and invoked, causing b e to be evaluated and its value
returned as the result of the trywith.

The really tricky part is to capture the right continuation to push on the stack. The only way
is to pretend we are going to apply b to some argument, and do a callcc in this argument:

b (callcc (fun k -> push_handler k; ...))

However, we do not want to evaluate this application of b if the continuation k is not thrown. We
therefore use a second callcc/throw to jump over the application of b in the case where a ()

terminates normally:

callcc (fun k1 -> b (callcc (fun k -> push_handler k; ...; throw k1 ...)))

We can now fill the ..., obtaining:

let trywith a b =

callcc (fun k1 ->

b (callcc (fun k2 ->

push_handler k2;

let res = a () in

pop_handler ();

throw k1 res)))

Exercise III.9 Proceed by induction on a derivation of a⇒ v and case analysis on the last rule
used. The base cases a = N or a = λx.b are easy. For instance:

[[N]] k = (λk. k N) k → k N = k [[N]]v

For an inductive case, consider a = b c with b⇒ λx.d and c⇒ v′ and d[x← v′]⇒ v. We can build
the following reduction sequence:

15

[[a]] k = (λk. [[a]] (λva. [[b]] (λvb. va vb k))) k
↓ (βv reduction)

[[a]] (λva. [[b]] (λvb. va vb k))
↓ + (induction hypothesis on 1st premise)

(λva. [[b]] (λvb. va vb k)) [[λx.d]]v
↓ (βv reduction)

[[b]] (λvb. [[λx.d]]v vb k)
↓ + (induction hypothesis on 2nd premise)

(λvb. [[λx.d]]v vb k) [[v′]]v
↓ (βv reduction + definition of [[· · ·]]v)

(λx. [[d]]) [[v′]]v k
↓ (βv reduction + substitution lemma)

[[d[x← v′]]] k
↓ + (induction hypothesis on 3rd premise)
k [[v]]v

At the end of the proof, we used the substitution lemma [[a[x← v]]] = [[a]][x← [[v]]v], which is easy
to check for any value v by induction over a.

Exercise III.10 For the core constructs (variables, constants, abstractions, applications), the
double-barreled translation basically ignores / propagates unchanged the second, exceptional con-
tinuation:

[[N]] = λk1.λk2. k1 N

[[x]] = λk1.λk2. k1 x

[[λx.a]] = λk1.λk2. k1 (λx.[[a]])

[[a b]] = λk1.λk2. [[a]] (λva. [[b]] (λvb. va vb k1 k2) k2) k2

The raise a construct evaluates a and passes its value to the exception continuation k2. Any
exception arising during the evaluation of a should also go to k2. The normal continuation k1 is
ignored.

[[raise a]] = λk1.λk2. [[a]] k2 k2

For try . . . with, we evaluate the body with a new exceptional continuation that catches exceptions
arising out of it:

[[try a with x→ b]] = λk1.λk2. [[a]] k1 (λx. [[b]] k1 k2)

Exercise III.11 Local CPS-conversion gives:

let rec cps_map f l k =

match l with

| [] -> k []

| hd :: tl ->

let hd’ = f hd in cps_map f tl (fun l’ -> k (hd’ :: l’))

let map f l = cps_map f l (fun l -> l)

16

We see two continuation forms that need defunctionalization:

type ’a funval =

| A (* fun l -> l *)

| B of ’a funval * ’a (* fun l’ -> k (hd’ :: l’)

As in the lecture, the type ’a funval is isomorphic to ’a list, so we will use ’a list directly:

• the empty list [] encodes fun l -> l

• the cons list hd’ :: k encodes fun l’ -> k (hd’ :: l’)

With this representation, defunctionalization gives:

let rec defun_map f l k =

match l with

| [] -> apply k []

| hd :: tl ->

let hd’ = f hd in defun_map f tl (hd’ :: k)

and apply k l =

match k with

| [] -> []

| hd’ :: k’ -> apply k’ (hd’ :: l)

let map f l = defun_map f l []

We recognize apply to be rev_app (reverse & append), obtaining:

let rec rev_app x y =

match x with

| [] -> y

| x1 :: xs -> rev_app xs (x1 :: y)

let rec tail_map f l accu =

match l with

| [] -> rev_app accu []

| hd :: tl -> tail_map f tl (f hd :: accu)

let map f l = tail_map f l []

Exercise III.12 The general shape of call-by-name CPS translated terms is similar to that of call-
by-value CPS translated term: the translation of a expects a continuation and eventually applies
it to a’s value. Hence, if a : τ , then

[[a]] : ([[τ]]→ answer)→ answer

with [[τ]] = τ for base types, just like in call-by-value. The difference between call-by-value and
call-by-name is apparent for function types. In call-by-value, a function of type τ1 → τ2, after
CPS translation, expects an argument that is already evaluated and therefore has type [[τ1]]. In
call-by-name, the function expects an argument that is not evaluated yet and therefore is expecting
a continuation. The type of the argument is, therefore, ([[τ1]]→ answer)→ answer. Hence,

[[τ1 → τ2]] = (([[τ1]]→ answer)→ answer)→ ([[τ2]]→ answer)→ answer

17

A nicer presentation involves two type translations: [[τ]]u is the type for an unevaluated expression
of type τ , and [[τ]]v (which we noted [[τ]] before) is the type for an evaluated expression of type τ .
Then, we have:

[[τ]]u = ([[τ]]v → answer)→ answer

[[int]]v = int

[[τ1 → τ2]]v = [[τ1]]u → [[τ2]]u

18

Part IV: Monads

Exercise IV.1 The precise statement of the theorem we are going to prove is

Theorem 1 If a⇒ r in the natural semantics for exceptions, then [[a]] ≈ [[r]]r, where [[r]]r is defined
by

[[v]]r = ret [[v]]v [[raise v]]r = raise [[v]]v

The proof is by induction on a derivation of a ⇒ r and case analysis on the last rule used. The
cases where a is a core language construct that evaluates to a value v have already been proved in
the generic proof given in the slides.

Case (try b with x→ c)⇒ v because b⇒ v: by induction hypothesis, [[b]] ≈ ret [[v]]v. We have:

[[try a with x→ b]] = trywith [[a]] (λx.[[b]])

≈ trywith (ret [[v]]v) (λx.[[b]])

≈ ret [[v]]v

assuming that trywith satisfies hypotheses similar to those of bind, namely

5 trywith (ret v) (λx.b) ≈ ret v

6 trywith a (λx.b) ≈ trywith a′ (λx.b) if a ≈ a′

Case (try b with x → c) ⇒ r because b ⇒ raise v and c[x ← v] ⇒ r. By induction hypothesis,
[[b]] ≈ raise v′ and [[c[x← v]]] ≈ [[r]]r.

[[try b with x→ c]] = trywith [[b]] (λx.[[c]])

≈ trywith (raise [[v]]v) (λx.[[c]])

≈ [[c]][x← [[v]]v] = [[c[x← v]]]

≈ [[r]]r

with one additional hypothesis:

7 trywith (raise v) (λx.b) ≈ b[x← v]

Case b c⇒ raise v because b⇒ raise v. By induction hypothesis, [[b]] ≈ raise v′.

[[b c]] = bind [[b]] (λvb. . . .)

≈ bind (raise [[v]]v) (λvb. . . .)

≈ raise [[v]]v

using the hypothesis

8 bind (raise v) (λx.b) ≈ raise v

19

Case b c⇒ raise v because b⇒ v′ and c⇒ raise v.

[[b c]] = bind [[b]] (λvb. bind [[c]] (λvc . . .))

≈ bind (ret [[v′]]v) (λvb. bind [[c]] (λvc . . .))

≈ bind [[c]] (λvc . . .))

≈ bind (raise [[v]]v) (λvc . . .))

≈ raise [[v]]v

Other exception propagation rules are similar. It is easy to check hypotheses 5–8 by inspection of
the definitions of trywith and bind.

Exercise IV.2 Just like the Logging monad is a simpler, more restricted form of State monad,
the Diagnostics monad is a simpler, more restricted form of a State-and-Exception monad.

module Diag = struct

type log = string list

type ’a outcome = OK of ’a | Abort

type ’a mon = log -> ’a outcome * log

let ret (x: ’a) : ’a mon = fun l -> (OK x, l)

let bind (m: ’a mon) (f: ’a -> ’b mon): ’b mon =

fun l -> match m l with

| (OK x, l’) -> f x l’

| (Abort, l’) -> (Abort, l’)

type ’a result = ’a outcome * log

let run (m: ’a mon): ’a result =

match m [] with (x, l) -> (x, List.rev l)

let log msg : unit mon = fun l -> (OK (), msg :: l)

let abort : ’a mon = fun l -> (Abort, l)

end

Exercise IV.3 This is another simpler, more restricted form of the State monad. The current
state of the name generator is a pair (n,m) where 0 ≤ m < 26 designates a letter among a. . . z and
where n, if not zero, is the numerical suffix to add to the letter.

module NameSupply = struct

type state = int * int

type ’a mon = state -> ’a * state

let ret (x: ’a) : ’a mon = fun s -> (x, s)

let bind (m: ’a mon) (f: ’a -> ’b mon): ’b mon =

fun s -> match m s with (x, s’) -> f x s’

let run (m: ’a mon): ’a =

20

match m (0, 0) with (x, s) -> x

let gensym: string mon =

fun (n, m) ->

let c = Char.chr (Char.code ’a’ + n) in

let name =

if m = 0 then Printf.sprintf "%c" c else Printf.sprintf "%c%d" c m in

let next =

if n = 25 then (0, m+1) else (n+1, m) in

(name, next)

end

Exercise IV.4

module ContAndException = struct

type answer = int

type α mon = (α -> answer) -> (exn -> answer) -> answer

let return (x: α) : α mon = fun k1 k2 -> k1 x

let bind (x: α mon) (f: α -> ’b mon) : ’b mon =

fun k1 k2 -> x (fun vx -> f vx k1 k2) k2

let raise exn : α mon =

fun k1 k2 -> k2 exn

let trywith (x : α mon) (f: exn -> α mon) : α mon =

fun k1 k2 -> x k1 (fun e -> f e k1 k2)

type α cont = α -> answer

let callcc (f: α cont -> α mon) : α mon =

fun k1 k2 -> f k1 k1 k2

let throw (c: α cont) (x: α) : ’b mon =

fun k1 k2 -> c x

let run (c: answer mon) = c (fun x -> x) (fun _ -> failwith "uncaught exn")

end

Consider first the EC implementation using monad transformers. Expanding the type definitions,
we have

α EC.mon = (α outcome→ answer)→ answer

In other words, in the EC combination, there is only one continuation, but it receives as arguments
values of the α outcome type, that is, either V (v) for normal results or E(v) for exceptional results.
Given such a continuation k, we can define the two continuations k1, k2 appropriate for the double-
barreled approach as

k1 = λx. k (V (x)) k2 = λx. k (E(x))

Symmetrically, if we have two continuations k1, k2 of the double-barreled kind, we can reconstruct
a single continuation for the EC approach:

k = λx. match x with V (v)→ k1 v | E(e)→ k2 e

21

These two constructions outline an isomorphism between the terms produced by the double-barreled
transformation and the alternate transformation. This isomorphism is an instance of the more
general theory of type isomorphisms (see R. Di Cosmo’s book), which says that

α outcome→ β ≈ (α+ exn)→ β ≈ (α→ β)× (exn→ β)

and
α× β → γ ≈ α→ β → γ

are isomorphic types. Bottom line: modulo these isomorphisms, the ContAndException monad
above is equivalent to the combination EC = ExceptionTransf(Cont).

The CE = ContTransf(Exception) combination does not really work. Expanding the type
definitions again, we have

α CE.mon = (α→ answer outcome)→ answer outcome

The final result of the program is indeed an outcome type, indicating whether the program termi-
nates normally or on an uncaught exception. However, the continuations always receive a normal
value of type α as argument: they cannot be passed an exception value, and therefore cannot handle
an exception raised by a program fragment. This is apparent in the definition of raise using the
lift operation of the ContTransf transformer:

let raise_CE (x: exn) : ’a CE.mon = CE.lift (Exception.raise x)

Expanding the definitions, we get:

let raise_CE (x: exn) : ’a CE.mon = fun k -> E x

That is, raise x immediately aborts the program, without executing the continuation.
Perhaps surprisingly, we can still define a trywith operation:

let trywith_CE (m: ’a CE.mon) (f: exn -> ’a CE.mon) : ’a CE.mon =

fun k ->

m (fun v -> match k v with V v -> V v | E e -> f e k)

This is the only definition that passes the type-checker. However, its behavior is not what we
expect from an exception handler: the exceptions that are caught are not those raised by m (these
still abort the program), but those raised by the continuation of m. . . If the continuation k applied
to the value v of m raises an exception, f is called with this exception value and k as a continuation,
causing the continuation to be executed a second time. This kind of backtracking on an exception
is definitely not what we expect from a try...with construct, and it is doubtful that it has any
practical usefulness.

Exercise IV.5 Let’s consider lazy evaluation first. If we have a delayed function value of type
(α → β) lazy, and a delayed argument value of type α lazy, the canonical way to apply one to
another while remaining lazy, is

let <*> f x = lazy ((force f) (force x))

Expressing this computation in terms of the proj and cobind operation of the Lazy comonad:

let <*> f x = cobind (fun f -> (proj f) (proj x)) f

Exercise IV.6 The teacher is still working on this one.

22

