
Mechanized semantics
with applications to program proof and compiler verification

Xavier Leroy

INRIA Paris-Rocquencourt

Marktoberdorf summer school 2009

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 1 / 173

Formal semantics of programming languages

Provide a mathematically-precise answer to the question

What does this program do, exactly?

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 2 / 173

What does this program do, exactly?

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 3 / 173

What does this program do, exactly?

#include <stdio.h>
int l;int main(int o,char **O,
int I){char c,*D=O[1];if(o>0){
for(l=0;D[l];D[l
++]-=10){D [l++]-=120;D[l]-=
110;while (!main(0,O,l))D[l]
+= 20; putchar((D[l]+1032)
/20) ;}putchar(10);}else{
c=o+ (D[I]+82)%10-(I>l/2)*
(D[I-l+I]+72)/10-9;D[I]+=I<0?0
:!(o=main(c/10,O,I-1))*((c+999
)%10-(D[I]+92)%10);}return o;}

(Raymond Cheong, 2001)

(It computes arbitrary-precision square roots.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 3 / 173

What about this one?

#define crBegin static int state=0; switch(state) { case 0:

#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)

#define crFinish }

int decompressor(void) {

static int c, len;

crBegin;

while (1) {

c = getchar();

if (c == EOF) break;

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--) crReturn(c);

} else crReturn(c);

}

crReturn(EOF);

crFinish;

}

(Simon Tatham,

author of PuTTY)

(It’s a co-routined version of a
decompressor for run-length
encoding.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 4 / 173

What about this one?

#define crBegin static int state=0; switch(state) { case 0:

#define crReturn(x) do { state=__LINE__; return x; \

case __LINE__:; } while (0)

#define crFinish }

int decompressor(void) {

static int c, len;

crBegin;

while (1) {

c = getchar();

if (c == EOF) break;

if (c == 0xFF) {

len = getchar();

c = getchar();

while (len--) crReturn(c);

} else crReturn(c);

}

crReturn(EOF);

crFinish;

}

(Simon Tatham,

author of PuTTY)

(It’s a co-routined version of a
decompressor for run-length
encoding.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 4 / 173

Why indulge in formal semantics?

An intellectually challenging issue.

When English prose is not enough.
(e.g. language standardization documents.)

A prerequisite to formal program verification.
(Program proof, model checking, static analysis, etc.)

A prerequisite to building reliable “meta-programs”
(Programs that operate over programs: compilers, code generators,
program verifiers, type-checkers, . . .)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 5 / 173

Is this program transformation correct?

struct list { int head; struct list * tail; };

struct list * foo(struct list * p)
{
return (p->tail = NULL); p->tail = NULL;

return p->tail;
}

No, not if p == &(p->tail) (circular list).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 6 / 173

Is this program transformation correct?

struct list { int head; struct list * tail; };

struct list * foo(struct list * p)
{
return (p->tail = NULL); p->tail = NULL;

return p->tail;
}

No, not if p == &(p->tail) (circular list).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 6 / 173

What about this one?

double dotproduct(int n, double * a, double * b)
{

double dp = 0.0;
int i;
for (i = 0; i < n; i++) dp += a[i] * b[i];
return dp;

}

Compiled for the Alpha processor with all optimizations and manually
decompiled back to C. . .

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 7 / 173

double dotproduct(int n, double * a, double * b)

{

double dp, a0, a1, a2, a3, b0, b1, b2, b3;

double s0, s1, s2, s3, t0, t1, t2, t3;

int i, k;

dp = 0.0;

if (n <= 0) goto L5;

s0 = s1 = s2 = s3 = 0.0;

i = 0; k = n - 3;

if (k <= 0 || k > n) goto L19;

i = 4; if (k <= i) goto L14;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

i = 8; if (k <= i) goto L16;

L17: a2 = a[2]; b2 = b[2]; t0 = a0 * b0;

a3 = a[3]; b3 = b[3]; t1 = a1 * b1;

a0 = a[4]; b0 = b[4]; t2 = a2 * b2; t3 = a3 * b3;

a1 = a[5]; b1 = b[5];

s0 += t0; s1 += t1; s2 += t2; s3 += t3;

a += 4; i += 4; b += 4;

prefetch(a + 20); prefetch(b + 20);

if (i < k) goto L17;

L16: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1];

L18: s0 += a0 * b0; s1 += a1 * b1; s2 += a[2] * b[2]; s3 += a[3] * b[3];

a += 4; b += 4;

dp = s0 + s1 + s2 + s3;

if (i >= n) goto L5;

L19: dp += a[0] * b[0];

i += 1; a += 1; b += 1;

if (i < n) goto L19;

L5: return dp;

L14: a0 = a[0]; b0 = b[0]; a1 = a[1]; b1 = b[1]; goto L18;

}

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 8 / 173

Proof assistants

Implementations of well-defined mathematical logics.

Provide a specification language to write definitions and state
theorems.

Provide ways to build proofs in interaction with the user.
(Not fully automated proving.)

Check the proofs for soundness and completeness.

Some mature proof assistants:

ACL2 HOL PVS

Agda Isabelle Twelf

Coq Mizar

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 9 / 173

Using proof assistants to mechanize semantics

Formal semantics for realistic programming languages are large (but
shallow) formal systems.

Computers are better than humans at checking large but shallow proofs.

The proofs of the remaining 18 cases are similar and make
extensive use of the hypothesis that [. . .]

The proof was mechanically checked by the XXX proof
assistant. This development is publically available for review at
http://...

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 10 / 173

This lecture

Using the Coq proof assistant, illustrate how to mechanize formal
semantics and some of the uses for these semantics.

Main objective: motivate students to try and mechanize some of their own
work.

Side objective: familiarize students with the Coq specification language.

Not an objective: teaching how to conduct proofs in Coq.
(See Coq in a Hurry and Bertot & Casteran’s book.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 11 / 173

Lecture material

http://gallium.inria.fr/~xleroy/courses/Marktoberdorf-2009/

A Coq development.

The handout: summary of results in ordinary mathematical notation
(+ references and further reading)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 12 / 173

http://gallium.inria.fr/~xleroy/courses/Marktoberdorf-2009/

Contents

Using the IMP toy language as an example, we will review and show how
to mechanize:

1 Operational semantics and a bit of denotational semantics.

2 Axiomatic semantics, with applications to program proof.

3 Compilation to virtual machine code and its correctness proof.

4 One optimizing program transformation and its correctness proof.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 13 / 173

Part I

Operational and denotational semantics

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 14 / 173

Operational and denotational semantics

1 Warm-up: expressions and their denotational semantics

2 The IMP language and its reduction semantics

3 Natural semantics

4 Definitional interpreters

5 From definitional interpreters to denotational semantics

6 Summary

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 15 / 173

Warm-up: symbolic expressions

A language of expressions comprising

variables x , y , . . .

integer constants 0, 1, −5, . . . , n

e1 + e2 and e1 − e2

where e1, e2 are themselves expressions.

Objective: mechanize the syntax and semantics of expressions.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 16 / 173

Syntax of expressions

Modeled as an inductive type.

Definition ident := nat.

Inductive expr : Type :=
| Evar: ident -> expr
| Econst: Z -> expr
| Eadd: expr -> expr -> expr
| Esub: expr -> expr -> expr.

Evar, Econst, etc. are functions that construct terms of type expr.

All terms of type expr are finitely generated by these 4 functions
→ enables case analysis and induction.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 17 / 173

Denotational semantics of expressions

Define [[e]] s as the denotation of expression e (the integer it evaluates to)
in state s (a mapping from variable names to integers).

In ordinary mathematics, the denotational semantics is presented as a set
of equations:

[[x]] s = s(x)

[[n]] s = n

[[e1 + e2]] s = [[e1]] s + [[e2]] s

[[e1 − e2]] s = [[e1]] s − [[e2]] s

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 18 / 173

Mechanizing the denotational semantics

In Coq, the denotational semantics is presented as a recursive function
(≈ a definitional interpreter)

Definition state := ident -> Z.

Fixpoint eval_expr (s: state) (e: expr) {struct e} : Z :=
match e with
| Evar x => s x
| Econst n => n
| Eadd e1 e2 => eval_expr s e1 + eval_expr s e2
| Esub e1 e2 => eval_expr s e1 - eval_expr s e2
end.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 19 / 173

Using the denotational semantics (1/3)

As an interpreter, to evaluate expressions.

Definition initial_state: state := fun (x: ident) => 0.

Definition update (s: state) (x: ident) (n: Z) : state :=
fun y => if eq_ident x y then n else s y.

Eval compute in (
let x : ident := O in
let s : state := update initial_state x 12 in
eval_expr s (Eadd (Evar x) (Econst 1))).

Coq prints = 13 : Z.

Can also generate Caml code automatically (Coq’s extraction mechanism).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 20 / 173

Using the denotational semantics (2/3)

To reason symbolically over expressions.

Remark expr_add_pos:
forall s x,
s x >= 0 -> eval_expr s (Eadd (Evar x) (Econst 1)) > 0.

Proof.
simpl.
(* goal becomes: forall s x, s x >= 0 -> s x + 1 > 0 *)

intros. omega.
Qed.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 21 / 173

Using the denotational semantics (3/3)

To prove “meta” properties of the semantics. For example: the denotation
of an expression is insensitive to values of variables not mentioned in the
expression.

Lemma eval_expr_domain:
forall s1 s2 e,
(forall x, is_free x e -> s1 x = s2 x) ->
eval_expr s1 e = eval_expr s2 e.

where the predicate is_free is defined by

Fixpoint is_free (x: ident) (e: expr) {struct e} : Prop :=
match e with
| Evar y => x = y
| Econst n => False
| Eadd e1 e2 => is_free x e1 \/ is_free x e2
| Esub e1 e2 => is_free x e1 \/ is_free x e2
end.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 22 / 173

Variant 1: interpreting arithmetic differently

Example: signed, modulo 232 arithmetic (as in Java).

Fixpoint eval_expr (s: state) (e: expr) {struct e} : Z :=
match e with
| Evar x => s x
| Econst n => n
| Eadd e1 e2 => normalize(eval_expr s e1 + eval_expr s e2)
| Esub e1 e2 => normalize(eval_expr s e1 - eval_expr s e2)
end.

where normalize n is n reduced modulo 232 to the interval [−231, 231).

Definition normalize (x : Z) : Z :=
let y := x mod 4294967296 in
if Z_lt_dec y 2147483648 then y else y - 4294967296.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 23 / 173

Variant 2: accounting for undefined expressions

In some languages, the value of an expression can be undefined:

if it mentions an undefined variable;

in case of arithmetic operation overflows (ANSI C);

in case of division by zero;

etc.

Recommended approach: use option types, with None meaning
“undefined” and Some n meaning “defined and having value n”.

Inductive option (A: Type): A -> option A :=
| None: option A
| Some: A -> option A.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 24 / 173

Variant 2: accounting for undefined expressions

Definition state := ident -> option Z.

Fixpoint eval_expr (s: state) (e: expr) {struct e} : option Z :=
match e with
| Evar x => s x
| Econst n => Some n
| Eadd e1 e2 =>

match eval_expr s e1, eval_expr s e2 with
| Some n1, Some n2 => Some (n1 + n2)
| _, _ => None
end

| Esub e1 e2 =>
match eval_expr s e1, eval_expr s e2 with
| Some n1, Some n2 => Some (n1 - n2)
| _, _ => None
end

end.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 25 / 173

Summary

The “denotational semantics as a Coq function” is natural and
convenient. . .

. . . but limited by a fundamental aspect of Coq:
all Coq functions must be total (= terminating)

either because they are structurally recursive
(recursive calls on a strict sub-term of the argument);

or by Noetherian recursion (not treated here).

→ Cannot use this approach to give semantics to languages featuring
general loops or general recursion (e.g. the λ-calculus).

→ Use relational presentations “predicate state term result”
instead of functional presentations “result = function state term”.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 26 / 173

Operational and denotational semantics

1 Warm-up: expressions and their denotational semantics

2 The IMP language and its reduction semantics

3 Natural semantics

4 Definitional interpreters

5 From definitional interpreters to denotational semantics

6 Summary

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 27 / 173

The IMP language

A prototypical imperative language with structured control.

Expressions:
e ::= x | n | e1 + e2 | e1 − e2

Boolean expressions (conditions):
b ::= e1 = e2 | e1 < e2

Commands (statements):
c ::= skip (do nothing)
| x := e (assignment)
| c1; c2 (sequence)
| if b then c1 else c2 (conditional)
| while b do c done (loop)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 28 / 173

Abstract syntax

Inductive expr : Type :=
| Evar: ident -> expr
| Econst: Z -> expr
| Eadd: expr -> expr -> expr
| Esub: expr -> expr -> expr.

Inductive bool_expr : Type :=
| Bequal: expr -> expr -> bool_expr
| Bless: expr -> expr -> bool_expr.

Inductive cmd : Type :=
| Cskip: cmd
| Cassign: ident -> expr -> cmd
| Cseq: cmd -> cmd -> cmd
| Cifthenelse: bool_expr -> cmd -> cmd -> cmd
| Cwhile: bool_expr -> cmd -> cmd.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 29 / 173

Reduction semantics

Also called “structured operational semantics” (Plotkin) or “small-step
semantics”.

Like the λ-calculus: view computations as sequences of reductions

M
β→ M1

β→ M2
β→ . . .

Each reduction M → M ′ represents an elementary computation.
M ′ represents the residual computations that remain to be done later.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 30 / 173

Reduction semantics for IMP

Reductions are defined on (command, state) pairs
(to keep track of changes in the state during assignments).

Reduction rule for assignments:

(x := e, s)→ (skip, update s x n) if [[e]] s = n

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 31 / 173

Reduction semantics for IMP

Reduction rules for sequences:

((skip; c), s) → (c , s)

((c1; c2), s) → ((c ′1; c2), s ′) if (c1, s)→ (c ′1, s
′)

Example

((x := x + 1; x := x − 2), s) → ((skip; x := x − 2), s ′)

→ (x := x − 2), s ′)

→ (skip, s ′′)

where s ′ = update s x (s(x) + 1) and s ′′ = update s ′ x (s ′(x)− 2).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 32 / 173

Reduction semantics for IMP

Reduction rules for conditionals and loops:

(if b then c1 else c2, s) → (c1, s) if [[b]] s = true

(if b then c1 else c2, s) → (c2, s) if [[b]] s = false

(while b do c done, s) → (skip, s) if [[b]] s = false

(while b do c done, s) → ((c ; while b do c done), s)

if [[s]] b = true

with

[[e1 = e2]] s =

{
true if [[e1]] s = [[e2]] s;

false if [[e1]] s 6= [[e2]] s

and likewise for e1 < e2.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 33 / 173

Reduction semantics as inference rules

(x := e, s)→ (skip, s[x ← [[e]] s])
(c1, s)→ (c ′1, s

′)

((c1; c2), s)→ ((c ′1; c2), s ′)

((skip; c), s)→ (c , s)
[[b]] s = true

((if b then c1 else c2), s)→ (c1, s)

[[b]] s = false

((if b then c1 else c2), s)→ (c2, s)

[[b]] s = true

((while b do c done), s)→ ((c ; while b do c done), s)

[[b]] s = false

((while b do c done), s)→ (skip, s)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 34 / 173

Expressing inference rules in Coq

Step 1: write each rule as a proper logical formula

(x := e, s)→ (skip, s[x ← [[e]] s])
(c1, s)→ (c ′1, s)

((c1; c2), s)→ ((c ′1; c2), s ′)

forall x e s,
red (Cassign x e, s) (Cskip, update s x (eval_expr s e))

forall c1 c2 s c1’ s’,
red (c1, s) (c1’, s’) ->
red (Cseq c1 c2, s) (Cseq c1’ c2, s’)

Step 2: give a name to each rule and wrap them in an inductive predicate
definition.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 35 / 173

Inductive red: cmd * state -> cmd * state -> Prop :=
| red_assign: forall x e s,

red (Cassign x e, s) (Cskip, update s x (eval_expr s e))
| red_seq_left: forall c1 c2 s c1’ s’,

red (c1, s) (c1’, s’) ->
red (Cseq c1 c2, s) (Cseq c1’ c2, s’)

| red_seq_skip: forall c s,
red (Cseq Cskip c, s) (c, s)

| red_if_true: forall s b c1 c2,
eval_bool_expr s b = true ->
red (Cifthenelse b c1 c2, s) (c1, s)

| red_if_false: forall s b c1 c2,
eval_bool_expr s b = false ->
red (Cifthenelse b c1 c2, s) (c2, s)

| red_while_true: forall s b c,
eval_bool_expr s b = true ->
red (Cwhile b c, s) (Cseq c (Cwhile b c), s)

| red_while_false: forall b c s,
eval_bool_expr s b = false ->
red (Cwhile b c, s) (Cskip, s).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 36 / 173

Using inductive definitions

Each case of the definition is a theorem that lets you conclude
red (c, s) (c ′, s ′) appropriately.

Moreover, the proposition red (c , s) (c ′, s ′) holds only if it was derived by
applying these theorems a finite number of times (smallest fixpoint).

→ Reasoning principles: by case analysis on the last rule used;
by induction on a derivation.

Example
Lemma red_deterministic:
forall cs cs1, red cs cs1 -> forall cs2, red cs cs2 -> cs1 = cs2.

Proved by induction on a derivation of red cs cs1 and a case analysis on
the last rule used to prove red cs cs2.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 37 / 173

Sequences of reductions

The behavior of a command c in an initial state s is obtained by forming
sequences of reductions starting at c , s:

Termination with final state s ′ (c , s ⇓ s ′):
finite sequence of reductions to skip.

(c , s)→ · · · → (skip, s ′)

Divergence (c, s ⇑): infinite sequence of reductions.

∀(c ′, s ′), (c , s)→ · · · → (c ′, s ′)⇒ ∃c ′′, s ′′, (c ′, s ′)→ (c ′′, s ′′)

Going wrong (c , s ⇓ wrong): finite sequence of reductions to an
irreducible state that is not skip.

(c, s)→ · · · → (c ′, s ′) 6→ with c 6= skip

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 38 / 173

Sequences of reductions

The Coq presentation uses a generic library of closure operators over
relations R : A→ A→ Prop:

star R : A→ A→ Prop (reflexive transitive closure)

infseq R : A→ Prop (infinite sequences)

irred R : A→ Prop (no reduction is possible)

Definition terminates (c: cmd) (s s’: state) : Prop :=
star red (c, s) (Cskip, s’).

Definition diverges (c: cmd) (s: state) : Prop :=
infseq red (c, s).

Definition goes_wrong (c: cmd) (s: state) : Prop :=
exists c’, exists s’,
star red (c, s) (c’, s’) /\ c’ <> Cskip /\ irred red (c’, s’).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 39 / 173

Operational and denotational semantics

1 Warm-up: expressions and their denotational semantics

2 The IMP language and its reduction semantics

3 Natural semantics

4 Definitional interpreters

5 From definitional interpreters to denotational semantics

6 Summary

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 40 / 173

Natural semantics

Also called “big-step semantics”.

An alternate presentation of operational semantics, closer to an interpreter.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 41 / 173

Natural semantics: Intuitions

Consider a terminating reduction sequence for c ; c ′:

((c ; c ′), s)→ ((c1; c ′), s1)→ · · · → ((skip; c ′), s2)

→ (c ′, s2)→ · · · → (skip, s3)

It contains a terminating reduction sequence for c :

(c, s)→ (c1, s1)→ · · · → (skip, s2)

followed by another for c ′.

Idea: write inference rules that follow this structure and define a predicate
c , s ⇒ s ′, meaning “in initial state s, the command c terminates with final
state s ′ ”.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 42 / 173

Rules for natural semantics (terminating case)

skip, s⇒ s x := e, s ⇒ s[x ← [[e]] s]

c1, s ⇒ s1 c2, s1 ⇒ s2

c1; c2, s ⇒ s2

c1, s ⇒ s ′ if [[b]] s = true
c2, s ⇒ s ′ if [[b]] s = false

if b then c1 else c2, s ⇒ s ′

[[b]] s = false

while b do c done, s ⇒ s

[[b]] s = true c , s ⇒ s1 while b do c done, s1 ⇒ s2

while b do c done, s ⇒ s2

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 43 / 173

Their Coq transcription

Inductive exec: state -> cmd -> state -> Prop :=
| exec_skip: forall s,

exec s Cskip s
| exec_assign: forall s x e,

exec s (Cassign x e) (update s x (eval_expr s e))
| exec_seq: forall s c1 c2 s1 s2,

exec s c1 s1 -> exec s1 c2 s2 ->
exec s (Cseq c1 c2) s2

| exec_if: forall s be c1 c2 s’,
exec s (if eval_bool_expr s be then c1 else c2) s’ ->
exec s (Cifthenelse be c1 c2) s’

| exec_while_loop: forall s be c s1 s2,
eval_bool_expr s be = true ->
exec s c s1 -> exec s1 (Cwhile be c) s2 ->
exec s (Cwhile be c) s2

| exec_while_stop: forall s be c,
eval_bool_expr s be = false ->
exec s (Cwhile be c) s.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 44 / 173

Equivalence between natural and reduction semantics

Whenever we have two different semantics for the same language, try to
prove that they are equivalent:

Both semantics predict the same “terminates / diverges / goes
wrong” behaviors for any given program.

Strengthens the confidence we have in both semantics.

Justifies using whichever semantics is more convenient to prove a
given property.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 45 / 173

From natural to reduction semantics

Theorem

If c , s ⇒ s ′, then (c , s)
∗→ (skip, s ′).

Proof: by induction on a derivation of c , s ⇒ s ′ and case analysis on the
last rule used. A representative case:

Hypothesis: c1; c2, s ⇒ s ′.

Inversion: c1, s ⇒ s1 and c2, s1 ⇒ s ′ for some intermediate state s1.

Induction hypothesis: (c1, s)
∗→ (skip, s1) and (c2, s1)

∗→ (skip, s ′).

Context lemma (separate induction): ((c1; c2), s)
∗→ ((skip; c2), s1)

Assembling the pieces together, using the transitivity of
∗→:

((c1; c2), s)
∗→ ((skip; c2), s1)→ (c2, s1)

∗→ (skip, s ′)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 46 / 173

From reduction to natural semantics

Theorem

If (c, s)
∗→ (skip, s ′) then c , s ⇒ s ′.

Lemma

If (c, s)→ (c ′, s ′) and c ′, s ′ ⇒ s ′′, then c, s ⇒ s ′′.

(c1, s1)→ · · · (ci , si)→ (ci+1, si+1)→ · · · (skip, sn)

(c1, s1)→ · · · (ci , si)→ (ci+1, si+1)→ · · · (skip, sn)⇒ sn
...

(c1, s1)→ · · · (ci , si)→ (ci+1, si+1)⇒ sn

(c1, s1)→ · · · (ci , si)⇒ sn
...

c1, s1 ⇒ sn

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 47 / 173

Natural semantics for divergence

Our natural semantics correctly characterizes programs that terminate
normally. What about the other two possible behaviors?

Going wrong: can also give a set of natural-style rules characterizing
this behavior, but not very interesting.

Divergence: can also give a set of natural-style rules characterizing
this behavior, but need to interpret them coinductively.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 48 / 173

Natural semantics for divergence: Intuitions

Consider an infinite reduction sequence for c ; c ′. It must be of one of the
following two forms:

((c ; c ′), s)
∗→ ((ci ; c ′), si)→ · · ·

((c ; c ′), s)
∗→ ((skip; c ′), si)→ (c ′, si)

∗→ (c ′j , sj)→ · · ·

I.e. either c diverges or it terminates normally and c ′ diverges.

Idea: write inference rules that follow this structure and define a predicate
c , s ⇒∞, meaning “in initial state s, the command c diverges”.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 49 / 173

Natural semantics for divergence: Rules

c1, s ⇒∞

c1; c2, s ⇒∞

c1, s ⇒ s1 c2, s1 ⇒∞

c1; c2, s ⇒∞

c1, s ⇒∞ if [[b]] s = true
c2, s ⇒∞ if [[b]] s = false

if b then c1 else c2, s ⇒∞

[[b]] s = true c , s ⇒∞

while b do c done, s ⇒∞

[[b]] s = true c, s ⇒ s1 while b do c done, s1 ⇒∞

while b do c done, s ⇒∞

Problem: interpreted normally as an inductive predicate, these rules define
a predicate c, s ⇒∞ that is always false! (no axioms. . .)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 50 / 173

Induction vs. coinduction in a nutshell

A set of axioms and inference rules can be interpreted in two ways:

Inductive interpretation:

In set theory: the least defined predicate that satisfies the axioms and
rules (smallest fixpoint).

In proof theory: conclusions of finite derivation trees.

Coinductive interpretation:

In set theory: the most defined predicate that satisfies the axioms and
rules (biggest fixpoint).

In proof theory: conclusions of finite or infinite derivation trees.

(See section 2 of Coinductive big-step semantics by H. Grall and X. Leroy.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 51 / 173

Example of inductive and coinductive interpretations

Consider the following inference rules for the predicate even(n)

even(0)
even(n)

even(S(S(n)))

Assume that n ranges over N ∪ {∞}, with S(∞) =∞.

With the inductive interpretation of the rules, the even predicate holds on
the following numbers: 0, 2, 4, 6, 8, . . . But even(∞) does not hold.

With the coinductive interpretation, even holds on {2n | n ∈ N}, and also
on ∞. This is because we have an infinite derivation tree T that
concludes even(∞):

T =
T

even(∞)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 52 / 173

Coinductive predicates in Coq

CoInductive execinf: state -> cmd -> Prop :=
| execinf_seq_left: forall s c1 c2,

execinf s c1 ->
execinf s (Cseq c1 c2)

| execinf_seq_right: forall s c1 c2 s1,
exec s c1 s1 -> execinf s1 c2 ->
execinf s (Cseq c1 c2)

| execinf_if: forall s b c1 c2,
execinf s (if eval_bool_expr s b then c1 else c2) ->
execinf s (Cifthenelse b c1 c2)

| execinf_while_body: forall s b c,
eval_bool_expr s b = true ->
execinf s c ->
execinf s (Cwhile b c)

| execinf_while_loop: forall s b c s1,
eval_bool_expr s b = true ->
exec s c s1 -> execinf s1 (Cwhile b c) ->
execinf s (Cwhile b c).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 53 / 173

Example of divergence

The coinductive interpretation of the rules for c , s ⇒∞ captures classic
examples of divergence.

Consider c = while i < 0 do i := i − 1 done
and the states sn = [x 7→ −n].

[[i < 0]] s1 = true
i := i − 1, s1 ⇒ s2

[[i < 0]] s2 = true

i := i − 1, s2 ⇒ s3

[[i < 0]] s3 = true

i := i − 1, s3 ⇒ s4

[[i < 0]] s4 = true
i := i − 1, s4 ⇒ s5

.

.

.

.

.

.

c, s4 ⇒ ∞

c, s3 ⇒∞

c, s2 ⇒∞

c , s1 ⇒∞

Does the c , s ⇒∞ coinductive predicate capture the correct notion of
divergence?

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 54 / 173

From natural semantics to reduction semantics

Lemma

If c , s ⇒∞, there exists c ′ and s ′ such that (c, s)→ (c ′, s ′) and
c ′, s ′ ⇒∞.

{(c , s) | c , s ⇒∞}
• •

•

Theorem

If c , s ⇒∞, then (c , s) ⇑ .

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 55 / 173

From reduction semantics to natural semantics

Theorem

If (c, s) ⇑ , then c, s ⇒∞.

The proof uses two inversion lemmas:

If ((c1, c2), s) ⇑ , either (c1, s) ⇑ or there exists s ′ such that

(c1, s)
∗→ (skip, s ′) and (c2, s

′) ⇑ .

If (while b do c done, s) ⇑ , then [[b]] s = true and

either (c , s) ⇑ or there exists s ′ such that (c, s)
∗→ (skip, s ′) and

(while b do c done, s ′) ⇑

Note that these lemmas cannot be proved in Coq’s constructive logic and
require the excluded middle axiom (∀P, P ∨ ¬P) from classical logic.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 56 / 173

Constructive logic in a nutshell

In Coq’s constructive logic, a proof is a terminating functional program:

A proof of A→ B ≈
a total function from proofs of A to proofs of B.

A proof of A ∧ B ≈ a pair of proofs, one for A and another for B.

A proof of A ∨ B ≈ a decision procedure that decides which of A
and B holds and returns either a proof of A or a proof of B.

A proposition such as (c , s) ⇑ ∨ ∃c ′, ∃s ′, (c , s)
∗→ (c ′, s ′) ∧ (c ′, s ′) 6→

cannot be proved constructively. (A constructive proof would solve the
halting problem. The natural proof uses the excluded middle axiom, which
is not constructive.)

Excluded middle or the axiom of choice can however be added to Coq as
axioms without breaking consistency.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 57 / 173

Operational and denotational semantics

1 Warm-up: expressions and their denotational semantics

2 The IMP language and its reduction semantics

3 Natural semantics

4 Definitional interpreters

5 From definitional interpreters to denotational semantics

6 Summary

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 58 / 173

Definitional interpreters

We cannot write a Coq function cmd→ state→ state that would
execute a command and return its final state whenever the command
terminates: this function would not be total.

We can, however, define a Coq function

nat→ cmd→ state→ (Bot | Res(state))

that takes as extra argument a natural number used to bound the amount
of computation performed.

Res(s) is returned if, within that bound, the execution of the command
terminates with final state s.

Bot is returned if the computation “runs out of fuel”.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 59 / 173

An IMP definitional interpreter in Coq

Inductive result: Type := Bot: result | Res: state -> result.

Definition bind (r: result) (f: state -> result) : result :=

match r with Res s => f s | Bot => Bot end.

Fixpoint interp (n: nat) (c: cmd) (s: state) {struct n} : result :=

match n with

| O => Bot

| S n’ =>

match c with

| Cskip => Res s

| Cassign x e => Res (update s x (eval_expr s e))

| Cseq c1 c2 =>

bind (interp n’ c1 s) (fun s1 => interp n’ c2 s1)

| Cifthenelse b c1 c2 =>

interp n’ (if eval_bool_expr s b then c1 else c2) s

| Cwhile b c1 =>

if eval_bool_expr s b

then bind (interp n’ c1 s) (fun s1 => interp n’ (Cwhile b c1) s1)

else Res s

end

end.X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 60 / 173

Monotonicity property

Giving more fuel to the interpreter can only make the results more precise.

Order results r by r ≤ r and Bot ≤ r .

Lemma

If n ≤ m, then interp n c s ≤ interp m c s.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 61 / 173

Connections with natural semantics

Lemma

If interp n c s = Res(s ′), then c, s ⇒ s ′.

Lemma

If c , s ⇒ s ′, there exists an n such that interp n c s = Res(s ′).

Lemma

If c , s ⇒∞, then interp n c s = Bot for all n.

reduction
semantics

natural
semantics

definitional
interpreter

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 62 / 173

Operational and denotational semantics

1 Warm-up: expressions and their denotational semantics

2 The IMP language and its reduction semantics

3 Natural semantics

4 Definitional interpreters

5 From definitional interpreters to denotational semantics

6 Summary

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 63 / 173

From definitional interpreter to denotational semantics

A simple form of denotational semantics can be obtained by “letting n
goes to infinity” in the definitional interpreter.

For a terminating command:

nBot

Res(s ′)

interp n c s

For a diverging command:

nBot

Res(s ′)

interp n c s

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 64 / 173

A denotational semantics

Lemma

For every c, there exists a function [[c]] from states to evaluation results
such that ∀s, ∃m, ∀n ≥ m, interp n c s = [[c]] s.

(The proof uses excluded middle and axiom of description, but no domain
theory.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 65 / 173

The equations of denotational semantics

The denotation function [[·]] satisfies the equations of denotational
semantics:

[[skip]] s = bsc
[[x := e]] s = bs[x ← [[e]] s]c
[[c1; c2]] s = [[c1]] s B (λs ′. [[c2]] s ′)

[[if b then c1 else c2]] s = [[c1]] s if [[b]] s = true

[[if b then c1 else c2]] s = [[c2]] s if [[b]] s = false

[[while b do c done]] s = bsc if [[b]] s = false

[[while b do c done]] s = [[c]] s B (λs ′. [[while b do c done]] s ′)

if [[b]] s = true

Moreover, [[while b do c done]] is the smallest function from states to
results that satisfies the last two equations.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 66 / 173

Relating denotational and natural semantics

Theorem

c , s ⇒ s ′ if and only if [[c]] s = bs ′c.

Theorem

c , s ⇒∞ if and only if [[c]] s = ⊥.

reduction
semantics

natural
semantics

definitional
interpreter

denotational
semantics

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 67 / 173

Operational and denotational semantics

1 Warm-up: expressions and their denotational semantics

2 The IMP language and its reduction semantics

3 Natural semantics

4 Definitional interpreters

5 From definitional interpreters to denotational semantics

6 Summary

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 68 / 173

Summary

Most forms of operational semantics can be mechanized easily and
effectively in modern proof assistants:

Relational presentations: reduction semantics, natural semantics.

Functional presentations: definitional interpreters.

Denotational semantics either works “out of the box” (for strongly
normalizing languages) or runs into deep theoretic issues (for
Turing-complete languages).

(But see Agerholm, Paulin, and Benton et al for mechanizations of domain
theory.)

Next lectures: some nice things to do with these mechanized semantics.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 69 / 173

Part II

Axiomatic semantics and program proof

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 70 / 173

Reasoning about a program

r := a;
q := 0;
while b < r+1 do

r := r - b;
q := q + 1

done

What does this program fragment do?

Under which conditions on a and b?

Can you prove it?

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 71 / 173

Reasoning about a program using operational semantics

We can stare long and hard at reduction sequences (or execution
derivations), but . . .

(while b < r + 1 do r := r − b; q := q + 1 done, s)
→ (r := r − b; q := q + 1; while . . . done, s)
→ (skip; q := q + 1; while . . . done, s[r ← s(r)− s(b)])
→ (q := q + 1; while . . . done, s[r ← s(r)− s(b)])
→ (skip; while . . . done, s[r ← s(r)− s(b), q ← s(q)− 1])])
→ (while b < r + 1 do r := r − b; q := q + 1 done,

s[r ← s(r)− s(b), q ← s(q)− 1])])

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 72 / 173

Reasoning about a program using logical assertions

Better: reason about logical assertions about the program state at various
program points.

{ b > 0 }
r := a;
q := 0;
while b < r+1 do

{ a = bq + r ∧ r ≥ 0 ∧ b > 0 }
r := r - b;
q := q + 1

done
{ a = bq + r ∧ 0 ≤ r < b }

Are these assertions consistent with the run-time behavior of the program?
How can we prove this consistency?

(The annotations above are not consistent, by the way.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 73 / 173

Axiomatic semantics and program proof

7 Axiomatic semantics (Hoare logic)

8 Automatic generation of verification conditions (VCgen)

9 Computing within proofs

10 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 74 / 173

Hoare triples

Weak triple: {P } c {Q }

Intuitive meaning: if the initial state satisfies assertion P, the execution
of c either

terminates in a state satisfying assertion Q

or diverges,

but does not go wrong.

Strong triple: [P] c [Q]

Intuitive meaning: if the initial state satisfies assertion P, the execution of
c always terminates and the final state satisfies Q.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 75 / 173

Logical assertions

Modeled as any Coq predicate about the state.

Definition assertion := state -> Prop.

For example:

Definition invariant : assertion :=
fun (s: state) =>
s vr >= 0 /\ s vb > 0 /\ s va = s vb * s vq + s vr.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 76 / 173

Axiomatic semantics / Hoare logic

Objective: define inference rules characterizing the predicates {P } c {Q }
and [P] c [Q] for all commands c .

. . . and check that these rules are consistent with the operational
semantics.

These rules can be viewed both

As a program logic (Hoare logic), enabling reasoning over programs.

As an alternate form of semantics (axiomatic semantics), defining the
behavior of programs.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 77 / 173

The rules for weak triples (1/3)

Inductive triple: assertion -> cmd -> assertion -> Prop :=

| triple_skip: forall P,
triple P Cskip P

| triple_assign: forall P x e,
triple (aupdate P x e) (Cassign x e) P

| triple_seq: forall c1 c2 P Q R,
triple P c1 Q -> triple Q c2 R ->
triple P (Cseq c1 c2) R

The aupdate operation over assertions is defined as:

Definition aupdate (P: assertion) (x: ident) (e: expr) :=
fun (s: state) => P (update s x (eval_expr s e)).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 78 / 173

The rules for weak triples (2/3)

| triple_if: forall be c1 c2 P Q,
triple (aand (atrue be) P) c1 Q ->
triple (aand (afalse be) P) c2 Q ->
triple P (Cifthenelse be c1 c2) Q

| triple_while: forall be c P,
triple (aand (atrue be) P) c P ->
triple P (Cwhile be c) (aand (afalse be) P)

With the following operators over assertions:

Definition atrue (be: bool_expr) : assertion :=
fun s => eval_bool_expr s be = true.

Definition afalse (be: bool_expr) : assertion :=
fun s => eval_bool_expr s be = false.

Definition aand (P Q: assertion) : assertion :=
fun s => P s /\ Q s.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 79 / 173

The rules for weak triples (3/3)

| triple_consequence: forall c P Q P’ Q’,
triple P’ c Q’ -> aimp P P’ -> aimp Q’ Q ->
triple P c Q.

Where aimp is pointwise implication:

Definition aimp (P Q: assertion) : Prop :=
forall (s: state), P s -> Q s.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 80 / 173

Example

{ a = bq + r } r := r − b; q := q + 1 { a = bq + r }

because

aupdate (a = bq + r) q (q + 1) ⇐⇒ a = b(q + 1) + r

aupdate (a = b(q + 1) + r) r (r − b) ⇐⇒ a = b(q + 1) + (r − b)

⇐⇒ a = bq + r

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 81 / 173

Soundness of the axiomatic semantics

Recall the intuition for the triple {P } c {Q }:
The command c, executed in an initial state satisfying P, either

terminates and the final state satisfies Q,
or diverges.

We capture the conclusion using a coinductive predicate finally:

CoInductive finally: state -> cmd -> assertion -> Prop :=
| finally_done: forall s (Q: assertion),

Q s ->
finally s Cskip Q

| finally_step: forall c s c’ s’ Q,
red (c, s) (c’, s’) -> finally s’ c’ Q ->
finally s c Q.

(Remember: coinductive predicate ⇔ finite or infinite derivation.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 82 / 173

Soundness of the axiomatic semantics

The validity of a weak Hoare triple {P } c {Q } is, then, defined as the
proposition

Definition sem_triple (P: assertion) (c: cmd) (Q: assertion) :=
forall s, P s -> finally s c Q.

The soundness of the axiomatic semantics then follows from the theorem:

Theorem triple_correct:
forall P c Q, triple P c Q -> sem_triple P c Q.

(Proof: by induction on a derivation of triple P c Q, plus auxiliary
lemmas about finally proved by coinduction.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 83 / 173

Rules for strong Hoare triples

Same rules as for weak triples, except the while rule:

Inductive Triple: assertion -> cmd -> assertion -> Prop :=
| Triple_while: forall be c P (measure: expr),

(forall v,
Triple (aand (atrue be) (aand (aequal measure v) P))

c
(aand (alessthan order measure v) P)) ->

Triple P (Cwhile be c) (aand (afalse be) P)
| ...

measure is an expression whose value must be ≥ 0 and strictly decrease at
each loop iteration.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 84 / 173

Rules for strong Hoare triples

Inductive Triple: assertion -> cmd -> assertion -> Prop :=
| Triple_while: forall be c P (measure: expr),

(forall v,
Triple (aand (atrue be) (aand (aequal measure v) P))

c
(aand (alessthan measure v) P)) ->

Triple P (Cwhile be c) (aand (afalse be) P)
| ...

The aequal and alessthan assertions are defined as:

Definition aequal (e: expr) (v: Z) :=
fun (s: state) => eval_expr s e = v.

Definition alessthan (e: expr) (v: Z) :=
fun (s: state) => 0 <= eval_expr s e < v.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 85 / 173

Rules for strong Hoare triples

Inductive Triple: assertion -> cmd -> assertion -> Prop :=
| Triple_while: forall be c P (measure: expr),

(forall v,
Triple (aand (atrue be) (aand (aequal measure v) P))

c
(aand (alessthan measure v) P)) ->

Triple P (Cwhile be c) (aand (afalse be) P)
| ...

This rule has an infinity of premises: one for each possible value v of the
expression measure at the beginning of the loop. Coq supports inductive
reasoning on such rules just fine.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 86 / 173

Soundness of the axiomatic semantics

A strong Hoare triple [P] c [Q] is valid if, started in any state satisfying
P, the command c terminates and its final state satisfies Q.

Definition sem_Triple (P: assertion) (c: cmd) (Q: assertion) :=
forall s, P s -> exists s’, exec s c s’ /\ Q s’.

Theorem Triple_correct:
forall P c Q, Triple P c Q -> sem_Triple P c Q.

(Proof: by induction on a derivation of Triple P c Q. The while case
uses an inner Peano induction on the value of the measure expression.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 87 / 173

Axiomatic semantics and program proof

7 Axiomatic semantics (Hoare logic)

8 Automatic generation of verification conditions (VCgen)

9 Computing within proofs

10 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 88 / 173

Weakest preconditions

Given a loop-free command c and a postcondition Q, we can compute
(effectively) a weakest precondition P such that {P } c {Q } holds.

Just run the rules of Hoare logic “backward”, e.g. the weakest
precondition of x := e; y := e ′ is

aupdate (aupdate Q y e ′) x e

In the presence of loops, the weakest precondition is not computable
→ ask the user to provide loop invariants as program annotations.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 89 / 173

Program annotations

Annotated commands:
c ::= while b do {P} c done loop with invariant
| assert(P) explicit assertion
| skip | x := e | c1; c2 as in IMP
| if b then c1 else c2 as in IMP

The erase function turns annotated commands back into regular
commands:

erase(while b do {P} c done) = while b do erase(c) done

erase(assert(P)) = skip

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 90 / 173

Computing the weakest precondition

The weakest (liberal) precondition for an annotated command a with
postcondition Q is computed in two parts:

An assertion P that acts as a precondition.

A logical formula which, if true, implies that {P } erase(a) {Q }
holds.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 91 / 173

Computing the precondition

Fixpoint wp (a: acmd) (Q: assertion) struct a : assertion :=
match a with
| Askip => Q
| Aassign x e => aupdate Q x e
| Aseq a1 a2 => wp a1 (wp a2 Q)
| Aifthenelse b a1 a2 =>

aor (aand (atrue b) (wp a1 Q)) (aand (afalse b) (wp a2 Q))
(* either b is true and wp a1 Q holds,

or b is false and wp a2 Q holds. *)
| Awhile b P a1 => P

(* the user-provided loop invariant is the precondition *)
| Aassert P => P

(* ditto *)
end.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 92 / 173

Computing the validity conditions

Fixpoint vcg (a: acmd) (Q: assertion) {struct a} : Prop :=
match a with
| Askip => True
| Aassign x e => True
| Aseq a1 a2 => vcg a1 (wp a2 Q) /\ vcg a2 Q
| Aifthenelse b a1 a2 => vcg a1 Q /\ vcg a2 Q
| Awhile b P a1 =>

vcg a1 P /\
aimp (aand (afalse b) P) Q /\
aimp (aand (atrue b) P) (wp a1 P)

| Aassert P =>
aimp P Q

end.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 93 / 173

The verification condition generator

Combining the two together, we obtain the verification condition generator
for the triple {P } a {Q }:

Definition vcgen (P: assertion) (a: acmd) (Q: assertion) : Prop :=
aimp P (wp a Q) /\ vcg a Q.

This v.c.gen. is correct in the following sense:

Lemma vcg_correct:
forall a Q, vcg a Q -> triple (wp a Q) (erase a) Q.

Theorem vcgen_correct:
forall P a Q, vcgen P a Q -> triple P (erase a) Q.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 94 / 173

The verification condition generator

Theorem vcgen_correct:
forall P a Q, vcgen P a Q -> triple P (erase a) Q.

What did we gain?

We replaced deduction by computation:

Deducing triple P (erase a) Q requires some guesswork (to find
loop invariants; to know when to apply the rule of consequence).

Computing vcgen P a Q is purely mechanical.

Moreover, the proposition vcgen P a Q is a “plain” logic formula, where
the command a and its semantics no longer appear. It could therefore be
fed to any automated or semi-automated prover.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 95 / 173

An example of verification

Consider the following annotated IMP program a:

r := a;
q := 0;
while b < r+1 do

{Inv}
r := r - b;
q := q + 1

done

and the following precondition Pre, loop invariant Inv and postcondition
Post:

Pre = λs. s(a) ≥ 0 ∧ s(b) > 0

Inv = λs. s(r) ≥ 0 ∧ s(b) > 0 ∧ s(a) = s(b)× s(q) + s(r)

Post = λs. s(q) = s(a)/s(b)

Let us show {Pre } erase(a) {Post } using the v.c.gen. . . [demo]

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 96 / 173

Axiomatic semantics and program proof

7 Axiomatic semantics (Hoare logic)

8 Automatic generation of verification conditions (VCgen)

9 Computing within proofs

10 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 97 / 173

Computation vs. deduction

Henri Poincaré writing about Peano-style proofs of 2 + 2 = 4:

Ce n’est pas une démonstration proprement dite [. . .], c’est une
vérification. [. . .] La vérification diffère précisément de la
véritable démonstration, parce qu’elle est purement analytique et
parce qu’elle est stérile.

[This is not a proper demonstration, it is a mere verification. Verification
differs from true demonstration because it is purely analytical and because
it is sterile.]

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 98 / 173

Computation vs. deduction

Omitting computational steps in Coq’s proofs via the conversion rule:

Γ ` a : P P
βιδ
≡ Q

[conv]

Γ ` a : Q

βιδ
≡ represents computations: reducing function applications, unfolding
definitions and fixpoints, simplifying pattern-matchings.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 99 / 173

Sem.html#conv

Using convertibility in proofs

Theorem refl_equal: forall (A: Type) (x: A), x = x.

Fixpoint plus (a b: nat) {struct a} : nat :=
match a with O => b | S a’ => S (plus a’ b) end.

By instanciation, refl_equal nat 4 proves 4 = 4.

But it also proves plus 2 2 = 4 because this proposition and 4 = 4 are
convertible.

Likewise, plus O x = x is proved trivially for any x.

However, plus x O = x requires a proof by induction on x . . .

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 100 / 173

Proofs by reflection

A step of Gonthier and Werner’s proof of the 4-color theorem involves
checking 4-colorability for a large number of elementary graphs g1 . . . gN .

Definition is_colorable (g:graph): Prop :=
∃ f: vertices(g) -> {1,2,3,4}.
∀(a,b) ∈ edges(g). f(a) 6= f(b).

The naive approach: for each graph gi of interest, provide (manually) the
function f and prove (manually or using tactics) that it is a coloring.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 101 / 173

Proofs by reflection

The “reflection” approach: invoke a proved decision procedure, thus
replacing deductions by computations.

Definition colorable (g:graph): bool :=
(* combinatorial search for a 4-coloring *)

Theorem colorable_is_sound:
forall (g:graph), colorable g = true -> is_colorable g.

The proof that gi is colorable is now just the term colorable_is_sound
gi (refl_equal bool true).

Internally, the checker reduces (colorable gi) to true
→ large amounts of computations, but still much faster than the
equivalent amounts of deductions.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 102 / 173

Axiomatic semantics and program proof

7 Axiomatic semantics (Hoare logic)

8 Automatic generation of verification conditions (VCgen)

9 Computing within proofs

10 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 103 / 173

Program proof in “the real world”

Hoare-like logics are at the core of industrial-strength program provers for
realistic languages, e.g.

ESC/Java

Boogie (for C#)

Caveat, Caduceus, Frama-C (for C)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 104 / 173

Separation logic

For pointer programs, program proof entails much reasoning about
separation (non-aliasing) between mutable structures.

In separation logic, program assertions carry an domain (e.g. a set of
memory locations), and the logic enforces that nothing outside the domain
of the precondition changes during execution.
→ the “frame rule” for local reasoning:

{P } c {Q }

{P ? R } c {Q ? R }

(For mechanizations of separation logic, see for instance Marti et al, Tuch
et al, Appel & Blazy, Myreen & Gordon.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 105 / 173

Part III

Compilation to a virtual machine

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 106 / 173

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 107 / 173

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 107 / 173

Execution models for a programming language

1 Interpretation:
the program is represented by its abstract syntax tree. The interpreter
traverses this tree during execution.

2 Compilation to native code:
before execution, the program is translated to a sequence of machine
instructions, These instructions are those of a real microprocessor and
are executed in hardware.

3 Compilation to virtual machine code:
before execution, the program is translated to a sequence of
instructions, These instructions are those of a virtual machine. They
do not correspond to that of an existing hardware processor, but are
chosen close to the basic operations of the source language. Then,

1 either the virtual machine instructions are interpreted (efficiently)
2 or they are further translated to machine code (JIT).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 107 / 173

Compilation to a virtual machine

11 The IMP virtual machine

12 Compiling IMP programs to virtual machine code

13 Notions of semantic preservation

14 Semantic preservation for our compiler

15 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 108 / 173

The IMP virtual machine

Components of the machine:

The code C : a list of instructions.

The program counter pc: an integer, giving the position of the
currently-executing instruction in C .

The store s: a mapping from variable names to integer values.

The stack σ: a list of integer values
(used to store intermediate results temporarily).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 109 / 173

The instruction set

i ::= const(n) push n on stack
| var(x) push value of x
| setvar(x) pop value and assign it to x
| add pop two values, push their sum
| sub pop two values, push their difference
| branch(δ) unconditional jump
| bne(δ) pop two values, jump if 6=
| bge(δ) pop two values, jump if ≥
| halt end of program

By default, each instruction increments pc by 1.

Exception: branch instructions increment it by 1 + δ.
(δ is a branch offset relative to the next instruction.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 110 / 173

Example

stack ε 12
1

12 13 ε

store x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 12 x 7→ 13

p.c . 0 1 2 3 4

code var(x); const(1); add; setvar(x); branch(−5)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 111 / 173

Semantics of the machine

Given by a transition relation (small-step), representing the execution of
one instruction.

Definition code := list instruction.
Definition stack := list Z.
Definition machine_state := (Z * stack * state)%type.

Inductive transition (c: code):
machine_state -> machine_state -> Prop :=

| trans_const: forall pc stk s n,
code_at c pc = Some(Iconst n) ->
transition c (pc, stk, s) (pc + 1, n :: stk, s)

| trans_var: forall pc stk s x,
code_at c pc = Some(Ivar x) ->
transition c (pc, stk, s) (pc + 1, s x :: stk, s)

| trans_setvar: forall pc stk s x n,
code_at c pc = Some(Isetvar x) ->
transition c (pc, n :: stk, s) (pc + 1, stk, update s x n)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 112 / 173

Semantics of the machine

| trans_add: forall pc stk s n1 n2,

code_at c pc = Some(Iadd) ->

transition c (pc, n2 :: n1 :: stk, s) (pc + 1, (n1 + n2) :: stk, s)

| trans_sub: forall pc stk s n1 n2,

code_at c pc = Some(Isub) ->

transition c (pc, n2 :: n1 :: stk, s) (pc + 1, (n1 - n2) :: stk, s)

| trans_branch: forall pc stk s ofs pc’,

code_at c pc = Some(Ibranch ofs) ->

pc’ = pc + 1 + ofs ->

transition c (pc, stk, s) (pc’, stk, s)

| trans_bne: forall pc stk s ofs n1 n2 pc’,

code_at c pc = Some(Ibne ofs) ->

pc’ = (if Z_eq_dec n1 n2 then pc + 1 else pc + 1 + ofs) ->

transition c (pc, n2 :: n1 :: stk, s) (pc’, stk, s)

| trans_bge: forall pc stk s ofs n1 n2 pc’,

code_at c pc = Some(Ibge ofs) ->

pc’ = (if Z_lt_dec n1 n2 then pc + 1 else pc + 1 + ofs) ->

transition c (pc, n2 :: n1 :: stk, s) (pc’, stk, s).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 113 / 173

Executing machine programs

By iterating the transition relation:

Initial states: pc = 0, initial store, empty stack.

Final states: pc points to a halt instruction, empty stack.

Definition mach_terminates (c: code) (s_init s_fin: state) :=
exists pc,
code_at c pc = Some Ihalt /\
star (transition c) (0, nil, s_init) (pc, nil, s_fin).

Definition mach_diverges (c: code) (s_init: state) :=
infseq (transition c) (0, nil, s_init).

Definition mach_goes_wrong (c: code) (s_init: state) :=
(* otherwise *)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 114 / 173

Compilation to a virtual machine

11 The IMP virtual machine

12 Compiling IMP programs to virtual machine code

13 Notions of semantic preservation

14 Semantic preservation for our compiler

15 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 115 / 173

Compilation scheme for expressions

The code comp(e) for an expression should:

evaluate e and push its value on top of the stack;

execute linearly (no branches);

leave the store unchanged.

comp(x) = var(x)

comp(n) = const(n)

comp(e1 + e2) = comp(e1); comp(e2); add

comp(e1 − e2) = comp(e1); comp(e2); sub

(= translation to “reverse Polish notation”.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 116 / 173

Compilation scheme for conditions

The code comp(b, δ) for a boolean expression should:

evaluate b;

fall through (continue in sequence) if b is true;

branch to relative offset δ if b is false;

leave the stack and the store unchanged.

comp(e1 = e2, δ) = comp(e1); comp(e2); bne(δ)

comp(e1 < e2, δ) = comp(e1); comp(e2); bge(δ)

Example

comp(x + 1 < y − 2, δ) =
var(x); const(1); add; (compute x + 1)
var(y); const(2); sub; (compute y − 2)
bge(δ) (branch if ≥)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 117 / 173

Compilation scheme for commands

The code comp(c) for a command c updates the state according to the
semantics of c , while leaving the stack unchanged.

comp(skip) = ε

comp(x := e) = comp(e); setvar(x)

comp(c1; c2) = comp(c1); comp(c2)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 118 / 173

Compilation scheme for commands

code for e1

code for e2

bne/bge(•)
code for c1

branch(•)
code for c2

code for e1

code for e2

bne/bge(•)
code for c
branch(•)

comp(if b then c1 else c2) = comp(b, |C1|+ 1); C1; branch(|C2|); C2

where C1 = comp(c1) and C2 = comp(c2)

comp(while b do c done) = B; C ; branch(−(|B|+ |C |+ 1))

where C = comp(c)

and B = comp(b, |C |+ 1)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 119 / 173

Compiling whole program

The compilation of a program c is the code

compile(c) = comp(c); halt

Example

The compiled code for while x < 10 do y := y + x done is

var(x); const(10); bge(5); skip over loop if x ≥ 10
var(y); var(x); add; setvar(y); do y := y + x
branch(−8); branch back to beginning of loop
halt finished

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 120 / 173

Coq mechanization of the compiler

As recursive functions:

Fixpoint compile_expr (e: expr): code :=
match e with ... end.

Definition compile_bool_expr (b: bool_expr) (ofs: Z): code :=
match b with ... end.

Fixpoint compile_cmd (c: cmd): code :=
match c with ... end.

Definition compile_program (c: cmd) : code :=
compile_cmd c ++ Ihalt :: nil.

These functions can be executed from within Coq, or extracted to
executable Caml code.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 121 / 173

Compiler verification

We now have two ways to run a program:

Interpret it using e.g. the definitional interpreter of part I.

Compile it, then run the generated virtual machine code.

Will we get the same results either way?

The compiler verification problem

Verify that a compiler is semantics-preserving:
the generated code behaves as prescribed by the semantics of the source
program.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 122 / 173

Compilation to a virtual machine

11 The IMP virtual machine

12 Compiling IMP programs to virtual machine code

13 Notions of semantic preservation

14 Semantic preservation for our compiler

15 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 123 / 173

Comparing the behaviors of two programs

Consider two programs P1 and P2, possibly in different languages.

(For example, P1 is an IMP command and P2 is virtual machine code
generated by compiling P1.)

The operational semantics of the two languages associate to P1,P2

sets B(P1),B(P2) of observable behaviors. In our case:

observable behavior ::= terminates(s) | diverges | goeswrong

Note that card(B(P)) = 1 if P is deterministic, and card(B(P)) > 1 if not.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 124 / 173

Bisimulation (equivalence)

B(P1) = B(P2)

Often too strong in practice (see next slides).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 125 / 173

Backward simulation (refinement)

B(P1) ⊇ B(P2)

All possible behaviors of P2 are legal behaviors of P1, but P2 can have
fewer behaviors.

Example: a C compiler chooses one evaluation order for expressions among
the several permitted by the C semantics.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 126 / 173

Backward simulation for correct programs

goeswrong /∈ B(P1) =⇒ B(P1) ⊇ B(P2)

Compilers routinely “optimize away” going-wrong behaviors. For example:

x := 1 / y; x := 42
(goes wrong if y = 0)

optimized to x := 42
(always terminates normally)

Let Spec be the functional specification of a program
(a set of correct behaviors, not containing goeswrong).

Lemma

If “backward simulation for correct programs” holds,
and P1 satisfies Spec (i.e. B(P1) ⊆ Spec),
then P2 satisfies Spec (i.e. B(P2) ⊆ Spec).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 127 / 173

Forward simulations

If P2 is compiler-generated from P1, it is generally much easier to reason
inductively on an execution of P1 (the source program) than on an
execution of P2 (the compiled code).

Forward simulation: B(P1) ⊆ B(P2)

Forward simulation for correct programs:

goeswrong /∈ B(P1) =⇒ B(P1) ⊆ B(P2)

(P2 has all the behaviors of P1, but maybe more.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 128 / 173

Determinism to the rescue

Lemma

If P2 is deterministic (B(P2) is a singleton), then

“forward simulation” implies “backward simulation”

“forward simulation for correct programs” implies “backward
simulation for correct programs”

→ Our plan for verifying a compiler:

Prove “forward simulation for correct programs” between source and
compiled codes.

Argue that the target language (machine code) is deterministic.

Conclude that all functional specifications are preserved by
compilation.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 129 / 173

Compilation to a virtual machine

11 The IMP virtual machine

12 Compiling IMP programs to virtual machine code

13 Notions of semantic preservation

14 Semantic preservation for our compiler

15 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 130 / 173

Compilation of expressions

Remember the “contract” for the code comp(e): it should

evaluate e and push its value on top of the stack;

execute linearly (no branches);

leave the store unchanged.

More formally: comp(e) : (0, σ, s)
∗→ (|comp(e)|, ([[e]] s).σ, s).

To make this result more usable and permit a proof by induction, need to
strengthen this result to codes of the form C1; comp(e); C2.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 131 / 173

Compilation of expressions

Lemma compile_expr_correct:
forall s e pc stk C1 C2,
pc = length C1 ->
star (transition (C1 ++ compile_expr e ++ C2))

(pc, stk, s)
(pc + length (compile_expr e), eval_expr s e :: stk, s).

Proof: structural induction over the expression e, using associativity of ++
(list concatenation) and + (integer addition).

Historical remark: the first published proof of correctness for a compiler
(McCarthy & Painter, 1967).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 132 / 173

Outline of the proof

Base cases (variables, constants): trivial. An inductive case: e = e1 + e2.
Write v1 = [[e1]] s and v2 = [[e2]] s. By induction hypothesis (twice),

C1; comp(e1); (comp(e2); add; C2) :

(|C1|, σ, s)
∗→ (|C1|+ |comp(e1)|, v1.σ, s)

(C1; comp(e1)); comp(e2); (add; C2) :

(|C1; comp(e1)|, v1.σ, s)
∗→ (|C1; comp(e1)|+ |comp(e2)|, v2.v1.σ, s)

Combining with an add transition, we obtain:

C1; (comp(e1); comp(e2); add); C2 :

(|C1|, σ, s)
∗→ (|C1; comp(e1); comp(e2)|+ 1, (v1 + v2).σ, s)

which is the desired result since comp(e1 + e2) = comp(e1); comp(e2); add.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 133 / 173

Compilation of conditions

The code comp(b, δ) for a boolean expression should:

evaluate b;

fall through (continue in sequence) if b is true;

branch to relative offset δ if b is false;

leave the stack and the store unchanged.

Lemma compile_bool_expr_correct:
forall s e pc stk ofs C1 C2,
pc = length C1 ->
star (transition (C1 ++ compile_bool_expr e ofs ++ C2))

(pc, stk, s)
(pc + length (compile_bool_expr e ofs)

+ (if eval_bool_expr s e then 0 else ofs),
stk, s).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 134 / 173

Compilation of commands, terminating case

The code comp(c) for a command c updates the state according to the
semantics of c , while leaving the stack unchanged.

We use the natural semantics for commands because, like the compilation
scheme itself, it follows the structure of commands. For the terminating
case:

Lemma compile_cmd_correct_terminating:
forall s c s’, exec s c s’ ->
forall stk pc C1 C2,
pc = length C1 ->
star (transition (C1 ++ compile_cmd c ++ C2))

(pc, stk, s)
(pc + length (compile_cmd c), stk, s’).

(By induction on a derivation of exec s c s’.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 135 / 173

Compilation of commands, diverging case

Consider the set X = {((C1; comp(c); C2), |C1|, σ, s) | c , s ⇒∞}.

For all (C , pc, σ, s) ∈ X , there
exists pc ′, σ′, s ′ such that

C : (pc, σ, s)
+→ (pc ′, σ′, s ′)

and (C , pc ′, σ′, s ′) ∈ X . X
•

• •

•

•

•

Lemma compile_cmd_correct_diverging:
forall s c , execinf s c ->
forall pc stk C1 C2,
pc = length C1 ->
infseq (transition (C1 ++ compile_cmd c ++ C2)) (pc, stk, s).

This completes the proof of forward simulation for correct programs.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 136 / 173

Compilation to a virtual machine

11 The IMP virtual machine

12 Compiling IMP programs to virtual machine code

13 Notions of semantic preservation

14 Semantic preservation for our compiler

15 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 137 / 173

Further reading

Other examples of verification of nonoptimizing compilers producing
virtual machine code:

Klein and Nipkow (subset of Java → subset of the JVM)

Bertot (for the IMP language)

Grall and Leroy (CBV λ-calculus → modern SECD).

The techniques presented in this lecture do scale up to compilers from
realistic languages (e.g. C) to “real” machine code.
(See the CompCert project.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 138 / 173

Part IV

An optimizing program transformation

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 139 / 173

Compiler optimizations

Automatically transform the programmer-supplied code into equivalent
code that

Runs faster
I Removes redundant or useless computations.
I Use cheaper computations (e.g. x * 5 → (x << 2) + x)
I Exhibits more parallelism (instruction-level, thread-level).

Is smaller
(For cheap embedded systems.)

Consumes less energy
(For battery-powered systems.)

Is more resistant to attacks
(For smart cards and other secure systems.)

Dozens of compiler optimizations are known, each targeting a particular
class of inefficiencies.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 140 / 173

Compiler optimization and static analysis

Some optimizations are unconditionally valid, e.g.:

x ∗ 2 → x + x

x ∗ 4 → x << 2

Most others apply only if some conditions are met:

x / 4 → x >> 2 only if x ≥ 0
x + 1 → 1 only if x = 0

if x < y then c1 else c2 → c1 only if x < y
x := y + 1 → skip only if x unused later

→ need a static analysis prior to the actual code transformation.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 141 / 173

Static analysis

Determine some properties of all concrete executions of a program.

Often, these are properties of the values of variables at a given program
point:

x = n x ∈ [n,m] x = e n ≤ a.x + b.y ≤ m

Requirements:

The inputs to the program are unknown.

The analysis must terminate.

The analysis must run in reasonable time and space.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 142 / 173

Running example: dead code elimination via liveness
analysis

Remove assignments x := e, turning them into skip, whenever the
variable x is never used later in the program execution.

Example

Consider: x := 1; y := y + 1; x := 2

The assignment x := 1 can always be eliminated since x is not used
before being redefined by x := 2.

Builds on a static analysis called liveness analysis.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 143 / 173

An optimizing program transformation

16 Liveness analysis

17 Dead code elimination

18 Semantic preservation

19 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 144 / 173

Notions of liveness

A variable is dead at a program point if its value is not used later in any
execution of the program:

either the variable is not mentioned again before going out of scope

or it is always redefined before further use.

A variable is live if it is not dead.

Easy to compute for straight-line programs (sequences of assignments):

(def x)
x := . . .

(use x)
. . . x . . .

(def x)
x := . . .

(use x)
. . . x . . .

(use x)
. . . x . . .

x dead

x live

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 145 / 173

Notions of liveness

Liveness information is more delicate to compute in the presence of
conditionals and loops:

def x

if

use x def x

use x

Conservatively over-approximate liveness, assuming all if conditionals can
be true or false, and all while loops are taken 0 or several times.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 146 / 173

Liveness equations

Given a set a of variables live “after” a command c , write live(c , a) for
the set of variables live “before” the command.

(A form of reverse, abstract execution.)

live(skip, a) = a

live(x := e, a) =

{
(a \ {x}) ∪ FV (e) if x ∈ a;

a if x /∈ a.

live((c1; c2), a) = live(c1, live(c2, a))

live((if b then c1 else c2), a) = FV (b) ∪ live(c1, a) ∪ live(c2, a)

live((while b do c done), a) = X such that

X = a ∪ FV (b) ∪ live(c ,X)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 147 / 173

Fixpoints, a.k.a “the recurring problem”

Consider F = λX . a ∪ FV (b) ∪ live(c ,X).

For while loops, we need to compute a fixpoint of F , i.e. an X such that
F (X) = X , preferably the smallest.

The mathematician’s approach: notice that

F is increasing;

we can restrict us to subsets of the set V of all variables mentioned in
the program;

the ⊂ ordering over these sets is well-founded.

Therefore, the sequence ∅,F (∅), . . . ,F n(∅), . . . eventually stabilizes to a
set that is the smallest fixpoint of F .

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 148 / 173

Fixpoints, a.k.a “the recurring problem”

F = λX . a ∪ FV (b) ∪ live(c ,X)

The engineer’s approach:

Compute F (∅),F (F (∅)), . . . ,F N(∅) up to some fixed N.

If a fixpoint is found, great.

Otherwise, return a safe over-approximation
(in our case, a ∪ FV (while b do c done)).

A compromise between analysis speed and analysis precision.

Both approaches can be mechanized in Coq, but the mathematician’s
requires advanced features not covered here, so we’ll use the engineer’s
approach.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 149 / 173

Liveness analysis as a Coq function

Module VS := FSetAVL.Make(Nat_as_OT). (* sets of variables *)

Fixpoint live (c: cmd) (a: VS.t) {struct c} : VS.t :=
match c with
| Cskip => a
| Cassign x e =>

if VS.mem x a
then VS.union (VS.remove x a) (fv_expr e)
else a

| Cseq c1 c2 => live c1 (live c2 a)
| Cifthenelse b c1 c2 =>

VS.union (fv_bool_expr b) (VS.union (live c1 a) (live c2 a))
| Cwhile b c =>

let a’ := VS.union (fv_bool_expr b) a in
let default := VS.union (fv_cmd (Cwhile b c)) a in
fixpoint (fun x => VS.union a’ (live c x)) default

end.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 150 / 173

An optimizing program transformation

16 Liveness analysis

17 Dead code elimination

18 Semantic preservation

19 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 151 / 173

Dead code elimination

The program transformation eliminates assignments to dead variables:

x := e becomes skip if x is not live “after” the assignment

Presented as a function dce : cmd→ VS.t→ cmd
taking the set of variables live “after” as second parameter
and maintaining it during its traversal of the command.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 152 / 173

Dead code elimination in Coq

Fixpoint dce (c: cmd) (a: VS.t) {struct c}: cmd :=
match c with
| Cskip => Cskip
| Cassign x e =>

if VS.mem x a then Cassign x e else Cskip
| Cseq c1 c2 =>

Cseq (dce c1 (live c2 a)) (dce c2 a)
| Cifthenelse b c1 c2 =>

Cifthenelse b (dce c1 a) (dce c2 a)
| Cwhile b c =>

Cwhile b (dce c (live (Cwhile b c) a))
end.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 153 / 173

Example

Consider again Euclidean division:

r := a; q := 0;
while b < r+1 do r := r - b; q := q + 1 done

If q is not live “after” (q /∈ a), it is not live throughout this program
either. dce c a then slices away all computations of q, producing

r := a; skip;
while b < r+1 do r := r - b; skip done

If q is live “after”, the program is unchanged.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 154 / 173

An optimizing program transformation

16 Liveness analysis

17 Dead code elimination

18 Semantic preservation

19 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 155 / 173

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 156 / 173

The semantic meaning of liveness

What does it mean, semantically, for a variable x to be live at some
program point?

Hmmm. . .

What does it mean, semantically, for a variable x to be dead at some
program point?

That its precise value has no impact on the rest of the program execution!

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 156 / 173

Liveness as an information flow property

Consider two executions of the same command c in different initial states:

c , s1 ⇒ s2

c , s ′1 ⇒ s ′2

Assume that the initial states agree on the variables live(c , a) live
“before” c :

∀x ∈ live(c , a), s1(x) = s ′1(x)

Then, the two executions terminate on final states that agree on the
variables a live “after” c :

∀x ∈ a, s1(x) = s ′1(x)

The proof of semantic preservation for dead-code elimination follows this
pattern, relating executions of c and dce c a instead.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 157 / 173

Agreement and its properties

Definition agree (a: VS.t) (s1 s2: state) : Prop :=
forall x, VS.In x a -> s1 x = s2 x.

Agreement is monotone w.r.t. the set of variables a:

Lemma agree_mon:
forall a a’ s1 s2,
agree a’ s1 s2 -> VS.Subset a a’ -> agree a s1 s2.

Expressions evaluate identically in states that agree on their free variables:

Lemma eval_expr_agree:
forall a s1 s2, agree a s1 s2 ->
forall e, VS.Subset (fv_expr e) a ->

eval_expr s1 e = eval_expr s2 e.
Lemma eval_bool_expr_agree:
forall a s1 s2, agree a s1 s2 ->
forall b, VS.Subset (fv_bool_expr b) a ->

eval_bool_expr s1 b = eval_bool_expr s2 b.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 158 / 173

Agreement and its properties

Agreement is preserved by parallel assignment to a variable:

Lemma agree_update_live:
forall s1 s2 a x v,
agree (VS.remove x a) s1 s2 ->
agree a (update s1 x v) (update s2 x v).

Agreement is also preserved by unilateral assignment to a variable that is
dead “after”:

Lemma agree_update_dead:
forall s1 s2 a x v,
agree a s1 s2 -> ~VS.In x a ->
agree a (update s1 x v) s2.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 159 / 173

Forward simulation for dead code elimination

For terminating source programs:

Lemma dce_correct_terminating:
forall s c s’, exec s c s’ ->
forall a s1,
agree (live c a) s s1 ->
exists s1’, exec s1 (dce c a) s1’ /\ agree a s’ s1’.

(Proof: a simple induction on the derivation of exec s c s’.)

s

s ′

s1

s ′1

agree (live c a)

exec c exec (dce c a)

agree a

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 160 / 173

Forward simulation for dead code elimination

The result extends simply to diverging source programs:

Lemma dce_correct_diverging:
forall s c, execinf s c ->
forall a s1,
agree (live c a) s s1 -> execinf s1 (dce c a).

s

∞

s1

∞

agree (live c a)

execinf c execinf (dce c a)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 161 / 173

An optimizing program transformation

16 Liveness analysis

17 Dead code elimination

18 Semantic preservation

19 Further reading

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 162 / 173

Towards register allocation

Liveness information can also be exploited to rename variables in a
program, non-injectively:

If x and y are never live simultaneously at any program point, we
can rename y to x

If we can end up with a small number of variables, it is trivial to allocate a
hardware register to each.

→ Chaitin’s register allocation algorithm: coloring of an interference
graph.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 163 / 173

Register allocation by graph coloring

r := a;
q := 0;
t := r + 1;
while b < t do
r := r - b;
q := q + 1;
t := r + 1

done

a

b

q

r

t

a

b

q

r

t

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 164 / 173

Register allocation by graph coloring

r := a;
q := 0;
t := r + 1;
while b < t do
r := r - b;
q := q + 1;
t := r + 1

done

a

b

q

r

t

a

b

q

r

t

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 164 / 173

Dataflow analyses

Given a Noetherian semi-lattice L, set up and solve systems of equations
of the form

X (s) =
⊔
{T (p,X (p)) | p predecessor of s} (forward analysis)

X (p) =
⊔
{T (s,X (s)) | s successor of p} (backward analysis)

where the unknowns X (s) range over L,
p, s range over program points,
and T is a transfer function.

Generic worklist algorithms exist to solve these dataflow equations
(more efficient than our use of nested fixpoints).

(See mechanizations by Klein & Nipkow in Isabelle/HOL and
Coupet-Grimal & Delobel and Bertot et al in Coq.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 165 / 173

Part V

State of the art and perspectives

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 166 / 173

State of the art

The approaches introduced in this lecture do scale (albeit painfully) to
real-world systems (software and hardware).

A few examples where the use of

proof assistants

techniques firmly grounded in mathematical semantics

have produced breakthroughs in the area of formal methods

w.r.t. the size, complexity and realism of the systems that were
verified;

w.r.t. the strength of the guarantees obtained.

(More examples in the handout.)

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 167 / 173

The L4.verified project
(G. Klein et al, NICTA)

Formal verification of the seL4 secure micro-kernel, all the way down to
the actual, hand-optimized C implementation of seL4.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 168 / 173

Verification of Java & Java Card components

Several academic projects on verifications of subsets of Java, the JVM and
JCVM machines, bytecode verifiers, APIs and security architecture:

Ninja (TU Munich, T. Nipkow, G. Klein et al)

Jakarta (INRIA, G. Barthe et al)

The Kestrel Institute project (A. Coglio et al)

One major industrial achievement: the Common Criteria EAL7
certification of a Java Card system at Gemalto (B. Chetali et al).

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 169 / 173

Verification of the ARM6 micro-architecture
(A. Fox et al, Cambridge U.)

A
R
E
G
N

C
T

R
L

4

CTRL

C
T

R
L

IR
E
G

C
T

R
L

C
T

R
L

C
T

R
L

C
T

R
L

S
C
T
R
L
R
E
G

SHCOUT

C
T

R
L

S
H
C
O
U
T

P
S
R
F
B

C
P
S
R
L

C
T

R
L

Mux

Mux

Mux

Mux

Mux

Memory
Interface

R
B
A

P
C
W
A

R
A
A

R
W
A

P
S
R
A

P
S
R
W
A

Register
Bank

Program
Status
Registers
Bank

AREG

DIN

ALUB

ALUA

Field
Extractor

&
Field

Extender

Shifter

+

ALU

DATA

INC

RA A

PSRRD

ALU

ALUNZCV

PCBUS

PSRDAT

IMM/DIN’

RB

B

PIPE

SCTRLREG

PSR
CPSR P

S
R
C

PSR

Figure 3: The ARM6 Data Path.

14

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 170 / 173

The CompCert verified C compiler
(X. Leroy et al, INRIA)

Clight C#minor Cminor

CminorSelRTLLTLLTLin

Linear Mach PPC

simplifications

type elimination

stack pre-

-allocation

instruction

selection

CFG

construction

register

allocation

code

linearization

spilling, reloading

calling conventions

layout of

stack frames

PowerPC code
generation

CSELCM

constant propagation

branch tunneling

instr. scheduling

parsing, elaboration

(not verified)

assembling, linking

(not verified)

Figure 1: Compilation passes and intermediate languages.

C are missing from Clight but are supported through
code expansion (“de-sugaring”) during parsing: side effects
within expressions (Clight expressions are side-effect free)
and block-scoped variables (Clight has only global and
function-local variables).

The semantics of Clight is formally defined in big-step op-
erational style. The semantics is deterministic and makes
precise a number of behaviors left unspecified or undefined
in the ISO C standard, such as the sizes of data types, the re-
sults of signed arithmetic operations in case of overflow, and
the evaluation order. Other undefined C behaviors are con-
sistently turned into “going wrong” behaviors, such as deref-
erencing the null pointer or accessing arrays out of bounds.
Memory is modeled as a collection of disjoint blocks, each
block being accessed through byte offsets; pointer values are
pairs of a block identifier and a byte offset. This way, pointer
arithmetic is modeled accurately, even in the presence of
casts between incompatible pointer types.

3.2 Compilation passes and intermediate languages
The formally verified part of the CompCert compiler

translates from Clight abstract syntax to PPC abstract
syntax, PPC being a subset of PowerPC assembly language.
As depicted in figure 1, the compiler is composed of
14 passes that go through 8 intermediate languages. Not
detailed in figure 1 are the parts of the compiler that are not
verified yet: upstream, a parser, type-checker and simplifier
that generates Clight abstract syntax from C source files
and is based on the CIL library [21]; downstream, a printer
for PPC abstract syntax trees in concrete assembly syntax,
followed by generation of executable binary using the
system’s assembler and linker.

The front-end of the compiler translates away C-specific
features in two passes, going through the C#minor and Cmi-
nor intermediate languages. C#minor is a simplified, type-
less variant of Clight where distinct arithmetic operators are
provided for integers, pointers and floats, and C loops are re-
placed by infinite loops plus blocks and multi-level exits from
enclosing blocks. The first pass translates C loops accord-
ingly and eliminates all type-dependent behaviors: operator
overloading is resolved; memory loads and stores, as well as
address computations, are made explicit. The next inter-
mediate language, Cminor, is similar to C#minor with the
omission of the & (address-of) operator. Cminor function-

local variables do not reside in memory, and their address
cannot be taken. However, Cminor supports explicit stack
allocation of data in the activation records of functions. The
translation from C#minor to Cminor therefore recognizes
scalar local variables whose addresses are never taken, as-
signing them to Cminor local variables and making them
candidates for register allocation later; other local variables
are stack-allocated in the activation record.

The compiler back-end starts with an instruction se-
lection pass, which recognizes opportunities for using
combined arithmetic instructions (add-immediate, not-and,
rotate-and-mask, etc.) and addressing modes provided by
the target processor. This pass proceeds by bottom-up
rewriting of Cminor expressions. The target language is
CminorSel, a processor-dependent variant of Cminor that
offers additional operators, addressing modes, and a class of
condition expressions (expressions evaluated for their truth
value only).

The next pass translates CminorSel to RTL, a classic
register transfer language where control is represented as a
control-flow graph (CFG). Each node of the graph carries
a machine-level instruction operating over temporaries
(pseudo-registers). RTL is a convenient representation to
conduct optimizations based on dataflow analyses. Two
such optimizations are currently implemented: constant
propagation and common subexpression elimination, the
latter being performed via value numbering over extended
basic blocks. A third optimization, lazy code motion,
was developed separately and will be integrated soon.
Unlike the other two optimizations, lazy code motion is
implemented following the verified validator approach [24].

After these optimizations, register allocation is performed
via coloring of an interference graph [6]. The output of this
pass is LTL, a language similar to RTL where temporaries
are replaced by hardware registers or abstract stack loca-
tions. The control-flow graph is then“linearized”, producing
a list of instructions with explicit labels, conditional and un-
conditional branches. Next, spills and reloads are inserted
around instructions that reference temporaries that were al-
located to stack locations, and moves are inserted around
function calls, prologues and epilogues to enforce calling con-
ventions. Finally, the “stacking” pass lays out the activation
records of functions, assigning offsets within this record to

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 171 / 173

Some challenges and active research topics

Combining static analysis with program proof

Static analysis as automatic generators of logical assertions.

Static analysis as decision procedures for program proof.

Proof-preserving compilation

source program + logical annotation + proof in Hoare logic
↓

machine code + logical annotation + proof in Hoare logic

Handling of bound variables and α-conversion
Perhaps the biggest obstacle to mechanizing high-level languages.
Cf. the “POPLmark challenge” at U. Penn.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 172 / 173

Some challenges and active research topics

Semantics and logics of shared-memory concurrency

Mechanizing program logics appropriate to reason on concurrent
programs (rely-guarantee, concurrent separation logic, . . .)

Formalizing the “weakly consistent” memory models of today’s
multicore processors.

Compiler optimizations in the presence of concurrency.

Verified development environments for critical software
Beyond compiler verification: formal assurance in code generators,
program verification tools, the software-hardware interface, etc.

X. Leroy (INRIA) Mechanized semantics Marktoberdorf 2009 173 / 173

	Operational and denotational semantics
	Warm-up: expressions and their denotational semantics
	The IMP language and its reduction semantics
	Natural semantics
	Definitional interpreters
	From definitional interpreters to denotational semantics
	Summary

	Axiomatic semantics and program proof
	Axiomatic semantics (Hoare logic)
	Automatic generation of verification conditions (VCgen)
	Computing within proofs
	Further reading

	Compilation to a virtual machine
	The IMP virtual machine
	Compiling IMP programs to virtual machine code
	Notions of semantic preservation
	Semantic preservation for our compiler
	Further reading

	An optimizing program transformation
	Liveness analysis
	Dead code elimination
	Semantic preservation
	Further reading

	State of the art and perspectives

