
Mechanized semantics, seventh lecture

Of functions and types:
the semantics of a functional language

Xavier Leroy
2020-02-06

Collège de France, chair of software sciences

A change of paradigm

IMP, a toy imperative language

• Running a program = modifying the state
• Basic operation: assignment
• Control structures: conditional, loops
• Data types: first order (e.g. numbers).

FUN, a toy functional language

• Running a program = computing its value.
• Basic operations: function abstraction, function application.
• Control structures: conditional, recursion.
• Data types: higher order (functions as first-class values).

2

The FUN functional language

A recipe for a functional language

the lambda-calculus

+ a reduction strategy

+ primitive data types

+ a type system

= a functional language

3

The lambda-calculus

Terms: M,N ::= x variables
| λx.M function abstraction (x 7→ M)
| M N function application

One structural rule: α-conversion (renaming of bound variables)

λx.M =α λy.M{x← y} if y not free in M

One computation rule: β-reduction

(λx.M) N→β M{x← N}

4

Good properties of reductions

Theorem (Church and Rosser, 1935)

The β-reduction is confluent:
if M ∗→ M1 and M ∗→ M2, there exists M′

such that M1
∗→ M′ and M2

∗→ M′.

M

M1 M2

M′

* *

* *

We say that N is a normal form of M if M ∗→ N 6→

Corollary

The normal form of a term, if it exists, is unique.

5

Expressiveness of lambda-calculus

Lambda-calculus is Turing-complete.

In particular, via functional encodings, it can express

• All the usual data types: integers, pairs, lists, . . .
Example: Church’s encoding of natural numbers

n ≡ λf . f ◦ · · · ◦ f︸ ︷︷ ︸
n times

≡ λf . λx. f (f (· · · (f x)))︸ ︷︷ ︸
n times

• General recursion via fixed-point combinators.
Example: the combinator Y = λf . (λx. f (x x)) (λx. f (x x))

is such that Y F ∗→ F (Y F).

6

Why lambda-calculus is not a good programming language

Little control over termination and complexity

Non-determinism caused by β-reductions that can apply in
several places and in any order. Depending on the way
β-reductions are performed,

• a computation can diverge or terminate;
• it can terminate quickly or slowly.

Functional encodings of data structures are limited

• Unnatural.
• Generally ine�cient.
• Not typable in several standard type systems.

7

Reduction strategies

Make β-reduction deterministic by restricting where and when it
can be performed. Two main choices:

• Strong vs weak reduction: can we reduce “under a λ”?
Weak reduction: a function body is evaluated only after the
function is applied.
Strong reduction: we can simplify the function body before
application.

• Call-by-name vs call-by-value:
By value: the argument must be evaluated before being
passed to the function.
By name: the argument is passed as is, not necessarily
evaluated.

8

Specifying a strategy: the “SOS” style

(G. Plotkin, A structural approach to operational semantics, 1981, 2004.)

Axioms and inference rules for a relation M→ M′

(read: the whole term M reduces into the term M′).

Weak call-by-name Weak call-by-value
left to right

(λx.M) N→ M{x← N} (λx.M) v → M{x← v}

M→ M′

M N→ M′ N

M→ M′

M N→ M′ N

N→ N′

v N→ v N′

(Here, values, written v, are just the lambdas: v ::= λx. M)

9

Specifying a strategy: via a grammar of contexts

(A. Wright, M. Felleisen, A Syntactic Approach to Type Soundness, 1994).

One general reduction rule under a context E:

M→ε M′ E ∈ Ctx

E[M]→ E[M′]

For each strategy, axioms for head reductions→ε and a grammar
defining the valid contexts E:

Weak call-by-name Weak call-by-value

(λx.M) N→ε M{x← N} (λx.M) v →ε M{x← v}

E ::= [] | E N Left to right: E ::= [] | E N | v E
Right to left: E ::= [] | E v | M E

10

Specifying a strategy: via a natural semantics

Like we already did for IMP, we can summarize finite reduction
sequences to a value M ∗→ v 6→ by a predicate M ⇓ v,
“term M evaluates to value v”.

Weak call-by-name:

λx.M ⇓ λx.M
M ⇓ λx. P P{x← N} ⇓ v

M N ⇓ v

Weak call-by-value:

λx.M ⇓ λx.M
M ⇓ λx. P N ⇓ v′ P{x← v′} ⇓ v

M N ⇓ v

11

Adding primitive data types

A systematic process: add

• new syntactic forms to the grammar of terms;
• new head reduction rules;
• new cases to the grammars of values and of contexts.

Starting point: weak call-by-value.

Terms: M,N ::= x | λx.M | M N

Values: v ::= λx.M

Contexts: E ::= [] | E M | v E

Head reduction: (λx.M) v →ε M{x← v}

12

Booleans

Terms: M ::= . . . | true | false | if M1 M2 M3

Values: v ::= . . . | true | false
Contexts: E ::= . . . | if E M2 M3

if true M2 M3 →ε M2

if false M2 M3 →ε M3

13

Peano natural numbers

Terms: M ::= . . . | 0 | S M | if0 M1 M2 M3

Values: v ::= . . . | 0 | S v

Contexts: E ::= . . . | S E | if0 E M2 M3

if0 0 M2 M3 →ε M2

if0 (S v) M2 M3 →ε M3 v

14

Products and sums

Terms: M ::= . . . | (M1,M2) | fst M | snd M
| left M | right M | case M M1 M2

Values: v ::= . . . | (v1, v2) | left v | right v

Contexts: E ::= . . . | (E,M) | (v, E) | fst E | snd E
| left E | right E | case E M2 M3

fst (v1, v2)→ε v1 case (left v) M2 M3 →ε M2 v

snd (v1, v2)→ε v2 case (right v) M2 M3 →ε M3 v

15

Fixed points (general recursion)

Terms: M ::= . . . | fix M

Values: v ::= . . . | fix v

Contexts: E ::= . . . | fix E

fix vf v →ε vf (fix vf) v

16

Mechanizing a functional language and its semantics

See the Coq development FUN.v.

The basic tools are the same as for IMP:

• Inductive types for abstract syntax.
• Inductive predicates for reduction and evaluation relations.

A delicate issue: α-conversion

λx.M =α λy.M{x← y} if y not free in M

It is not obvious how to consider terms modulo α-conversion,
that is, equal up to a renaming of bound variables.

17

Making do without alpha-conversion

The development FUN.v represents terms without implicit
renaming of bound variables:

Abs("x", Var "x") 6= Abs("y", Var "y")

This is a problem to define substitution M{x← N}:
the naive definition

(λy.M){x← N} = λy. (M{x← N})

is vulnerable to variable capture.

For example (λy. x){x← y} is computed as λy. y 8

18

Making do without alpha-conversion

The naive definition of substitution

(λy.M){x← N} = λy. (M{x← N})

is correct if the term N is closed, i.e. without free variables.

(If N is closed, λy . . .N . . . cannot capture a y free in N.)

Fortunately, reducing a closed term (a complete program)
produces only closed terms:

Prog︸︷︷︸
closed

→ · · · → (λx.M)︸ ︷︷ ︸
closed

N︸︷︷︸
closed

→ M{x← N}︸ ︷︷ ︸
closed

→ · · ·

Hence, the semantics we obtain is valid only for complete
programs.

19

A type system with simple types

Absurd programs

“Don’t compare apples with oranges.”

“On n’additionne pas des choux et des carottes.”

When we enrich lambda-calculus with data types such as
Booleans, absurd terms appear:

true (λx. x) (a Boolean used as if it were a function)

if (λx. x) M M′ (a function used as if it were a Boolean)

20

Dynamic typing, static typing

Dynamic typing:
detect and report these absurdities during execution

(λb. if b M M′) (λx. x)→ if (λx. x) M M′ → ERROR

Static typing:
analyze terms before execution to “statically” reject the terms
that are not well typed.

4 λb : bool. if b false true : bool→ bool

8 (λb : bool. if b false true) (λx. x)

8 λb : bool→ bool. if b false true

21

A static type system

A type algebra, for example Church’s simple types

Types: τ, σ ::= bool base type
| σ → τ type of functions from σ to τ

Typing rules that define a relation Γ ` M : τ

read: “in context Γ term M is well typed and has type τ”.

The context Γ is a list of assumptions x1 : τ1, . . . , xn : τn

associating each free variable xi with its type τi.

22

Typing rules for simple types

The simply-typed lambda-calculus:

Γ = . . . , x : τ, . . .
(Var)

Γ ` x : τ

x /∈ Dom(Γ) Γ, x : σ ` M : τ
(Abs)

Γ ` λx.M : σ → τ

Γ ` M : σ → τ Γ ` N : σ
(App)

Γ ` M N : τ

Extension with Booleans:

Γ ` true : bool (Cst) Γ ` false : bool (Cst)

Γ ` M : bool Γ ` N : τ Γ ` P : τ
(If)

Γ ` if M N P : τ
23

Type soundness

Well-typed programs do not go wrong. (R. Milner)

A type system is sound if no program that is well typed in the
empty context can “go wrong”, i.e. produce a run-time error such
as true (λx.x).

Formulated in terms of reduction sequences:

Normal termination: M→ · · · → v ∈ Val
Abnormal termination (going wrong): M→ · · · → N 6→,N /∈ Val

Divergence: M→ · · · → M′ → · · ·

Type soundness = if ∅ ` M : τ , the “going wrong” case is
impossible.

(Normalization = if ∅ ` M : τ , the “divergence” case is impossible.)

24

Various ways to prove type soundness

Using a denotational semantics: (1975–1985)

(D. MacQueen, G. Plotkin, R. Sethi, An ideal model for recursive
polymorphic types, 1986)

• Write a denotational semantics [[M]] where the domain of
denotations contains a special element err.
For example: D ' Bool⊥ + [D→ D] + {err}⊥.

• Interpret types τ as sets [[τ]] not containing err.
• Show that if ∅ ` M : τ , then [[M]] ∈ [[τ]]

25

Various ways to prove type soundness

Using a denotational semantics: (1975–1985)

Using a natural semantics: (1980–1995)

(M. Tofte, Operational semantics and polymorphic type inference, PhD
Edinburgh, 1988)

• Write two natural semantics: M ⇓ v for normal termination,
M ⇓ err for abnormal termination (going wrong).

• Show that if ∅ ` M : τ , then M 6⇓ err, and M ⇓ v ⇒ v ∈ τ .

25

Various ways to prove type soundness

Using a denotational semantics: (1975–1985)

Using a natural semantics: (1980–1995)

Using a reduction semantics: (since 1995)

(A. Wright et M. Felleisen, A syntactic approach to type soundness, 1994)

• Show two properties of reductions:
progress and preservation.

25

The progress property

Show that a well-typed program does not go wrong immediately.

Theorem (Progress)

If ∅ ` M : τ , either M is a value or M can reduce
(M→ N for some N).

Uses a lemma that determines the shapes of values according to
their types.

Lemma (Canonical forms)

Let v be a value.
If ∅ ` v : σ → τ then v is of the shape λx.M.
If ∅ ` v : bool then v is true or false.

26

The preservation property (subject reduction)

Well-typedness is preserved by reduction steps.

Theorem (Preservation)

If Γ ` M : τ and M→ N then Γ ` N : τ .

Uses a substitution lemma and a weakening lemma.

Lemma (Typing is stable by substitution)

If Γ, x : σ, Γ′ ` M : τ and Γ ` N : σ then Γ, Γ′ ` M{x← N} : τ .

Lemma (Weakening)

If Γ ` M : τ then Γ, Γ′ ` M : τ .

27

Type soundness

Well-typed programs do not go wrong.

Let M be a closed, well-typed program: ∅ ` M : τ .

Assume that M goes wrong:

M→ · · · → N 6→,N /∈ Val

By (iterated) preservation, ∅ ` N : τ .

By progress, either N is a value or N reduces.

Contradiction!

28

Intrinsically-typed terms

Two views of typing

The “extrinsic” view, in the style of Curry:

• Abstract syntax and semantics are defined independently of
the type system.

• The type system is a “filter” (a static analysis) that eliminates
problematic terms.

Then “intrinsic” view, in the style of Church:

• The type system participates in the definition of the terms of
the language. E.g. Church’s simply-typed lambda-calculus:

Mτ ::= xτ | (λxσ. Mτ)σ→τ | (Mσ→τ Nσ)τ

• Semantics is defined on well-typed terms only.

29

Dependent types and intrinsic typing

Church’s intrinsic view can be expressed using dependent types
(Coq, Agda, . . .) or generalized algebraic data types (GADTs)
(Haskell, OCaml).

The type of terms term Γ τ is parameterized by a typing context Γ

and a type expression τ .

Const : bool→ term Γ Bool

Cond : term Γ Bool→ term Γ τ → term Γ τ → term Γ τ

App : term Γ (Fun σ τ)→ term Γ σ → term Γ τ

Abs : term (σ :: Γ) τ → term Γ (Fun σ τ) (?)
Var : var Γ τ → term Γ τ (?)

30

Representing variables

In the intrinsic approach, a variable designates one of the typing
assumptions in the context. This assumption determines the type
of the variable. There should be no way to mention a variable
that is not described in the context!

Designating variables by names:
feasible, but can raise problems with renaming.

Designating variables by positions:
quite natural: context ≈ list, assumption ≈ position in the list.
It is de Bruijn’s notation (1972)!

31

de Bruijn’s notation

(N. de Bruijn, Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, 1972.)

Instead of identifying variables by names, de Bruijn’s notation
identifies them by their positions relative to the λ-abstractions
that bind them.

λx. (λy. y x) x

| | |

λ. (λ. 1 2) 1

n is the variable bound by the n-th enclosing λ.

Two α-convertible terms are equal in de Bruijn’s notation:
λx. x and λy. y are both représented as λ. 1

32

Intrinsically-typed de Bruijn’s notation

A context Γ is a list of types τ1 :: · · · :: τn :: nil where τi is the type
of the variable having de Bruijn index i.

The type var Γ τ of variables of type τ in context Γ is isomorphic
to the integers between 1 and the size n of Γ.

This type is generated by two constructors:

V1 : var (τ :: Γ) τ (one)
VS : var Γ τ → var (σ :: Γ) τ (successor)

Derived definitions:

V2 = VS V1 : var (τ1 :: τ2 :: Γ) τ2

V3 = VS V2 : var (τ1 :: τ2 :: τ3 :: Γ) τ3

33

A denotational semantics for intrinsically-typed terms

We can define an interpretation of FUN type expressions as Coq
types:

[[Bool]] = bool [[Fun σ τ]] = [[σ]]→ [[τ]]

Typing contexts become the Coq types for evaluation
environments that associate a value to each variable of the
context:

[[nil]] = unit [[τ :: Γ]] = [[τ]] ∗ [[Γ]]

We can, then, interpret a term a : term Γ τ as a Coq function
environment 7→ value:

[[a]] : [[Γ]]→ [[τ]]

34

A denotational semantics for intrinsically-typed terms

[[Var V1]] e = fst(e)

[[Var (VS v)]] e = [[Var v]] (snd e)

[[Abs a]] e = fun x⇒ [[a]] (x, e)

[[App a1 a2]] e = ([[a1]] e) ([[a2]] e)

[[Const b]] e = b

[[Cond a1 a2 a3]] e = if [[a1]] e then [[a2]] e else [[a3]] e

This defines a Coq function that is well-typed and total
⇒ type soundness and normalization hold “by construction”.

The equations of denotational semantics are satisfied.

Compatible with reductions: if a→ a′ then [[a]] = [[a′]].

35

Limitations of the intrinsic approach

The features of the object language (FUN) must be available or
encodable in the host language (Coq).

• E�ects (including divergence)⇒ monadic encoding.
• Subtyping⇒ coercions [[subtype]]→ [[supertype]].
• Impredicative polymorphism (system F)⇒

Coq’s option -impredicative-set.

The host language must have inductive families (GADTs) and
preferably full dependent types⇒ excludes HOL, PVS, . . .

We explain simple languages (such as FUN) in terms of a more
complex language (OCaml, Haskell, Agda, Coq).

36

Summary

Summary

Functional languages (syntax, semantics, typing) mechanize very
well, generally speaking. . .

. . . modulo a few di�culties to account for bound variables and
alpha-conversion (equivalence up to renaming of bound
variables).

Many type systems have been mechanized, including advanced
features such as

• Subtype polymorphism (e.g. bool <: int)
• Parametric polymorphism (e.g. ∀α. α→ α)
• Dependent types (e.g. term Γ τ)

The next lecture reconsiders the latter two from a logical
perspective (that of type theory).

37

References

References

Two textbooks on typed functional languages:

• Benjamin Pierce. Types and Programming Languages. MIT Press,
2002.

• Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, 2016.

Mechanizations of typed functional languages:

• Extrinsic approach, in Coq: Benjamin Pierce et al, Software
Foundations, volume 2: Programming Languages Foundations,
https://softwarefoundations.cis.upenn.edu/.

• Intrinsic approach, in Agda: Philip Wadler, Programming Language
Foundations in Agda, https://plfa.github.io/

38

https://softwarefoundations.cis.upenn.edu/
https://plfa.github.io/

	The FUN functional language
	A type system with simple types
	Intrinsically-typed terms
	Summary
	References

