OLLEGE
E FRANCE
1530

C
., D

Mechanized semantics, seventh lecture

Of functions and types:
the semantics of a functional language

Xavier Leroy
2020-02-06

College de France, chair of software sciences

A change of paradigm

IMP, a toy imperative language

« Running a program = modifying the state
+ Basic operation: assignment
- Control structures: conditional, loops

+ Data types: first order (e.g. numbers).
FUN, a toy functional language

+ Running a program = computing its value.
+ Basic operations: function abstraction, function application.
« Control structures: conditional, recursion.

- Data types: higher order (functions as first-class values).

The FUN functional language

A recipe for a functional language

the lambda-calculus
a reduction strategy

primitive data types

+ + o+

a type system

a functional language

The lambda-calculus

Terms: M,N ::=x variables
| Ax. M function abstraction (x — M)
| MN function application

One structural rule: a-conversion (renaming of bound variables)
MM =4 \y. M{x <y} if y not freein M
One computation rule: S-reduction

(AX.M) N —3 M{x < N}

Good properties of reductions

Theorem (Church and Rosser, 1935) * /M\‘*
The (B-reduction is confluent: M 2
if M = My and M = M., there exists M’ ,:\ //*
such that My = M’ and My = M. M

We say that N is a normal form of Mif M 5 N 4
Corollary

The normal form of a term, if it exists, is unique.

Expressiveness of lambda-calculus

Lambda-calculus is Turing-complete.
In particular, via functional encodings, it can express

« All the usual data types: integers, pairs, lists, ...

Example: Church’s encoding of natural numbers
n=XMNfo-of = MMF({F(-(fx))
\w_/ ~—_—

n times n times

- General recursion via fixed-point combinators.

Example: the combinator Y = Af. (Ax. f (x x)) (Ax. f (x x))
issuch that Y F 5 F (Y F).

Why lambda-calculus is not a good programming language

Little control over termination and complexity

Non-determinism caused by S-reductions that can apply in
several places and in any order. Depending on the way
B-reductions are performed,

+ a computation can diverge or terminate;
- it can terminate quickly or slowly.
Functional encodings of data structures are limited

« Unnatural.
 Generally inefficient.

» Not typable in several standard type systems.

Reduction strategies

Make 3-reduction deterministic by restricting where and when it
can be performed. Two main choices:

- Strong vs weak reduction: can we reduce “under a \"?
Weak reduction: a function body is evaluated only after the
function is applied.

Strong reduction: we can simplify the function body before
application.

« Call-by-name vs call-by-value:

By value: the argument must be evaluated before being
passed to the function.

By name: the argument is passed as is, not necessarily
evaluated.

Specifying a strategy: the “SOS” style

(G. Plotkin, A structural approach to operational semantics, 1981, 2004.)

Axioms and inference rules for a relation M — M’
(read: the whole term M reduces into the term M’).

Weak call-by-name Weak call-by-value

left to right

(AX. M) N — M{x < N} (AX. M) v — M{x < v}
M — M M — M N— N

MN— M N MN— M N VN —vN

(Here, values, written v, are just the lambdas: v ::= \x. M)

Specifying a strategy: via a grammar of contexts

(A. Wright, M. Felleisen, A Syntactic Approach to Type Soundness, 1994).
One general reduction rule under a context E:

M—.M EeCtx

E[M] — E[M']

For each strategy, axioms for head reductions —. and a grammar
defining the valid contexts E:

Weak call-by-name Weak call-by-value
(AX.M) N —, M{x < N} (AX.M) v =, M{x < v}
E:=][]|EN Lefttoright: E::=[] |EN|VE

= [
Rightto left: E::=[] |EV|ME

10

Specifying a strategy: via a natural semantics

Like we already did for IMP, we can summarize finite reduction
sequences to a value M =5 v /4 by a predicate M |} v,
“term M evaluates to value v".

Weak call-by-name:

My X.P P{x< N}{v

MM} Ax. M
MN] v

Weak call-by-value:

MUXx.P NV P{x+<V}|v

.M | Ax.M
MN | v

n

Adding primitive data types

A systematic process: add

« new syntactic forms to the grammar of terms;
+ new head reduction rules;

* new cases to the grammars of values and of contexts.

Starting point: weak call-by-value.

Terms: M,N:=x|MX.M|MN

Values: Vi= XM

Contexts: E:=[]|EM|VE

Head reduction: (Ax.M) v —, M{x < v}

12

Booleans

Terms: M:=...|true | false|if My My M3
Values: v:i=...|true|false
Contexts: E:=...|if EM; M3

if true My M3 —. M,

if false My M3 —. M3

13

Peano natural numbers

Terms: M:u=...|0|SM|if0 My M, M
Values: vi=...|0|Sv
Contexts: E:=...|SE|if0EM; M;

ifO0 My M3 —- M,
if0 (S V) My M3 —,. M3 v

14

Products and sums

Terms: M:u=...|(My,M;) | fst M| snd M
| left M | right M | case M My M,

Values: vi=...|(v,v2)|leftv|rightv

Contexts: E:=...|(E,M)|(v,E)|fstE|sndE
| left E | right E | case E My M5

fst (V1,V2) —c Vg case (left v) My M3 —. My v

snd (v1,V2) == V2 case (right v) My M3 —. M3 v

15

Fixed points (general recursion)

Terms: M:u=...|fixM
Values: vu=...|fixv
Contexts: E:=...|fixE

fixvpv —. vy (fixvp) v

16

Mechanizing a functional language and its semantics

See the Coq development FUN. v.

The basic tools are the same as for IMP:

« Inductive types for abstract syntax.

« Inductive predicates for reduction and evaluation relations.

A delicate issue: a-conversion
MM =4 \y. M{x <y} if y not freein M
It is not obvious how to consider terms modulo a-conversion,

that is, equal up to a renaming of bound variables.

17

Making do without alpha-conversion

The development FUN. v represents terms without implicit
renaming of bound variables:

Abs(llxll, Var IIXII) # Abs(llyll, Var llyll)

This is a problem to define substitution M{x < N}:
the naive definition

(Ay.M){x < N} = A\y. (M{x < N})

is vulnerable to variable capture.

For example (\y.x){x < y} is computed as \y.y X

18

Making do without alpha-conversion

The naive definition of substitution

(Ay.M){x < N} = A\y. (M{x < N})
is correct if the term N is closed, i.e. without free variables.
(If N is closed, \y...N... cannot capture a y free in N.)

Fortunately, reducing a closed term (a complete program)
produces only closed terms:

Prog — -+ — (M.M) N — M{x<+ N} —---
~—~— —_— —_———
closed closed Cclosed closed

Hence, the semantics we obtain is valid only for complete
programs.

19

A type system with simple types

Absurd programs

“Don’t compare apples with oranges.”

“On n’additionne pas des choux et des carottes.”

When we enrich lambda-calculus with data types such as
Booleans, absurd terms appear:

true (AX.X) (a Boolean used as if it were a function)

if (Ax.x) M M" (a function used as if it were a Boolean)

20

Dynamic typing, static typing

Dynamic typing:
detect and report these absurdities during execution

(Ab. if b M M’) (Ax.x) — if (Ax.x) M M" — ERROR

Static typing:
analyze terms before execution to “statically” reject the terms
that are not well typed.

v b :bool.if b false true : bool — bool
X (Ab:bool.if b false true) (AX.x)
X A\b:bool — bool.if b false true

21

A static type system

A type algebra, for example Church’s simple types

Types: 7,0 ::=bool base type
| o — 7 type of functions from o to 7

Typing rules that define a relation T =M : 7
read: “in context I term M is well typed and has type 7"

The context I is a list of assumptions x; : 74, ..., Xn : Th
associating each free variable x; with its type ;.

22

Typing rules for simple types

The simply-typed lambda-calculus:

M=...,x:7,... x¢Dom(l) T,x:obFM:T
(var) (Abs)
[r=XM:0—rT1
r=M:0—7 TIFEN:0o
(App)
[FEMN:T
Extension with Booleans:

[+ true : bool (Cst) [+ false : bool (Cst)

[FM:bool TTHEN:7 THP:T
(If)

[FifMNP:T
23

Well-typed programs do not go wrong. (R. Milner)

A type system is sound if no program that is well typed in the
empty context can “go wrong”, i.e. produce a run-time error such
as true (AX.x).

Formulated in terms of reduction sequences:

Normal termination: M — --- — v € Val
Abnormal termination (going wrong): M — --- — N /4, N ¢ Val
Divergence: M — --- =M — ...

Type soundness = if) = M : 7, the “going wrong” case is
impossible.

(Normalization = if) = M : 7, the “divergence” case is impossible.)

24

Various ways to prove type soundness

Using a denotational semantics: (1975-1985)

(D. MacQueen, G. Plotkin, R. Sethi, An ideal model for recursive
polymorphic types, 1986)

+ Write a denotational semantics [M] where the domain of
denotations contains a special element err.
For example: D ~ Bool; + [D — D] + {err} ;.

« Interpret types 7 as sets [7] not containing err.

« Show thatif 0 = M : 7, then [M] € [7]

25

Various ways to prove type soundness

Using a denotational semantics: (1975-1985)
Using a natural semantics: (1980-1995)

(M. Tofte, Operational semantics and polymorphic type inference, PhD
Edinburgh, 1988)

 Write two natural semantics: M |} v for normal termination,
M || err for abnormal termination (going wrong).

+ Showthatif) - M: 7,then M {f err,and M || v = v € 7.

25

Various ways to prove type soundness

Using a denotational semantics: (1975-1985)
Using a natural semantics: (1980-1995)
Using a reduction semantics: (since 1995)

(A. Wright et M. Felleisen, A syntactic approach to type soundness, 1994)

» Show two properties of reductions:
progress and preservation.

25

The progress property

Show that a well-typed program does not go wrong immediately.

Theorem (Progress)
If) = M : 7, either M is a value or M can reduce
(M — N for some N).

Uses a lemma that determines the shapes of values according to
their types.
Lemma (Canonical forms)

Let v be a value.
If) v : o — 7 then vis of the shape \x. M.
If) - v :bool then v is true or false.

26

The preservation property (subject reduction)

Well-typedness is preserved by reduction steps.

Theorem (Preservation)
IfTEM:7and M — NthenT - N : 7.

Uses a substitution lemma and a weakening lemma.
Lemma (Typing is stable by substitution)
IfT,x:0,"=M:7andT - N:othenT,[" M{x + N} : 7.

Lemma (Weakening)
IfTEM:7thenT,"=M: 7.

27

Well-typed programs do not go wrong.

Let M be a closed, well-typed program:) = M : .

Assume that M goes wrong:

M— ... — N4 N ¢ Val

By (iterated) preservation,) - N : 7.
By progress, either N is a value or N reduces.

Contradiction!

28

Intrinsically-typed terms

Two views of typing

The “extrinsic” view, in the style of Curry:

+ Abstract syntax and semantics are defined independently of
the type system.

+ The type system is a “filter” (a static analysis) that eliminates
problematic terms.

Then “intrinsic” view, in the style of Church:

+ The type system participates in the definition of the terms of
the language. E.g. Church’s simply-typed lambda-calculus:

M = Xr ‘ ()\XO" MT)U—M' ‘ (Ma—>7' NO’)T
« Semantics is defined on well-typed terms only.

29

Dependent types and intrinsic typing

Church’s intrinsic view can be expressed using dependent types

(Coq, Agda,

...) or generalized algebraic data types (GADTS)

(Haskell, 0OCaml).

The type of terms term I' 7 is parameterized by a typing context I'
and a type expression 7.

Const

Cond :

App :

Abs

Var :

:bool — term [Bool

term [Bool — term[7 — term [7 — term [7

term[(Funo 7) — terml 0 — term [7

cterm (0 :) 7 — term[(Funo7) (?)

var T 7 — term I 7 (?)

30

Representing variables

In the intrinsic approach, a variable designates one of the typing
assumptions in the context. This assumption determines the type
of the variable. There should be no way to mention a variable
that is not described in the context!

Designating variables by names:
feasible, but can raise problems with renaming.

Designating variables by positions:
quite natural: context & list, assumption ~ position in the list.
It is de Bruijn’s notation (1972)!

31

de Bruijn’s notation

(N. de Bruijn, Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, 1972.)

Instead of identifying variables by names, de Bruijn’s notation
identifies them by their positions relative to the A-abstractions
that bind them.

Ax. (Ay. y x) x
1
Ao (A 121

n is the variable bound by the n-th enclosing .

Two a-convertible terms are equal in de Bruijn’s notation:
Ax.x and \y.y are both représented as \. 1

32

Intrinsically-typed de Bruijn’s notation

A context I is a list of types 7y :: - - - =2 7, :: nil where 7; is the type
of the variable having de Bruijn index i.

The type var I 7 of variables of type 7 in context I' is isomorphic
to the integers between 1and the size n of I

This type is generated by two constructors:

Vi : var(r:l)7 (one)
VS : varl 7 —var(oc:T)7 (successor)

Derived definitions:

V2 = VSV1 : var(mumn:l)n
V3 = VSV2 : var(mumnumnul)mn

33

A denotational semantics for intrinsically-typed terms

We can define an interpretation of FUN type expressions as Coq
types:

[Bool] = bool [Fun o 7] = [o] — [7]

Typing contexts become the Coq types for evaluation
environments that associate a value to each variable of the
context:

[nil] = unit [r=T]=[r]=[r]

We can, then, interpretaterm a : term I' 7 as a Coq function
environment — value:

[a] : [T =[]

34

A denotational semantics for intrinsically-typed terms

[Var V1] e = fst(e)
[Var (VS v)] e = [Var v] (snd e)
[Abs a] e = fun x = [a] (x,e)
[App a1 az] e = ([a1] e) ([a2] e)
[Const b e=b
[Cond aq a; a3] e = if [[a1] e then [a;] e else [as] e

This defines a Coq function that is well-typed and total
= type soundness and normalization hold “by construction”.

The equations of denotational semantics are satisfied.
Compatible with reductions: if a — a’ then [a] = [d’].

35

Limitations of the intrinsic approach

The features of the object language (FUN) must be available or
encodable in the host language (Coq).

« Effects (including divergence) = monadic encoding.
« Subtyping = coercions [subtype] — [supertype].
« Impredicative polymorphism (system F) =
Coq's option -impredicative-set.
The host language must have inductive families (GADTs) and

preferably full dependent types = excludes HOL, PVS, ...

We explain simple languages (such as FUN) in terms of a more
complex language (OCaml, Haskell, Agda, Coq).

36

Summary

Functional languages (syntax, semantics, typing) mechanize very
well, generally speaking...

.. modulo a few difficulties to account for bound variables and
alpha-conversion (equivalence up to renaming of bound
variables).

Many type systems have been mechanized, including advanced
features such as

+ Subtype polymorphism (e.g. bool <: int)
+ Parametric polymorphism (e.g. Va. a —)
+ Dependent types (e.g. term I 7)

The next lecture reconsiders the latter two from a logical
perspective (that of type theory).

37

References

References

Two textbooks on typed functional languages:
+ Benjamin Pierce. Types and Programming Languages. MIT Press,
2002.
« Robert Harper. Practical Foundations for Programming Languages.
Cambridge University Press, 2016.

Mechanizations of typed functional languages:

« Extrinsic approach, in Coq: Benjamin Pierce et al, Software
Foundations, volume 2: Programming Languages Foundations,
https://softwarefoundations.cis.upenn.edu/.

« Intrinsic approach, in Agda: Philip Wadler, Programming Language
Foundations in Agda, https://plfa.github.io/

38

https://softwarefoundations.cis.upenn.edu/
https://plfa.github.io/

	The FUN functional language
	A type system with simple types
	Intrinsically-typed terms
	Summary
	References

