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Abstract

These course notes are addressed to a wide audience of people interested
in modern programming languages in general, ML-like languages in par-
ticular, or simply in OCaml, whether they are programmers or language
designers, beginners or knowledgeable readers —little prerequiresite is
actually assumed.

They provide a formal description of the operational semantics (eval-
uation) and statics semantics (type checking) of core ML and of several
extensions starting from small variations on the core language to end
up with the OCaml language —one of the most popular incarnation of
ML— including its object-oriented layer.

The tight connection between theory and practice is a constant goal:
formal definitions are often accompanied by OCaml programs: an inter-
preter for the operational semantics and an algorithm for type recon-
struction are included. Conversely, some practical programming situa-
tions taken from modular or object-oriented programming patterns are
considered, compared with one another, and explained in terms of type-
checking problems.

Many exercises with different level of difficulties are proposed all along
the way, so that the reader can continuously checks his understanding and
trains his skills manipulating the new concepts; soon, he will feel invited
to select more advanced exercises and pursue the exploration deeper so
as to reach a stage where he can be left on his own.

http://cristal.inria.fr/~remy/bibtex/Remy!appsem.html
http://www-sop.inria.fr/oasis/Caminha00/index.html
http://www-sop.inria.fr/oasis/Caminha00/index.html
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Introduction

OCaml is a language of the ML family that inherits a lot from several
decades of research in type theory, language design, and implementation
of functional languages. Moreover, the language is quite mature, its
compiler produces efficient code and comes with a large set of general
purpose as well as domain-specific libraries. Thus, OCaml is well-suited
for teaching and academic projects, and is simultaneously used in the
industry, in particular in several high-tech software companies.

This document is a multi-dimensional presentation of the OCaml lan-
guage that combines an informal and intuitive approach to the language
with a rigorous definition and a formal semantics of a large subset of the
language, including ML. All along this presentation, we explain the un-
derlying design principles, highlight the numerous interactions between
various facets of the language, and emphasize the close relationship be-
tween theory and practice.

Indeed, theory and practice should often cross their paths. Some-
times, the theory is deliberately weakened to keep the practice simple.
Conversely, several related features may suggest a generalization and be
merged, leading to a more expressive and regular design. We hope that
the reader will follow us in this attempt of putting a little theory into
practice or, conversely, of rebuilding bits of theory from practical exam-
ples and intuitions. However, we maintain that the underlying mathe-
matics should always remain simple.

The introspection of OCaml is made even more meaningful by the
fact that the language is boot-strapped, that is, its compilation chain is
written in OCaml itself, and only parts of the runtime are written in C.
Hence, some of the implementation notes, in particular those on type-
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checking, could be scaled up to be actually very close to the typechecker
of OCaml itself.

The material presented here is divided into three categories. On the
practical side, the course contains a short presentation of OCaml. Al-
though this presentation is not at all exhaustive and certainly not a
reference manual for the language, it is a self-contained introduction to
the language: all facets of the language are covered; however, most of the
details are omitted. A sample of programming exercises with different
levels of difficulty have been included, and for most of them, solutions
can be found in Appendix C. The knowledge and the practice of at least
one dialect of ML may help getting the most from the other aspects.
This is not mandatory though, and beginners can learn their first steps
in OCaml by starting with Appendix A. Conversely, advanced OCaml
programmers can learn from the inlined OCaml implementations of some
of the algorithms. Implementation notes can always be skipped, at least
in a first reading when the core of OCaml is not mastered yet —other
parts never depend on them. However, we left implementation notes as
well as some more advanced exercises inlined in the text to emphasize
the closeness of the implementation to the formalization. Moreover, this
permits to people who already know the OCaml language, to read all
material continuously, making it altogether a more advanced course.

On the theoretical side —the mathematics remain rather elementary,
we give a formal definition of a large subset of the OCaml language,
including its dynamic and static semantics, and soundness results relating
them. The proofs, however, are omitted. We also describe type inference
in detail. Indeed, this is one of the most specific facets of ML.

A lot of the material actually lies in between theory and practice: we
put an emphasis on the design principles, the modularity of the language
constructs (their presentation is often incremental), as well as their de-
pendencies. Some constructions that are theoretically independent end
up being complementary in practice, so that one can hardly go without
the other: it is often their combination that provides both flexibility and
expressive power.

The document is organized in four parts (see the road maps in fig-
ure 1). Each of the first three parts addresses a different layer of OCaml:
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the core language (Chapters 1 and 2), objects and classes (Chapter 3),
and modules (Chapter 4); the last part (Chapter 5) focuses on the com-
bination of objects and modules, and discusses a few perspectives. The
style of presentation is different for each part. While the introduction
of the core language is more formal and more complete, the emphasis
is put on typechecking for the Chapter on objects and classes, the pre-
sentation of the modules system remains informal, and the last part is
mostly based on examples. This is a deliberate choice, due to the limited
space, but also based on the relative importance of the different parts
and interest of their formalization. We then refer to other works for a
more formal presentation or simply for further reading, both at the end
of each Chapter for rather technical references, and at the end of the
manuscript, Page 119 for a more general overview of related work.

This document is thus addressed to a wide audience. With several
entry points, it can be read in parts or following different directions
(see the road maps in figure 1). People interested in the semantics of
programming languages may read Chapters 1 and 2 only. Conversely,
people interested in the object-oriented layer of OCaml may skip these
Chapters and start at Chapter 3. Beginners or people interested mostly
in learning the programming language may start with appendix A, then
grab examples and exercises in the first Chapters, and end with the
Chapters on objects and modules; they can always come back to the
first Chapters after mastering programming in OCaml, and attack the
implementation of a typechecker as a project, either following or ignoring
the relevant implementation notes.

Programming languages are rigorous but incomplete approxima-
tions of the language of mathematics. General purpose languages are
Turing complete. That is, they allow to write all algorithms. (Thus,
termination and many other useful properties of programs are undecid-
able.) However, programming languages are not all equivalent, since they
differ by their ability to describe certain kinds of algorithms succinctly.
This leads to an —endless?— research for new programming structures



4 CONTENTS

that are more expressive and allow shorter and safer descriptions of algo-
rithms. Of course, expressiveness is not the ultimate goal. In particular,
the safety of program execution should not be given up for expressive-
ness. We usually limit ourselves to a relatively small subset of programs
that are well-typed and guaranteed to run safely. We also search for a
small set of simple, essential, and orthogonal constructs.

Learning programming languages Learning a programming lan-
guage is a combination of understanding the language constructs and
practicing. Certainly, a programming language should have a clear se-
mantics, whether it is given formally, i.e. using mathematical notation,
as for Standard ML [51], or informally, using words, as for OCaml. Un-
derstanding the semantics and design principles, is a prerequisite to good
programming habits, but good programming is also the result of practic-
ing. Thus, using the manual, the tutorials, and on-line helps is normal
practice. One may quickly learn all functions of the core library, but
even fluent programmers may sometimes have to check specifications of
some standard-library functions that are not so frequently used.

Copying (good) examples may save time at any stage of programming.
This includes cut and paste from solutions to exercises, especially at the
beginning. Sharing experience with others may also be helpful: the first
problems you face are likely to be “Frequently Asked Questions” and the
libraries you miss may already be available electronically in the “OCaml
hump”. For books on ML see “Further reading”, Page 119.

A brief history of OCaml The current definition and implementa-
tion of the OCaml language is the result of continuous and still ongoing
research over the last two decades. The OCaml language belongs to the
ML family. The language ML was invented in 1975 by Robin Milner
to serve as a “meta-language”, i.e. a control language or a scripting
language, for programming proof-search strategies in the LCF proof as-
sistant. The language quickly appeared to be a full-fledged programming
language. The first implementations of ML were realized around 1981
in Lisp. Soon, several dialects of ML appeared: Standard ML at Edin-
burgh, Caml at INRIA, Standard ML of New-Jersey, Lazy ML developed

http://caml.inria.fr/ocaml/htmlman/
http://caml.inria.fr/ocaml/htmlman/manual003.html
http://caml.inria.fr/ocaml/htmlman/libref/Pervasives.html
http://caml.inria.fr/ocaml/htmlman/libref/index.html
http://caml.inria.fr/FAQ/index-eng.htmlURLfaq
http://caml.inria.fr/humps/index.html
http://caml.inria.fr/humps/index.html
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at Chalmers, or Haskell at Glasgow. The two last dialects slightly differ
from the previous ones by relying on a lazy evaluation strategy (they are
called lazy languages) while all others have a strict evaluation strategy
(and are called strict languages). Traditional languages, such as C, Pas-
cal, Ada are also strict languages. Standard ML and Caml are relatively
close to one another. The main differences are their implementations and
their superficial —sometimes annoying— syntactic differences. Another
minor difference is their module systems. However, SML does not have
an object layer.

Continuing the history of Caml, Xavier Leroy and Damien Doligez
designed a new implementation in 1990 called Caml-Light, freeing the
previous implementation from too many experimental high-level features,
and more importantly, from the old Le Lisp back-end.

The addition of a native-code compiler and a powerful module system
in 1995 and of the object and class layer in 1996 made OCaml a very
mature and attractive programming language. The language is still under
development: for instance, in 2000, labeled and optional arguments on
the one hand and anonymous variants on the other hand were added to
the language by Jacques Garrigue.

In the last decade, other dialects of ML have also evolved indepen-
dently. Hereafter, we use the name ML to refer to features of the core
language that are common to most dialects and we speak of OCaml,
mostly in the examples, to refer to this particular implementation. Most
of the examples, except those with object and classes, could easily be
translated to Standard ML. However, only few of them could be straight-
forwardly translated to Haskell, mainly because of both languages have
different evaluation strategy, but also due to many other differences in
their designs.

Resemblances and differences in a few key words All dialects of
ML are functional. That is, functions are taken seriously. In particular,
they are first-class values: they can be arguments to other functions
and returned as results. All dialects of ML are also strongly typed. This
implies that well-typed programs cannot go wrong. By this, we mean that
assuming no compiler bugs, programs will never execute erroneous access
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to memory nor other kind of abnormal execution step and programs that
do not loop will always terminate normally. Of course, this does not
ensure that the program executes what the programmer had in mind!

Another common property to all dialects of ML is type inference,
that is, types of expressions are optional and are inferred by the system.
As most modern languages, ML has automatic memory management, as
well.

Additionally, the language OCaml is not purely functional: impera-
tive programming with mutable values and side effects is also possible.
OCaml is also object-oriented (aside from prototype designs, OCaml is
still the only object-oriented dialect of ML). OCaml also features a pow-
erful module system inspired by the one of Standard ML.

Acknowledgments
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Chapter 1

Core ML

We first present a few examples, insisting on the functional aspect of the
language. Then, we formalize an extremely small subset of the language,
which, surprisingly, contains in itself the essence of ML. Last, we show
how to derive other constructs remaining in core ML whenever possible,
or making small extensions when necessary.

1.1 Discovering Core ML

Core ML is a small functional language. This means that functions are
taken seriously, e.g. they can be passed as arguments to other functions
or returned as results. We also say that functions are first-class values.

In principle, the notion of a function relates as closely as possible
to the one that can be found in mathematics. However, there are also
important differences, because objects manipulated by programs are al-
ways countable (and finite in practice). In fact, core ML is based on the
lambda-calculus, which has been invented by Church to model computa-
tion.

Syntactically, expressions of the lambda-calculus (written with letter
a) are of three possible forms: variables x, which are given as elements of
a countable set, functions λx.a, or applications a1 a2. In addition, core
ML has a distinguished construction let x = a1 in a2 used to bind an
expression a1 to a variable x within an expression a2 (this construction is

7
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also used to introduce polymorphism, as we will see below). Furthermore,
the language ML comes with primitive values, such as integers, floats,
strings, etc. (written with letter c) and functions over these values.

Finally, a program is composed of a sequence of sentences that can
optionally be separated by double semi-colon “;;”. A sentence is a single
expression or the binding, written let x = a, of an expression a to a
variable x.

In normal mode, programs can be written in one or more files, sepa-
rately compiled, and linked together to form an executable machine code
(see Section 4.1.1). However, in the core language, we may assume that
all sentences are written in a single file; furthermore, we may replace ;;

by in turning the sequence of sentences into a single expression. The lan-
guage OCaml also offers an interactive loop in which sentences entered
by the user are compiled and executed immediately; then, their results
are printed on the terminal.

Note We use the interactive mode to illustrate most of the examples.
The input sentences are closed with a double semi-colons “;;”. The
output of the interpreter is only displayed when useful. Then, it appears
in a smaller font and preceded by a double vertical bar “”. Error messages
may sometimes be verbose, thus we won’t always display them in full.
Instead, we use “〉〈〉〈” to mark an input sentence that will be rejected by
the compiler. Some larger examples, called implementation notes, are
delimited by horizontal braces as illustrated right below:

Implementation notes, file README

Implementation notes are delimited as this one. They contain explana-
tions in English (not in OCaml comments) and several OCaml phrases.

let readme = ”lisez−moi”;;

All phrases of a note belong to the same file (this one belong to README)
and are meant to be compiled (rather than interpreted).

As an example, here are a couple of phrases evaluated in the interactive
loop.

print_string ”Hello\n”;;
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Hello

− : unit = ()

let pi = 4.0 ∗. atan 1.0;;

val pi : float = 3.141593

let square x = x ∗. x;;
val square : float -> float = <fun>

The execution of the first phrase prints the string "Hello\n" to the
terminal. The system indicates that the result of the evaluation is of
type unit. The evaluation of the second phrase binds the intermediate
result of the evaluation of the expression 4.0 * atan 1.0, that is the
float 3.14..., to the variable pi. This execution does not produce any
output; the system only prints the type information and the value that is
bound to pi. The last phrase defines a function that takes a parameter x
and returns the product of x and itself. Because of the type of the binary
primitive operation *., which is float -> float -> float, the system
infers that both x and the the result square x must be of type float.
A mismatch between types, which often reveals a programmer’s error, is
detected and reported:

square ”pi”;;

Characters 7−11:
This expression has type string but is here used with type float

Function definitions may be recursive, provided this is requested explic-
itly, using the keyword rec:

let rec fib n = if n < 2 then 1 else fib(n−1) + fib(n−2);;

val fib : int -> int = <fun>

fib 10;;

− : int = 89

Functions can be passed to other functions as argument, or received as
results, leading to higher-functions also called functionals. For instance,
the composition of two functions can be defined exactly as in mathemat-
ics:

let compose f g = fun x -> f (g x);;
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val compose : (’a -> ’b) -> (’c -> ’a) -> ’c -> ’b = <fun>

The best illustration OCaml of the power of functions might be the func-
tion “power” itself!

let rec power f n =
if n <= 0 then (fun x -> x) else compose f (power f (n−1));;

val power : (’a -> ’a) -> int -> ’a -> ’a = <fun>

Here, the expression (fun x -> x) is the anonymous identity function.
Extending the parallel with mathematics, we may define the derivative
of an arbitrary function f. Since we use numerical rather than formal
computation, the derivative is parameterized by the increment step dx:

let derivative dx f = function x -> (f(x +. dx) −. f(x)) /. dx;;

val derivative : float -> (float -> float) -> float -> float = <fun>

Then, the third derivative sin’’’ of the sinus function can be obtained
by computing the cubic power of the derivative function and applying it
to the sinus function. Last, we calculate its value for the real pi.

let sin’’’ = (power (derivative 1e−5) 3) sin in sin’’’ pi;;

− : float = 0.999999

This capability of functions to manipulate other functions as one would
do in mathematics is almost unlimited... modulo the running time and
the rounding errors.

1.2 The syntax of Core ML

Before continuing with more features of OCaml, let us see how a very
simple subset of the language can be formalized.

In general, when giving a formal presentation of a language, we tend
to keep the number of constructs small by factoring similar constructs as
much as possible and explaining derived constructs by means of simple
translations, such as syntactic sugar.

For instance, in the core language, we can omit phrases. That is, we
transform sequences of bindings such as let x1 = a1; ; let x2 = a2; ; a
into expressions of the form let x1 = a1 in let x2 = a2 in a. Similarly,
numbers, strings, but also lists, pairs, etc. as well as operations on those
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values can all be treated as constants and applications of constants to
values.

Formally, we assume a collection of constants c ∈ C that are parti-
tioned into constructors C ∈ C+ and primitives f ∈ C−. Constants also
come with an arity, that is, we assume a mapping arity from C to IN . For
instance, integers and booleans are constructors of arity 0, pair is a con-
structor of arity 2, arithmetic operations, such as + or × are primitives of
arity 2, and not is a primitive of arity 1. Intuitively, constructors are pas-
sive: they may take arguments, but should ignore their shape and simply
build up larger values with their arguments embedded. On the opposite,
primitives are active: they may examine the shape of their arguments,
operate on inner embedded values, and transform them. This difference
between constants and primitives will appear more clearly below, when
we define their semantics. In summary, the syntax of expressions is given
below:

a ::= x | λx.a | a a︸ ︷︷ ︸
λ-calculus

| c | let x = a in a c ::= C︷ ︸︸ ︷
constructors

|
primitives︸ ︷︷ ︸

f

Implementation notes, file syntax.ml

Expressions can be represented in OCaml by their abstract-syntax trees,
which are elements of the following data-type expr:

type name = Name of string | Int of int;;
type constant = { name : name; constr : bool; arity : int}
type var = string
type expr =
| Var of var
| Const of constant
| Fun of var ∗ expr
| App of expr ∗ expr
| Let of var ∗ expr ∗ expr;;

For convenience, we define auxiliary functions to build constants.

let plus = Const {name = Name ”+”; arity = 2; constr = false}
let times = Const {name = Name ”∗”; arity = 2; constr = false}
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let int n = Const {name = Int n; arity = 0; constr = true};;
Here is a sample program.

let e =
let plus_x n = App (App (plus, Var ”x”), n) in
App (Fun (”x”, App (App (times, plus_x (int 1)), plus_x (int (−1)))),

App (Fun (”x”, App (App (plus, Var ”x”), int 1)),
int 2));;

Of course, a full implementation should also provide a lexer and a parser,
so that the expression e could be entered using the concrete syntax (λx.x∗
x) ((λx.x + 1) 2) and be automatically transformed into the abstract
syntax tree above.

1.3 The dynamic semantics of Core ML

Giving the syntax of a programming language is a prerequisite to the
definition of the language, but does not define the language itself. The
syntax of a language describes the set of sentences that are well-formed
expressions and programs that are acceptable inputs. However, the syn-
tax of the language does not determine how these expressions are to be
computed, nor what they mean. For that purpose, we need to define the
semantics of the language.

(As a counter example, if one uses a sample of programs only as a
pool of inputs to experiment with some pretty printing tool, it does not
make sense to talk about the semantics of these programs.)

There are two main approaches to defining the semantics of program-
ming languages: the simplest, more intuitive way is to give an opera-
tional semantics, which amounts to describing the computation process.
It relates programs —as syntactic objects— between one another, closely
following the evaluation steps. Usually, this models rather fairly the eval-
uation of programs on real computers. This level of description is both
appropriate and convenient to prove properties about the evaluation,
such as confluence or type soundness. However, it also contains many
low-level details that makes other kinds of properties harder to prove.
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This approach is somehow too concrete —it is sometimes said to be “too
syntactic”. In particular, it does not explain well what programs really
are.

The alternative is to give a denotational semantics of programs. This
amounts to building a mathematical structure whose objects, called do-
mains, are used to represent the meanings of programs: every program
is then mapped to one of these objects. The denotational semantics is
much more abstract. In principle, it should not use any reference to
the syntax of programs, not even to their evaluation process. However,
it is often difficult to build the mathematical domains that are used as
the meanings of programs. In return, this semantics may allow to prove
difficult properties in an extremely concise way.

The denotational and operational approaches to semantics are actu-
ally complementary. Hereafter, we only consider operational semantics,
because we will focus on the evaluation process and its correctness.

In general, operational semantics relates programs to answers describ-
ing the result of their evaluation. Values are the subset of answers ex-
pected from normal evaluations.

A particular case of operational semantics is called a reduction seman-
tics. Here, answers are a subset of programs and the semantic relation is
defined as the transitive closure of a small-step internal binary relation
(called reduction) between programs.

The latter is often called small-step style of operational semantics,
sometimes also called Structural Operational Semantics [61]. The former
is big-step style, sometimes also called Natural Semantics [39].

1.3.1 Reduction semantics

The call-by-value reduction semantics for ML is defined as follows: values
are either functions, constructed values, or partially applied constants; a
constructed value is a constructor applied to as many values as the arity
of the constructor; a partially applied constant is either a primitive or a
constructor applied to fewer values than the arity of the constant. This
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is summarized below, writing v for values:

v ::= λx.a | Cn v1 . . . vn︸ ︷︷ ︸
Constructed

values

| cn v1 . . . vk︸ ︷︷ ︸
Partially applied

constants

k < n

In fact, a partially applied constant cn v1 . . . vk behaves as the function
λxk+1. . . . λxn.ck v1 . . . vk xk+1 . . . xn, with k < n. Indeed, it is a value.

Implementation notes, file reduce.ml

Since values are subsets of programs, they can be characterized by a
predicate evaluated defined on expressions:

let rec evaluated = function
Fun (_,_) -> true
| u -> partial_application 0 u

and partial_application n = function
Const c -> (c.constr || c.arity > n)
| App (u, v) -> (evaluated v && partial_application (n+1) u)
| _ -> false;;

The small-step reduction is defined by a set of redexes and is closed by
congruence with respect to evaluations contexts.

Redexes describe the reduction at the place where it occurs; they are
the heart of the reduction semantics:

(λx.a) v −→ a[v/x] (βv)
let x = v in a −→ a[v/x] (Letv)

fn v1 . . . vn −→ a (fn v1 . . . vn, a) ∈ δf

Redexes of the latter form, which describe how to reduce primitives, are
also called delta rules. We write δ for the union

⋃
f∈C−(δf ). For instance,

the rule (δ+) is the relation {(p + q, p + q) | p, q ∈ IN} where n is the
constant representing the integer n.

Implementation notes, file reduce.ml

Redexes are partial functions from programs to programs. Hence, they
can be represented as OCaml functions, raising an exception Reduce
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when there are applied to values outside of their domain. The δ-rules
can be implemented straightforwardly.

exception Reduce;;
let delta_bin_arith op code = function
| App (App (Const { name = Name _; arity = 2} as c,

Const { name = Int x }), Const { name = Int y })
when c = op -> int (code x y)
| _ -> raise Reduce;;

let delta_plus = delta_bin_arith plus ( + );;
let delta_times = delta_bin_arith times ( ∗ );;
let delta_rules = [ delta_plus; delta_times ];;

The union of partial function (with priority on the right) is

let union f g a = try g a with Reduce -> f a;;

The δ-reduction is thus:

let delta =
List.fold_right union delta_rules (fun _ -> raise Reduce);;

To implement (βv), we first need an auxiliary function that substitutes a
variable for a value in a term. Since the expression to be substituted will
always be a value, hence closed, we do not have to perform α-conversion
to avoid variable capture.

let rec subst x v a =
assert (evaluated v);
match a with
| Var y ->

if x = y then v else a
| Fun (y, a’) ->

if x = y then a else Fun (y, subst x v a’)
| App (a’, a’’) ->

App (subst x v a’, subst x v a’’)
| Let (y, a’, a’’) ->

if x = y then Let (y, subst x v a’, a’’)
else Let (y, subst x v a’, subst x v a’’)

| Const c -> Const c;;

Then beta is straightforward:

let beta = function
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| App (Fun (x,a), v) when evaluated v -> subst x v a
| Let (x, v, a) when evaluated v -> subst x v a
| _ -> raise Reduce;;

Finally, top reduction is

let top_reduction = union beta delta;;

The evaluation contexts E describe the occurrences inside programs
where the reduction may actually occur. In general, a (one-hole) con-
text is an expression with a hole —which can be seen as a distinguished
constant, written [·]— occurring exactly once. For instance, λx.x [·] is a
context. Evaluation contexts are contexts where the hole can only occur
at some admissible positions that often described by a grammar. For
ML, the (call-by-value) evaluation contexts are:

E ::= [·] | E a | v E | let x = E in a

We write E[a] the term obtained by filling the expression a in the eval-
uation context E (or in other words by replacing the constant [·] by the
expression a).

Finally, the small-step reduction is the closure of redexes by the con-
gruence rule:

if a −→ a′ then E[a] −→ E[a′].

The evaluation relation is then the transitive closure
?−→ of the small

step reduction −→. Note that values are irreducible, indeed.

Implementation notes, file reduce.ml

There are several ways to treat evaluation contexts in practice. The
most standard solution is not to represent them, i.e. to represent them
as evaluation contexts of the host language, using its run-time stack.
Typically, an evaluator would be defined as follows:

let rec eval =
let eval_top_reduce a = try eval (top_reduction a) with Reduce -> a in
function
| App (a1, a2) ->

let v1 = eval a1 in
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let v2 = eval a2 in
eval_top_reduce (App (v1, v2))

| Let (x, a1, a2) ->
let v1 = eval a1 in
eval_top_reduce (Let (x, v1, a2))

| a ->
eval_top_reduce a;;

let _ = eval e;;

The function eval visits the tree top-down. On the descent it evaluates
all subterms that are not values in the order prescribed by the evaluation
contexts; before ascent, it replaces subtrees bu their evaluated forms. If
this succeeds it recursively evaluates the reduct; otherwise, it simply
returns the resulting expression.

This algorithm is efficient, since the input term is scanned only once,
from the root to the leaves, and reduced from the leaves to the root.
However, this optimized implementation is not a straightforward imple-
mentation of the reduction semantics.

If efficiency is not an issue, the step-by-step reduction can be recov-
ered by a slight change to this algorithm, stopping reduction after each
step.

let rec eval_step = function
| App (a1, a2) when not (evaluated a1) ->

App (eval_step a1, a2)
| App (a1, a2) when not (evaluated a2) ->

App (a1, eval_step a2)
| Let (x, a1, a2) when not (evaluated a1) ->

Let (x, eval_step a1, a2)
| a -> top_reduction a;;

Here, contexts are still implicit, and redexes are immediately reduced
and put back into their evaluation context. However, the eval_step

function can easily be decomposed into three operations: eval_context
that returns an evaluation context and a term, the reduction per say, and
the reconstruction of the result by filling the result of the reduction back
into the evaluation context. The simplest representation of contexts is
to view them as functions form terms to terms as follows:



18 CHAPTER 1. CORE ML

type context = expr -> expr;;
let hole : context = fun t -> t;;
let appL a t = App (t, a)
let appR a t = App (a, t)
let letL x a t = Let (x, t, a)
let ( ∗∗ ) e1 (e0, a0) = (fun a -> e1 (e0 a)), a0;;

Then, the following function split a term into a pair of an evaluation
context and a term.

let rec eval_context : expr -> context ∗ expr = function
| App (a1, a2) when not (evaluated a1) ->

appL a2 ∗∗ eval_context a1
| App (a1, a2) when not (evaluated a2) ->

appR a1 ∗∗ eval_context a2
| Let (x, a1, a2) when not (evaluated a1) ->

letL x a2 ∗∗ eval_context a1
| a -> hole, a;;

Finally, it the one-step reduction rewrites the term as a pair E[a] of an
evaluation context E and a term t, apply top reduces the term a to a′,
and returns E[a], exactly as the formal specification.

let eval_step a = let c, t = eval_context a in c (top_reduction t);;

The reduction function is obtain from the one-step reduction by iterating
the process until no more reduction applies.

let rec eval a = try eval (eval_step a) with Reduce -> a ;;

This implementation of reduction closely follows the formal definition. Of
course, it is less efficient the direct implementation. Exercise 1 presents
yet another solution that combines small step reduction with an efficient
implementation.

Remark 1 The following rule could be taken as an alternative for (Letv).

let x = v in a −→ (λx.a) v

Observe that the right hand side can then be reduced to a[v/x] by (βv).
We chose the direct form, because in ML, the intermediate form would
not necessarily be well-typed.
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Example 1 The expression (λx.(x ∗ x)) ((λx.(x + 1)) 2) is reduced to
the value 9 as follows (we underline the sub-term to be reduced):

(λx.(x ∗ x)) ((λx.(x + 1))) 2)

−→ (λx.(x ∗ x)) (2 + 1) (βv)
−→ (λx.(x ∗ x)) 3 (δ+)

−→ (3 ∗ 3) (βv)

−→ 9 (δ∗)

We can check this example by running it through the evaluator:

eval e;;

− : expr = Const {name=Int 9; constr=true; arity=0}

Exercise 1 ((**) Representing evaluation contexts) Evaluation
contexts are not explicitly represented above. Instead, they are left im-
plicit from the runtime stack and functions from terms to terms. In
this exercise, we represent evaluation contexts explicitly into a dedicated
data-structure, which enables to examined them by pattern matching.

In fact, it is more convenient to hold contexts by their hole—where
reduction happens. To this aim, we represent them upside-down, follow-
ing Huet’s notion of zippers [32]. Zippers are a systematic and efficient
way of representing every step while walking along a tree. Informally, the
zipper is closed when at the top of the tree; walking down the tree will
open up the top of the zipper, turning the top of the tree into backward-
pointers so that the tree can be rebuilt when walking back up, after some
of the subtrees might have been changed.

Actually, the zipper definition can be read from the formal BNF defi-
nition of evaluations contexts:

E ::= [·] | E a | v E | let x = E in a

The OCaml definition is:

type context =
| Top
| AppL of context ∗ expr
| AppR of value ∗ context
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| LetL of string ∗ context ∗ expr
and value = int ∗ expr

The left argument of constructor AppR is always a value. A value is a
expression of a certain form. However, the type system cannot enfore this
invariant. For sake of efficiency, values also carry their arity, which is
the number of arguments a value must be applied to before any reduction
may occur. For instance, a constant of arity k is a value of arity k. A
function is a value of arity 1. Hence, a fully applied contructor such as
1 will be given an strictly positive arity, e.g. 1.

Note that the type context is linear, in the sense that constructors have
at more one context subterm. This leads to two opposite representations
of contexts. The naive representation of context let x = [·] a2 in a3
is LetL (x, AppL (Top, a2)), a3). However, we shall represent them
upside-down by the term AppL (LetL (x, Top, a3), a2), following the
idea of zippers —this justifies our choice of Top rather than Hole for the
empty context. This should read “a context where the hole is below the
left branch of an application node whose right branch is a3 and which is
itself (the left branch of) a binding of x whose body is a2 and which is
itself at the top”.

A term a0 can usually be decomposed as a one hole context E[a] in
many ways if we do not impose that a is a reducible. For instance, taking
(a1 a2) a3, allows the following decompositions

[·][let x = a1 a2 in a3] (let x = [·] in a3)[a1 a2]

(let x = [·] a2 in a3)[a1] (let x = a1 [·] in a3)[a2]

(The last decompistion is correct only when a1 is a value.) These decom-
positions can be described by a pair whose left-hand side is the context
and whose right-hand side is the term to be placed in the hole of the
context:

Top , Let (x, App (a1, a2), a3)
LetL (x, Top , a3 ), App (a1, a2)
AppL (LetL (Top, a2), a3 ), a1

AppR ((k, a1), LetL (Top, a3)) a2
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They can also be represented graphically:

(·, ·)

Top Let(x)

App

a1 a2

a3

(·, ·)

LetL(x)

Top a3

App

a1 a2

zip

unzip

(·, ·)

AppL

LetL(x)

Top a2

a3

a1

zip

unzip

As shown in the graph, the different decompositions can be obtained by
zipping (push some of the term structure inside the context) or unzipping
(popping the structure from the context back to the term). This allows a
simple change of focus, and efficient exploration and transformation of
the region (both up the context and down the term) at the junction.

Give a program context_fill of type context * expr -> expr that
takes a decomposition (E, a) and returns the expression E[a]. Answer
Define a function decompose_down of type context * expr -> context * expr

that given a decomposition (E, a) searches for a sub-context E ′ of E in
evaluation position and the residual term a′ at that position and returns
the decomposition E[E ′[·]], a′ or it raises the exception Value k if a is a
value of arity k in evaluation position or the exception Error if a is an
error (irreducible but not a value) in evaluation position. Answer
Starting with (Top, a), we may find the first position (E0, a0) where re-
duction may occur and then top-reduce a0 into a′0. After reduction, one
wish to find the next evaluation position, say (En, an) given (En−1, a

′
n−1)

and knowing that En−1 is evaluation context but a′n−1 may know be a
value.

Define an auxilliary function decompose_up that takes an integer k
and a decomposition (c, v) where v is a value of arity k and find a decom-
position of c[v] or raises the exception Not_found when non exists. The
integer k represents the number of left applications that may be blindly
unfolded before decomposing down. Answer
Define a function decompose that takes a context pair (E, a) and finds a
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decomposition of E[a]. It raises the exception Not_found if no decompo-
sition exists and the exception Error if an irreducible term is found in
evaluation position. Answer

Finally, define the eval_step reduction, and check the evaluation
steps of the program e given above and recover the function reduce of
type expr -> expr that reduces an expression to a value. Answer
Write a pretty printer for expressions and contexts, and use it to trace
evaluation steps, automatically. Answer
Then, it suffices to use the OCaml toplevel tracing capability for func-
tions decompose and reduce_in to obtain a trace of evaluation steps (in
fact, since the result of one function is immediately passed to the other,
it suffices to trace one of them, or to skip output of traces).

#trace decompose;;
#trace reduce_in;;
let _ = eval e;;

decompose ← [( fun x −> (x + 1) ∗ (x + -1)) ((fun x −> x + 1) 2)]
reduce in ← (fun x −> (x + 1) ∗ (x + -1)) [(fun x −> x + 1) 2]
decompose ← (fun x −> (x + 1) ∗ (x + -1)) [2 + 1]
reduce in ← (fun x −> (x + 1) ∗ (x + -1)) [2 + 1]
decompose ← (fun x −> (x + 1) ∗ (x + -1)) [3]
reduce in ← [( fun x −> (x + 1) ∗ (x + -1)) 3]
decompose ← [(3 + 1) ∗ (3 + -1)]
reduce in ← [3 + 1] ∗ (3 + -1)
decompose ← [4] ∗ (3 + -1)
reduce in ← 4 ∗ [3 + -1]
decompose ← 4 ∗ [2]
reduce in ← [4 ∗ 2]
decompose ← [8]
raises Not_found

− : expr = Const {name = Int 8; constr = true; arity = 0}

1.3.2 Properties of the reduction

The strategy we gave is call-by-value: the rule (βv) only applies when the
argument of the application has been reduced to value. Another simple
reduction strategy is call-by-name. Here, applications are reduced before
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the arguments. To obtain a call-by-name strategy, rules (βv) and (Letv)
need to be replaced by more general versions that allows the arguments
to be arbitrary expressions (in this case, the substitution operation must
carefully avoid variable capture).

(λx.a) a′ −→ a[a′/x] (βn)
let x = a′ in a −→ a[a′/x] (Letn)

Simultaneously, we must restrict evaluation contexts to prevent reduc-
tions of the arguments before the reduction of the application itself; ac-
tually, it suffices to remove v E and let x = E in a from evaluations
contexts.

En ::= [·] | En a

There is, however, a slight difficulty: the above definition of evaluation
contexts does not work for constants, since δ-rules expect their argu-
ments to be reduced. If all primitives are strict in their arguments, their
arguments could still be evaluated first, then we can add the following
evaluations contexts:

En ::= . . . | (fn v1 . . . vk−1 Ek ak+1 ...an)

However, in a call-by-name semantics, one may wish to have constants
such as fst that only forces the evaluation of the top-structure of the
terms. This is is slightly more difficult to model.

Example 2 The call-by-name reduction of the example 1 where all prim-
itives are strict is as follows:

(λx.x ∗ x) ((λx.(x + 1)) 2)

−→ ((λx.(x + 1)) 2) ∗ ((λx.(x + 1)) 2) (βn)

−→ (2 + 1) ∗ ((λx.(x + 1)) 2) (βn)

−→ 3 ∗ ((λx.(x + 1)) 2) (δ+)

−→ 3 ∗ (2 + 1) (βn)

−→ 3 ∗ 3 (δ+)
−→ 9 (δ∗)



24 CHAPTER 1. CORE ML

As illustrated in this example, call-by-name may duplicate some com-
putations. As a result, it is not often used in programming languages.
Instead, Haskell and other lazy languages use a call-by-need or lazy eval-
uation strategy: as with call-by-name, arguments are not evaluated prior
to applications, and, as with call-by-value, the evaluation is shared be-
tween all uses of the same argument. However, call-by-need semantics
are slightly more complicated to formalize than call-by-value and call-by-
name, because of the formalization of sharing. They are quite simple to
implement though, using a reference to ensure sharing and closures to de-
lay evaluations until they are really needed. Then, the closure contained
in the reference is evaluated and the result is stored in the reference for
further uses of the argument.

Classifying evaluations of programs Remark that the call-by-value
evaluation that we have defined is deterministic by construction. Ac-
cording to the definition of the evaluation contexts, there is at most
one evaluation context E such that a is of the form E[a′]. So, if the
evaluation of a program a reaches program a†, then there is a unique
sequence a = a0 −→ a1 −→ . . . an = a†. Reduction may become non-
deterministic by a simple change in the definition of evaluation contexts.
(For instance, taking all possible contexts as evaluations context would
allow the reduction to occur anywhere.)

Moreover, reduction may be left non-deterministic on purpose; this
is usually done to ease compiler optimizations, but at the expense of
semantic ambiguities that the programmer must then carefully avoid.
That is, when the order of evaluation does matter, the programmer has
to use a construction that enforces the evaluation in the right order.

In OCaml, for instance, the relation is non-deterministic: the order of
evaluation of an application is not specified, i.e. the evaluation contexts
are:

E ::= [·] | E a | a E
⇑︷ ︸︸ ︷

Evaluation is possible even if a is not reduced

| let x = E in a

When the reduction is not deterministic, the result of evaluation may still
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be deterministic if the reduction is Church-Rosser. A reduction relation
has the Church-Rosser property, if for any expression a that reduces both
to a′ or a′′ (following different branches) there exists an expression a′′′

such that both a′ and a′′ can in turn be reduced to a′′′. (However, if the
language has side effects, Church Rosser property will very unlikely be
satisfied).

For the (deterministic) call-by-value semantics of ML, the evaluation
of a program a can follow one of the following patterns:

a −→ a1 −→ . . .

{
an ≡ v normal evaluation
an 6−→ ∧ an 6≡ v run-time error
an −→ . . . loop

Normal evaluation terminates, and the result is a value. Erroneous eval-
uation also terminates, but the result is an expression that is not a value.
This models the situation when the evaluator would abort in the mid-
dle of the evaluation of a program. Last, evaluation may also proceed
forever.

The type system will prevent run-time errors. That is, evaluation of
well-typed programs will never get “stuck”. However, the type system
will not prevent programs from looping. Indeed, for a general purpose
language to be interesting, it must be Turing complete, and as a result
the termination problem for admissible programs cannot be decidable.
Moreover, some non-terminating programs are in fact quite useful. For
example, an operating system is a program that should run forever, and
one is usually unhappy when it terminates —by accident.

Implementation notes

In the evaluator, errors can be observed as being irreducible programs
that are not values. For instance, we can check that e evaluates to a
value, while (λx.y) 1 does not reduce to a value.

evaluated (eval e);;
evaluated (eval (App (Fun (”x”, Var ”y”), int 1)));;

Conversely, termination cannot be observed. (One can only suspect non-
termination.)
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1.3.3 Big-step operational semantics

The advantage of the reduction semantics is its conciseness and modu-
larity. However, one drawback of is its limitation to cases where values
are a subset of programs. In some cases, it is simpler to let values differ
from programs. In such cases, the reduction semantics does not make
sense, and one must relates programs to answers in a simple “big” step.

A typical example of use of big-step semantics is when programs are
evaluated in an environment e that binds variables (e.g. free variables
occurring in the term to be evaluated) to values. Hence the evaluation
relation is a triple ρ ° a ⇒ r that should be read “In the evaluation
environment e the program a evaluates to the answer r.”

Values are partially applied constants, totally applied constructors as
before, or closures. A closure is a pair written 〈λx.a, e〉 of a function
and an environment (in which the function should be executed). Finally,
answers are values or plus a distinguished answer error.

ρ ::= ∅ | ρ, x 7→ v
v ::= 〈λx.a, ρ〉 | Cn v1 . . . vn︸ ︷︷ ︸

Constructed
values

| cn v1 . . . vk︸ ︷︷ ︸
Partially applied

constants

k < n

r ::= v | error
The big-step evaluation relation (natural semantics) is often described

via inference rules.

An inference rule written
P1 ... Pn

C
is composed of premises P1,

. . .Pn and a conclusion C and should be read as the implication: P1 ∧

. . . Pn =⇒ C; the set of premises may be empty, in which case the infer-
ence rule is an axiom C.

The inference rules for the big-step operational semantics of Core ML
are described in figure 1.1. For simplicity, we give only the rules for
constants of arity 1. As for the reduction, we assume given an evaluation
relation for primitives.

Rules can be classified into 3 categories:

• Proper evaluation rules: e.g. Eval-Fun, Eval-App, describe the
evaluation process itself.
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Figure 1.1: Big step reduction rules for Core ML

Eval-Const
ρ ° a⇒ v

ρ ° C1 a⇒ C1 v

Eval-Const-Error
ρ ° a⇒ error

ρ ° c a⇒ c error

Eval-Prim
ρ ° a⇒ v f 1 v −→ v′

ρ ° f 1 a⇒ v′

Eval-Prim-Error
ρ ° a⇒ v f 1 v 6−→ v′

ρ ° f 1 a⇒ error

Eval-Var
z ∈ dom (ρ)

ρ ° z ⇒ ρ(v)

Eval-Fun

e ` λx.a⇒ 〈λx.a, ρ〉

Eval-App
ρ ` a⇒ 〈λx.a0, ρ0〉 ρ ` a′ ⇒ v ρ0, x 7→ v ` a0 : v′

ρ ` a a′ ⇒ v′

Eval-App-Error
ρ ` a⇒ C1 v1

ρ ` a a′ ⇒ error

Eval-App-Error-Left
ρ ` a⇒ error

ρ ` a a′ ⇒ error

Eval-App-Error-Right
ρ ` a⇒ 〈λx.a0, ρ0〉 ρ ` a′ ⇒ error

ρ ` a a′ ⇒ error

Eval-Let
ρ ` a⇒ v ρ, x 7→ v ` a′ ⇒ v′

ρ ` let x = a in a′ ⇒ v′

Eval-Let-Error
ρ ` a⇒ error

ρ ` let x = a in a′ ⇒ error
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• Error rules: e.g. Eval-App-Error describe ill-formed computa-
tions.

• Error propagation rules: Eval-App-Left, Eval-App-Right de-
scribe the propagation of errors.

Note that error propagation rules play an important role, since they de-
fine the evaluation strategy. For instance, the combination of rules Eval-
App-Error-Left and Eval-App-Error-Right states that the func-
tion must be evaluated before the argument in an application. Thus,
the burden of writing error rules cannot be avoided. As a result, the
big-step operation semantics is much more verbose than the small-step
one. In fact, big-step style fails to share common patterns: for instance,
the reduction of the evaluation of the arguments of constants and of the
arguments of functions are similar, but they must be duplicated because
the intermediate state v1 v2 is not well-formed —it is not yet value, but
no more an expression!

Another problem with the big-step operational semantics is that it
cannot describe properties of diverging programs, for which there is not
v such that ρ ° a⇒ v. Furthermore, this situation is not a characteristic
of diverging programs, since it could result from missing error rules.

The usual solution is to complement the evaluation relation by a
diverging predicate ρ ° a ⇑.

Implementation notes

The big-step evaluation semantics suggests another more direct imple-
mentation of an interpreter.

type env = (string ∗ value) list
and value =
| Closure of var ∗ expr ∗ env
| Constant of constant ∗ value list

To keep closer to the evaluation rules, we represent errors explicitly using
the following answer datatype. In practice, one would take avantage of
exceptions making value be the default answer and Error be an excep-
tion instead. The construction Error would also take an argument to
report the cause of error.
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type answer = Error | Value of value;;

Next comes delta rules, which abstract over the set of primitives.

let val_int u =
Value (Constant ({name = Int u; arity = 0; constr = true}, []));;

let delta c l =
match c.name, l with
| Name ”+”, [ Constant ({name=Int u}, []); Constant ({name=Int v}, [])] ->

val_int (u + v)
| Name ”∗”, [ Constant ({name=Int u}, []); Constant ({name=Int v}, [])] ->

val_int (u ∗ v)
| _ ->

Error;;

Finally, the core of the evaluation.

let get x env =
try Value (List.assoc x env) with Not_found -> Error;;

let rec eval env = function
| Var x -> get x env
| Const c -> Value (Constant (c, []))
| Fun (x, a) -> Value (Closure (x, a, env))
| Let (x, a1, a2) ->

begin match eval env a1 with
| Value v1 -> eval ((x, v1)::env) a2
| Error -> Error
end

| App (a1, a2) ->
begin match eval env a1 with
| Value v1 ->

begin match v1, eval env a2 with
| Constant (c, l), Value v2 ->

let k = List.length l + 1 in
if c.arity < k then Error
else if c.arity > k then Value (Constant (c, v2::l))
else if c.constr then Value (Constant (c, v2::l))
else delta c (v2::l)

| Closure (x, e, env0), Value v2 ->
eval ((x, v2 ) :: env0) e
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| _, Error -> Error
end

| Error -> Error
end

| _ -> Error ;;

Note that treatment of errors in the big-step semantics explicitly specifies
a left-to-right evaluation order, which we have carefully reflected in the
implementation. (In particular, if a1 diverges and a2 evaluates to an
error, then a1 a2 diverges.)

eval [] e ;;

− : answer =
Value (Constant ({name = Int 9; constr = true; arity = 0}, []))

While the big-step semantics is less interesting (because less precise)
than the small-steps semantics in theory, its implementation is intuitive,
simple and lead to very efficient code.

This seems to be a counter-example of practice meeting theory, but
actually it is not: the big-step implementation could also be seen as
efficient implementation of the small-step semantics obtained by (very
aggressive) program transformations.

Also, the non modularity of the big-step semantics remains a seri-
ous drawback in practice. In conclusion, although the most commonly
preferred the big-step semantics is not always the best choice in practice.

1.4 The static semantics of Core ML

We start with the less expressive but simpler static semantics called sim-
ple types. We present the typing rules, explain type inference, unification,
and only then we shall introduce polymorphism. We close this section
with a discussion about recursion.



1.4. THE STATIC SEMANTICS OF CORE ML 31

1.4.1 Types and programs

Expressions of Core ML are untyped —they do not mention types. How-
ever, as we have seen, some expressions do not make sense. These are
expressions that after a finite number of reduction steps would be stuck,
i.e. irreducible while not being a value. This happens, for instance when
a constant of arity 0, say integer 2, is applied, say to 1. To prevent this
situation from happening one must rule out not only stuck programs,
but also all programs reducing to stuck programs, that is a large class
of programs. Since deciding whether a program could get stuck during
evaluation is equivalent to evaluation itself, which is undecidable, to be
safe, one must accept to also rule out other programs that would behave
correctly.

Exercise 2 ((*) Progress in lambda-calculus) Show that, in the ab-
sence of constants, programs of Core ML without free variables ( i.e.
lambda-calculus) are never stuck.

Types are a powerful tool to classify programs such that well-typed
programs cannot get stuck during evaluations. Intuitively, types ab-
stract over from the internal behavior of expressions, remembering only
the shape (types) of other expression (integers, booleans, functions from
integers to integers, etc.), that can be passed to them as arguments or
returned as results.

We assume given a denumerable set of type symbols g ∈ G. Each
symbol should be given with a fixed arity. We write gn to mean that g
is of arity n, but we often leave the arity implicit. The set of types is
defined by the following grammar.

τ ::= α | gn(τ1, . . . τn)

Indeed, functional types, i.e. the type of functions play a crucial role.
Thus, we assume that there is a distinguished type symbol of arity 2,
the right arrow “→” in G; we also write τ → τ ′ for → (τ, τ ′). We write
ftv(τ) the set of type variables occurring in τ .

Types of programs are given under typing assumptions, also called
typing environments, which are partial mappings from program variables
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Figure 1.2: Summary of types, typing environments and judgments

Types τ ::= α | τ → τ | gn(τ1, . . . τn)

Typing environments A ::= ∅ | A, z : τ
z ::= x | c

Typing judgments A ` a : τ

Figure 1.3: Typing rules for simple types

Var-Const
z ∈ dom (A)

A ` x : A(z)

Fun
A, x : τ ` a : τ ′

A ` λx.a : τ → τ ′

App
A ` a : τ ′ → τ A ` a′ : τ ′

A ` a a′ : τ

and constants to types. We use letter z for either a variable x or a
constant c. We write ∅ for the empty typing environment and A, x : τ for
the function that behaves as A except for x that is mapped to τ (whether
or not x is in the domain of A). We also assume given an environment A0

that assigns types to constants. The typing of programs is represented
by a ternary relation, written A ` a : τ and called typing judgments,
between type environments A, programs a, and types τ . We summarize
all these definitions (expanding the arrow types) in figure 1.2.

Typing judgments are defined as the smallest relation satisfying the
inference rules of figure 1.3. (See 1.3.3 for an introduction to inference
rules)

Closed programs are typed the initial environment A0. Of course, we
must assume that the type assumptions for constants are consistent with
their arities. This is the following asumption.

Assumption 0 (Initial environment) The initial type environment A0

has the set of constants for domain, and respects arities. That is, for any
Cn ∈ dom (A0) then A0(C

n) is of the form τ1 → . . . τn → τ0.

Type soundness asserts that well-typed programs cannot go wrong.
This actually results from two stronger properties, that (1) reduction
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preserves typings, and (2) well-typed programs that are not values can
be further reduced. Of course, those results can be only proved if the
types of constants and their semantics (i.e. their associated delta-rules)
are chosen accordingly.

To formalize soundness properties it is convenient to define a relation
v on programs to mean the preservation of typings:

(a v a′) ⇐⇒ ∀(A, τ)(A ` a : τ =⇒ A ` a′ : τ)

The relation v relates the set of typings of two programs programs,
regardless of their dynamic properties.

The preservation of typings can then be stated as v being a smaller
relation than reduction. Of course, we must make the following assump-
tions enforcing consistency between the types of constants and their se-
mantics:

Assumption 1 (Subject reduction for constants) The δ-reduction
preserves typings, i.e., (δ) ⊆ (v).

Theorem 1 (Subject reduction) Reduction preserves typings

Assumption 2 (Progress for constants) The δ-reduction is well-defi-
ned. If A0 ` fn v1 . . . vn : τ , then fn v1 . . . vn ∈ dom (δ)f

Theorem 2 (Progress) Programs that are well-typed in the initial en-
vironment are either values or can be further reduced.

Remark 2 We have omitted the Let-nodes from expressions. With sim-

ple types, we can use the syntactic sugar let x = a1 in a2
4
= (λx.a2) a1.

Hence, we could derived the following typing rule, so as to type those
nodes directly:

Let-Mono
A ` a1 : τ1 A, x : τ1 ` a2 : τ2

A ` let x = a1 in a2 : τ
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1.4.2 Type inference

We have seen that well-typed terms cannot get stuck, but can we check
whether a given term is well-typed? This is the role of type inference.
Moreover, type inference will characterize all types that can be assigned
to a well-typed term.

The problem of type inference is: given a type environment A, a term
a, and a type τ , find all substitutions θ such that θ(A) ` a : θ(τ). A
solution θ is a principal solution of a problem P if all other solutions are
instances of θ, i.e. are of the form θ′ ◦ θ for some substitution θ′.

Theorem 3 (principal types) The ML type inference problem admits
principal solutions. That is, any solvable type-inference problem admits
a principal solution.

Moreover, there exists an algorithm that, given any type-inference prob-
lem, either succeeds and returns a principal solution or fails if there is no
solution.

Usually, the initial type environment A0 is closed, i.e. it has no free
type variables. Hence, finding a principal type for a closed program a in
the initial type environment is the same problem as finding a principal
solution to the type inference problem (A, a, α).

Remark 3 There is a variation to the type inference problem called typ-
ing inference: given a term a, find the smallest type environment A and
the smallest type τ such that A ` a : τ . ML does not have principal
typings. See [35, 34, 76] for details.

In the rest of this section, we show how to compute principal solutions
to type inference problems. We first introduce a notation A . a : τ for
type inference problems. Note that A . a : τ does not mean A ` a : τ .
The former is a (notation for a) triple while the latter is the assertion
that some property holds for this triple. A substitution θ is a solution to
the type inference problem A . a : τ if θ(A) ` a : θ(τ). A key property
of type inference problems is that their set of solutions are closed by
instantiation (i.e. left-composition with an arbitrary substitution). This
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results from a similar property for typing judgments: if A ` a : τ , then
θ(A) ` a : θ(τ) for any substitution θ.

This property allows to treat type inference problems as constraint
problems, which are a generalization of unification problems. The con-
straint problems of interest here, written with letter U , are of one the
following form.

U ::= A . a : τ︸ ︷︷ ︸
typing problem

| τ1
·
= . . . τn︸ ︷︷ ︸

multi-equation

| U ∧ U | ∃α.U | ⊥ | >

The two first cases are type inference problems and multi-equations (uni-
fication problems); the other forms are conjunctions of constraint prob-
lems, and the existential quantification problem. For convenience, we
also introduce a trivial problem > and an unsolvable problem ⊥, al-
though these are definable.

It is convenient to identify constraint problems modulo the following
equivalences, which obviously preserve the sets of solutions: the symbol
∧ is commutative and associative. The constraint problem ⊥ is absorbing
and > is neutral for ∧, that is U ∧⊥ = ⊥ and U ∧> = >. We also treat
∃α. U modulo renaming of bound variables, and extrusion of quantifiers;
that is, if α is not free in U then ∃α′. U = ∃α.U [α/α′] and U ∧ ∃α.U ′ =
∃α. (U ∧ U ′).

Type inference can be implemented by a system of rewriting rules that
reduces any type inference problem to a unification problem (a constraint
problem that does not constraint any type inference problem). In turns,
type inference problems can then be resolved using standard algorithms
(and also given by rewriting rules on unificands). Rewriting rules on

unificands are written either U −→ U ′ (or
U

U ′
Ã) and should be read “U

rewrites to U ′”. Each rule should preserve the set of solutions, so as to
be sound and complete.

The rules for type inference are given in figure 1.4. Applied in any
order, they reduce any typing problem to a unification problem. (Indeed,
every rule decomposes a type inference problem to smaller ones, where
the size is measured by the height of the program expression.)
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Figure 1.4: Simplification of type inference problems

I-Var-Fail

if x /∈ dom (A)
A . x : τ

⊥ Ã

I-Var

if x ∈ dom (A)
A . x : τ

A(x)
·
= τ

Ã

I-Fun α1, α2 /∈ ftv(τ) ∪ ftv(A)
A . λx.a : τ

∃α1, α2. (A, x : α1 . a : α2 ∧ τ
·
= α1 → α2)

Ã

I-App α /∈ ftv(τ) ∪ ftv(A)
A . a1 a2 : τ

∃α. (A . a1 : α→ τ ∧ A . a2 : α)
Ã

For Let-bindings, we can either treat them as syntactic sugar and
the rule Let-Sugar or use the simplification rule derived from the rule
Let-Mono:

Let-Sugar

A . let x = a1 in a2 : τ

A . (λx.a2) a1 : τ
Ã

Let-Mono

A . let x = a1 in a2 : τ

∃α. (A . a1 : α ∧ A, x : α . a2 : τ)
Ã

Implementation notes, file infer.ml

Since they are infinitely many constants (they contain integers), we rep-
resent the initial environment as a function that maps constants to types.
It raises the exception Free when the requested constant does not exist.

We slightly differ from the formal presentation, by splitting bindings
for constants (here represented by the global function type_of_const)
and binding for variables (the only one remaining in type environments).

exception Undefined_constant of string
let type_of_const c =
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let int3 = tarrow tint (tarrow tint tint) in
match c.name with
| Int _ -> tint
| Name (”+” | ”∗”) -> int3
| Name n -> raise (Undefined_constant n);;

exception Free_variable of var
let type_of_var tenv x =

try List.assoc x tenv
with Not_found -> raise (Free_variable x)

let extend tenv (x, t) = (x, t)::tenv;;

Type inference uses the function unify defined below to solved unifica-
tion problems.

let rec infer tenv a t =
match a with
| Const c -> funify (type_of_const c) t
| Var x -> funify (type_of_var tenv x) t

| Fun (x, a) ->
let tv1 = tvar() and tv2 = tvar() in
infer (extend tenv (x, tv1)) a tv2;
funify t (tarrow tv1 tv2)

| App (a1, a2) ->
let tv = tvar() in
infer tenv a1 (tarrow tv t);
infer tenv a2 tv

| Let (x, a1, a2) ->
let tv = tvar() in
infer tenv a1 tv;
infer (extend tenv (x, tv)) a2 t;;

let type_of a = let tv = tvar() in infer [] a tv; tv;;

As an example:

type_of e;;



38 CHAPTER 1. CORE ML

1.4.3 Unification for simple types

Normal forms for unification problems are ⊥, >, or ∃α.U where each
U is a conjunction of multi-equations and each multi-equation contains
at most one non-variable term. (Such multi-equations are of the form

α1
·
= . . . αn

·
= τ or α

·
= τ for short.) Most-general solutions can be

obtained straightforwardly from normal forms (that are not ⊥).

The first step is to rearrange multi-equations of U into the conjunction

α1
·
= τ1 ∧ . . . αn

·
= τn such that a variable of αj never occurs in τi for

i ≤ j. (Remark, that since U is in normal form, hence completely merged,
variables α1, . . .αn are all distinct.) If no such ordering can be found,
then there is a cycle and the problem has no solution. Otherwise, the
composition (α1 7→ τ1) ◦ . . . (αn 7→ τn) is a principal solution.

For instance, the unification problem (g1 → α1)→ α1
·
= α2 → g2 can

be reduced to the equivalent problem α1
·
= g2 ∧ α2

·
= (g1 → α1), which

is in a solved form. Then, {α1 7→ g2, α2 7→ (g1 → g2)} is a most general
solution.

The rules for unification are standard and described in figure 1.5.
Each rule preserves the set of solutions. This set of rules implements the
maximum sharing so as to avoid duplication of computations. Auxiliary
variables are used for sharing: the rule Generalize allows to replace
any occurrence of a subterm τ by a variable α and an additional equation

α
·
= τ . If it were applied alone, rule Generalize would reduce any

unification problem into one that only contains small terms, i.e. terms
of size one.

In order to obtain maximum sharing, non-variable terms should never
be copied. Hence, rule Decompose requires that one of the two terms
to be decomposed is a small term—which is the one used to preserve
sharing. In case neither one is a small term, rule Generalize can always
be applied, so that eventually one of them will become a small term.
Relaxing this constraint in the Decompose rule would still preserve the
set of solutions, but it could result in unnecessarily duplication of terms.
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Figure 1.5: Unification rules for simple types

Merge

α
·
= e1 ∧ α

·
= e2

α
·
= e1

·
= e2

Ã

Decompose

g(αi∈I
i )

·
= g(τ i∈I

i )
·
= e

g(αi∈I
i )

·
= e ∧

∧i∈I
(αi

·
= τi)

Ã

Fail if g1 6= g2

g1(τ 1)
·
= g2(τ 2)

·
= e

⊥ Ã

Generalize if τ0 /∈ V and
α /∈ ftv(g(α, τ0, τ

′)) ∪ ftv(e)

g(τ , τ0, τ
′)
·
= e

∃α.
(
g(τ , α, τ ′)

·
= e ∧ α

·
= τ0

)Ã

Trivial

α
·
= α

·
= e

α
·
= e

Ã

Cycle
if αi+1 ∈ ftv(ei), α1 ∈ τ, τ ∈ en \ V∧n

i=1
(αi

·
= ei) −→ ⊥

Each of these rules except (the side condition of) the Cycle rule
have a constant cost. Thus, to be efficient, checking that the Cycle rule
does not apply should preferably be postponed to the end. Indeed, this
can then be done efficiently, once for all, in linear time on the size of the
whole system of equations.

Note that rules for solving unificands can be applied in any order.
They will always produce the same result, and more or less as efficiently.
However, in case of failure, the algorithm should also help the user and
report intelligible type-error messages. Typically, the last typing problem
that was simplified will be reported together with an unsolvable subset of
the remaining unification problem. Therefore, error messages completely
depend on the order in which type inference and unification problems are
reduced. This is actually an important matter in practice and one should
pick a strategy that will make error report more pertinent. However,
there does not seem to be an agreement on a best strategy, so far.
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Implementation notes, file unify.ml

Before we describe unification itself, we must consider the representation
of types and unificands carefully. As we shall see below, the two defini-
tions are interleaved: unificands are pointers between types, and types
can be represented by short types (of height at most 1) whose leaves are
variables constrained to be equal to some other types.

More precisely, a multi-equation in canonical form α1
·
= α2

·
= . . . τ

can be represented as a chain of indirections α1 7→ α2 7→ . . . τ , where
7→ means “has the same canonical element as” and is implemented by a
link (a pointer); the last term of the chain —a variable or a non-variable
type— is the canonical element of all the elements of the chain. Of course,
it is usually chosen arbitrarily. Conversely, a type τ can be represented

by a variable α and an equation α
·
= τ , i.e. an indirection α 7→ τ .

A possible implementation for types in OCaml is:

type type_symbol = Tarrow | Tint
type texp = { mutable texp : node; mutable mark : int }
and node = Desc of desc | Link of texp
and desc = Tvar of int | Tcon of type_symbol ∗ texp list;;

The field mark of type texp is used to mark nodes during recursive visits.

Variables are automatically created with different identities. This
avoid dealing with extrusion of existential variables. We also number
variables with integers, but just to simplify debugging (and reading) of
type expressions.

let count = ref 0
let tvar() = incr count; ref (Desc (Tvar !count));;

A conjunction of constraint problems can be inlined in the graph rep-

resentation of types. For instance, α1
·
= α2 → α2 ∧ α2

·
= τ can be

represented as the graph α1 7→ (α2 → α2) where α2 7→ τ .

Non-canonical constraint problems do not need to be represented ex-
plicitly, because they are reduced immediately to canonical unificands
(i.e. they are implicitly represented in the control flow), or if non-
solvable, an exception will be raised.

We define auxiliary functions that build types, allocate markers, cut
off chains of indirections (function repr), and access the representation



1.4. THE STATIC SEMANTICS OF CORE ML 41

of a type (function desc).

let texp d = { texp = Desc d; mark = 0 };;
let count = ref 0
let tvar() = incr count; texp (Tvar !count);;
let tint = texp (Tcon (Tint, []))
let tarrow t1 t2 = texp (Tcon (Tarrow, [t1; t2]));;
let last_mark = ref 0
let marker() = incr last_mark; !last_mark;;

let rec repr t =
match t.texp with
Link u -> let v = repr u in t.texp <- Link v; v
| Desc _ -> t

let desc t =
match (repr t).texp with
Link u -> assert false
| Desc d -> d;;

We can now consider the implementation of unification itself. Remem-

ber that a type τ is represented by an equation α
·
= τ , and conversely,

only decomposed multi-equations are represented, concretely; other multi-
equations are represented abstractly in the control stack.

Let us consider the unification of two terms (α1
·
= τ1) and (α2

·
= τ2).

If α1 and α2 are identical, then so must be τ1 and τ2 and and the to
equations, so the problem is already in solved form. Otherwise, let us

consider the multi-equation e equal to α1
·
= α2

·
= τ1

·
= τ2. If τ1 is a

variable then e is effectively built by linking τ1 to τ2, and conversely if τ2

is a variable. In this case e is fully decomposed, and the unification com-
pleted. Otherwise, e is equivalent by rule Decompose to the conjunction

of (α1
·
= α2

·
= τ2) and the equations ei’s resulting from the decomposi-

tion of τ1
·
= τ2. The former is implemented by a link from α1 to α2. The

later is implemented by recursive calls to the function unify. In case τ1

and τ2 are incompatible, then unification fails (rule Fail).

exception Unify of texp ∗ texp
exception Arity of texp ∗ texp
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let link t1 t2 = (repr t1).texp <- Link t2
let rec unify t1 t2 =

let t1 = repr t1 and t2 = repr t2 in
if t1 == t2 then () else
match desc t1, desc t2 with
| Tvar _, _ ->

link t1 t2
| _, Tvar _ ->

link t2 t1
| Tcon (g1, l1), Tcon (g2, l2) when g1 = g2 ->

link t1 t2;
List.iter2 unify l1 l2

| _, _ -> raise (Unify (t1,t2)) ;;

This does not check for cycles, which we do separately at the end.

exception Cycle of texp list;;
let acyclic t =

let visiting = marker() and visited = marker() in
let cycles = ref [] in
let rec visit t =

let t = repr t in
if t.mark > visiting then ()
else if t.mark = visiting then cycles := t :: !cycles
else

begin
t.mark <- visiting;
begin match desc t with
| Tvar _ -> ()
| Tcon (g, l) -> List.iter visit l
end;
t.mark <- visited;

end in
visit t;
if !cycles <> [] then raise (Cycle !cycles);;

let funify t1 t2 = unify t1 t2; acyclic t1;;

For instance, the following unification problems has only recursive solu-
tions, which is detected by cycle;
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let x = tvar() in funify x (tarrow x x);;

Uncaught exception:
Cycle [{texp= Desc ...; mark=...}; ...].

Exercise 3 ((*) Printer for acyclic types) Write a simple pretty printer
for acyclic types (using variable numbers to generate variable names).

Answer

1.4.4 Polymorphism

So far, we have only considered simple types, which do not allow any
form of polymorphism. This is often bothersome, since a function such
as the identity λx.x of type α → α should intuitively be applicable to
any value. Indeed, binding the function to a name f , one could expect to
be able to reuse it several times, and with different types, as in let f =
λx.x in f(λx.(x + f 1)). However, this expression does not typecheck,
since while any type τ can be chosen for α only one choice can be made
for the whole program.

One of the most interesting features of ML is its simple yet expressive
form of polymorphism. ML allows type scheme to be assigned to let-
bound variables that are the carrier of ML polymorphism.

A type scheme is a pair written ∀α. τ of a set of variables α and a type
τ . We identify τ with the empty type scheme ∀. τ . We use the letter σ
to represent type schemes. An instance of a type scheme ∀α. τ is a type
of the form τ [τ ′/α] obtained by a simultaneous substitution in τ of all
quantified variables α by simple types τ ′ in τ . (Note that the notation
τ [α/τ ′] is an abbreviation for (α 7→ τ ′)(τ).)

Intuitively, a type scheme represents the set of all its instances. We
write ftv(∀α. τ) for the set of free types variables of ∀α. τ , that is,
ftv(τ) \ α. We also lift the definition of free type variables to typings
environments, by taking the free type variables of its co-domain:

ftv(A) =
⋃

z∈dom (A)

ftv(A(z))
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Implementation notes, file type-scheme.ml

The representation of type schemes is straightforward (although other
representations are possible).

type scheme = texp list ∗ texp;;

Exercise 4 ((*) Free type variables for recursive types) Imple-
ment the function ftv_type that computes ftv(τ) for types (as a slight
modification to the function acyclic). Answer

Write a (simple version of a) function type_instance taking type
scheme σ as argument and returning a type instance of σ obtained by
renaming and stripping off the bound variables of σ (you may assume
that σ is acyclic here). Answer

Even if the input is acyclic, it is actually a graph, and may contain
some sharing. It would thus be more efficient to preserve existing sharing
during the copying. Write such a version. Answer

So as to enable polymorphism, we introduce polymorphic bindings
z : σ in typing contexts. Since we can see a type τ as trivial type scheme
∀∅. τ , we can assumes that all bindings are of the form z : σ. Thus, we
change rule Var to:

Var-Const
A(z) = ∀α. τ

A ` z : τ [τ ′/α]

Accordingly, the initial environment A0 may now contain type schemes
rather that simple types. Polymorphism is also introduced in the envi-
ronment by the rule for bindings, which should be revised as follows:

Let
A ` a : τ A, x : ∀(ftv(τ) \ ftv(A)). τ ` a′ : τ ′

A ` let x = a in a′ : τ ′

That is, the type τ found for the expression a bound to x must be general-
ized “as much as possible”, that is, with respect to all variables appearing
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in τ but not in the context A, before being used for the type of variable
x in the expression a′.

Conversely, the rule for abstraction remains unchanged: λ-bound
variables remain monomorphic.

In summary, the set of typing rules of ML is composed of rules Fun,
App from figure 1.3 plus rules Var-Const and Let from above.

Theorem 4 Subject reduction and progress hold for ML.

Type inference can also be extended to handle ML polymorphism.
Replacing types by type schemes in typing contexts of inference problems
does not present any difficulty. Then, the two rewriting I-Fun, I-App
do not need to be changed. The rewriting rule I-Var can be easily be
adjusted as follows, so as to constrain the type of a variable to be an
instance of its declared type-scheme:

I-Var

if ∀α. τ ′ = A(x)
and α ∩ ftv(τ) = ∅

A . x : τ

∃α. τ
·
= τ ′

Ã

The Let rule requires a little more attention because there is a depen-
dency between the left and right premises. One solution is to force the
resolution of the typing problem related to the bound expression to a
canonical form before simplifying the unificand.

I-Let

if α /∈ ftv(A), A . a1 : α Ã ∃β. U
and Usolved, U 6= ⊥

A . let x = a1 in a2 : τ2

A, x : ∀α, β. Û(α) ` a2 : τ2

Ã

where Û(α) is a principal solution of U .

Implementation notes, file poly.ml

The implementation of type inference with ML polymorphism is a straight-
forward modification of type inference with simple types, once we have
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the auxiliary functions. We have already defined type_instance to be
used for the implementation of the rule Var-Const. We also need
a function generalizable to compute generalizable variables ftv(t) \
ftv(A) from a type environment A and a type τ . The obvious imple-
mentation would compute ftv(τ) and ftv(A) separately, then compute
their set-difference. Although this could be easily implemented in linear
type, we get a more efficient (and simpler) implementation by performing
the whole operation simultaneously.

Exercise 5 ((**) Generalizable variables) Generalize the imple-
mentationof ftv_type so as to obtain a direct implementation of generalizable
variables. Answer

A naive computation of generalizable variables will visit both the type
and the environment. However, the environment may be large while all free
variables of the type may be bound in the most recent part of the type environ-
ment (which also include the case when the type is ground). The computation
of generalizable variables can be improved by first computing free variables of
the type first and maintaining an upper bound of the number of free variables
while visiting the environment, so that this visit can be interrupted as soon
as all variables of t are already found to be bound in A.

A more significant improvement would be to maintained in the structure
of tenv the list of free variables that are not already free on the left. Yet, it is
possible to implement the computation of generalizable variables without ever
visiting A by maintaining a current level of freshness. The level is incremented
when entering a let-binding and decremented on exiting; it is automatically
assigned to every allocated variable; then generalizable variables are those that
are still of fresh level after the weakening of levels due to unifications.

Finally, here is the type inference algorithm reviewed to take poly-
morphism into account:

let type_of_const c =
let int3 = tarrow tint (tarrow tint tint) in
match c.name with
| Int _ -> [], tint
| Name (”+” | ”∗”) -> [], int3
| Name n -> raise (Undefined_constant n);;
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let rec infer tenv a t =
match a with
| Const c -> unify (type_instance (type_of_const c)) t
| Var x -> unify (type_instance (type_of_var tenv x)) t

| Fun (x, a) ->
let tv1 = tvar() and tv2 = tvar() in
infer (extend tenv (x, ([], tv1))) a tv2;
unify t (tarrow tv1 tv2)

| App (a1, a2) ->
let tv = tvar() in
infer tenv a1 (tarrow tv t);
infer tenv a2 tv

| Let (x, a1, a2) ->
let tv = tvar() in
infer tenv a1 tv;
let s = generalizable tenv tv, tv in
infer (extend tenv (x, s)) a2 t;;

let type_of a = let tv = tvar() in infer [] a tv; tv;;

1.5 Recursion

So as to be Turing-complete, ML should allow a form of recursion. This
is provided by the let rec f = λx.a1 in a2 form, which allows f to
appear in λx.a1, recursively. The recursive expression λx.a1 is restricted
to functions because, in a call-by-value strategy, it is not well-defined for
arbitrary expressions.

1.5.1 Fix-point combinator

Rather than adding a new construct into the language, we can take ad-
vantage of the parameterization of the definition of the language by a set
of primitives to introduce recursion by a new primitive fix of arity 2
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and the following type:

fix : ∀α1, α2. ((α1 → α2)→ α1 → α2)→ α1 → α2

The semantics of fix is given then by its δ-rule:

fix f v −→ f (fix f) v (δfix)

Since fix is of arity 2, the expression (fix f) appearing on the right
hand side of the rule (δfix) is a value and its evaluation is frozen until
it appears in an application evaluation context. Thus, the evaluation
must continue with the reduction of the external application of f . It is
important that fix be of arity 2, so that fix computes the fix-point
lazily. Otherwise, if fix were of arity 1 and came with the following
δ-rule,

fix f −→ f (fix f)

the evaluation of fix f v would fall into an infinite loop (the active part
is underlined):

fix f v −→ f (fix f) v −→ f (f (fix f)) v −→ ...

For convenience, we may use let rec f = λx.a1 in a2 as syntactic sugar
for let f = fix (λf.λx.a1) in a2.

Remark 4 The constant fix behaves exactly as the (untyped) expres-
sion

λf ′.(λf.λx.f ′ (f f) x) (λf.λx.f ′ (f f) x)

However, this expression is not typable in ML (without recursive types).

Exercise 6 ((*) Non typability of fix-point) Check that the defini-
tion of fix given above is not typable in ML.

Answer

Exercise 7 ((*) Using the fix point combinator) Define the facto-
rial function using fix and let-binding (instead of let-rec-bindings).

Answer

Exercise 8 ((**) Type soundness of the fix-point combinator) Check
that the hypotheses 1 and 2 are satisfied for the fix-point combinator fix .
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Mutually recursive definitions The language OCaml allows mutu-
ally recursive definitions. For example,

let rec f1 = λx.a1 and f2 = λx.a2 in a

where f and f ′ can appear in both a and a′. This can be seen as an
abbreviation for

let rec f ′1 = λf2.λx. let f1 = f ′1 f2 in
a1

in
let rec f ′2 = λx. let f2 = f ′2 in

let f1 = f ′1 f2 in
a2

in
a

This can be easily generalize to

let rec f1 = λx.a1 and . . . fnλx.an in a

Exercise 9 ((*) Multiple recursive definitions) Can you translate
the case for three recursive functions?

let rec f1 = λx.a1 and f2 = λx.a2 and f3 = λx.a3 in a

Answer

Recursion and polymorphism Since, the expression let rec f =
λx.a in a′ is understood as let f = fix (λf.λx.a) in a′, the function f is
not polymorphic while typechecking the body λx.a, since this occurs in
the context λf.[·] where f is λ-bound. Conversely, f may be be in a′ (if
the type of f allows) since those occurrences are Let-bound.

Polymorphic recursion refers to system that would allow f to be poly-
morphic in a′ as well. Without restriction, type inference in these systems
is not decidable. [28, 75].
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1.5.2 Recursive types

By default, the ML type system does not allows recursive types (but
it allows recursive datatype definitions —see Section 2.1.3). However,
allowing recursive types is a simple extension. Indeed, OCaml uses this
extension to assign recursive types to objects. The important properties
of the type systems, including subject reduction and the existence of
principal types, are preserved by this extension.

Indeed, type inference relies on unification, which naturally works on
graphs, i.e. possibly introducing cycles, which are later rejected. To
make the type inference algorithm work with recursive types, it suffices
to remove the occur check rule in the unification algorithm. Indeed, one
must then be careful when manipulating and printing types, as they can
be recursive.

As shown in exercise 8, page 47, the fix point combinator is not ty-
pable in ML without recursive types. Unsurprisingly, if recursive types
are allows, the call-by-value fix-point combinator fix is definable in the
language.

Exercise 10 ((*) Fix-point with recursive types) Check that fix
is typable with recursive types. Answer
Use let-binding to write a shorter equivalent version of fix . Answer

Exercise 11 ((**) Printing recursive types) Write a more sophis-
ticated version of the function print_type that can handle recursive types
(for instance, they can be printed as in OCaml, using as to alias types).

Answer

See also section 3.2.1 for uses of recursive types in object types.
Recursive types are thus rather easy to incorporate into the language.

They are quite powerful —they can type the fix-point— and also use-
ful and sometimes required, as is the case for object types. However,
recursive types are sometimes too powerful since they will often hide
programmers’ errors. In particular, it will detect some common forms of
errors, such as missing or extra arguments very late (see exercise below
for a hint). For this reason, the default in the OCaml system is to reject
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recursive types that do not involve an object type constructor in the re-
cursion. However, for purpose of expressiveness or experimentation, the
user can explicitly require unrestricted recursive types using the option
-rectypes at his own risk of late detection of some from of errors —but
the system remains safe, of course!

Exercise 12 ((**) Lambda-calculus with recursive types) Check that
in the absence of constants all closed programs are typable with recursive
types. Answer

1.5.3 Type inference v.s. type checking

ML programs are untyped. Type inference finds most general types for
programs. It would in fact be easy to instrument type inference, so that
it simultaneously annotate every subterm with its type (and let-bounds
with type schemes), thus transforming an untyped term into type terms.

Indeed, type terms are more informative than untyped terms, but
they can still be ill-typed. Fortunately, it is usually easier to check typed
terms than untyped terms for well-typedness. In particular, type check-
ing does not need to “guess” types, hence it does not need first-order
unification.

Both type inference and type checking are verifying well-typedness of
programs with respect to a given type system. However, type inference
assumes that terms are untyped, while type checking assumes that terms
are typed. This does not mean that type checking is simpler than type
inference. For instance, some type checking problems are undecidable
[59]. Type checking and type inference could also be of the same level
of difficulty, if type annotations are not sufficient. However, in general,
type annotations may be enriched with more information so that type
checking becomes easier. On the opposite, there is no other flexibility
but the expressiveness of the type system to adjust the difficulty of type
inference.

The approach of ML, which consists in starting with untyped terms,
and later infer types is usually called a la Curry, and the other approach
where types are present in terms from the beginning and only checked is
called a la Church.
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In general, type inference is preferred by programmers who are re-
lieved from the burden of writing down all type annotations. However,
explicit types are not just annotations to make type verification sim-
pler, but also a useful tool in structuring programs: they play a role
for documentation, enables modular programming and increase security.
For instance, in ML, the module system on top of Core ML is explicitly
typed.

Moreover, the difference between type inference and type checking is
not always so obvious. Indeed, all nodes of the language carry implicit
type information. For instance, there is no real difference between 1 and
1 : int. Furthermore, some explicit type annotations can also be hidden
behind new constants. . . as we shall do below.

Further reading

Reference books on the lambda calculus, which is at the core of ML are
[6, 29]. Both include a discussion of the simply-typed lambda calculus.
The reference article describing the ML polymorphism and its type infer-
ence algorithm, called W, is [16]. However, Mini-ML [14] is more often
used as a starting point to further extensions. This also includes a de-
scription of type-inference. An efficient implementation of this algorithm
is described in [63]. Of course, many other presentations can be found in
the literature, sometimes with extensions.

Basic references on unification are [49, 31]. A good survey that also
introduces the notion of existential unificands that we used in our pre-
sentation is [40].



Chapter 2

The core of OCaml

Many features of OCaml (and of other dialects of ML) can actually be
formalized on top of core ML, either by selecting a particular choice of
primitives, by encoding, or by a small extension.

2.1 Data types and pattern matching

The OCaml language contains primitive datatypes such as integers, floats,
strings, arrays, etc. and operations over them. New datatypes can also
be defined using a combinations of named records or variants and later be
explored using pattern matching — a powerful mechanism that combines
several projections and case analysis in a single construction.

2.1.1 Examples in OCaml

For instance, the type of play cards can be defined as follows:

type card = Card of regular | Joker
and regular = { suit : card_suit; name : card_name; }
and card_suit = Heart | Club | Spade | Diamond
and card_name = Ace | King | Queen | Jack | Simple of int;;

This declaration actually defines four different data types. The type card
of cards is a variant type with two cases. Joker is a special card. Other
cards are of the form Card v where v is an element of the type regular.

53
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In turn regular is the type of records with two fields suit and name of
respective types card_suit and card_name, which are themselves variant
types.

Cards can be created directly, using the variant tags and labels as
constructors:

let club_jack = Card { name = Jack; suit = Club; };;
val club_jack : card = Card {suit=Club; name=Jack}

Of course, cards can also be created via functions:

let card n s = Card {name = n; suit = s}
let king s = card King s;;

val card : name -> suit -> card = <fun>
val king : suit -> card = <fun>

Functions can be used to shorten notations, but also as a means of en-
forcing invariants.

The language OCaml, like all dialects of ML, also offers a convenient
mechanism to explore and de-structure values of data-types by pattern
matching, also known as case analysis. For instance, we could define the
value of a card as follows:

let value c =
match c with
| Joker -> 0
| Card {name = Ace} -> 14
| Card {name = King} -> 13
| Card {name = Queen} -> 12
| Card {name = Jack} -> 11
| Card {name = Simple k} -> k;;

The function value explores the shape of the card given as argument,
by doing case analysis on the outermost constructors, and whenever nec-
essary, pursuing the analysis on the inner values of the data-structure.
Cases are explored in a top-down fashion: when a branch fails, the anal-
ysis resumes with the next possible branch. However, the analysis stops
as soon as the branch is successful; then, its right hand side is evaluated
and returned as result.

Exercise 13 ((**) Matching Cards) We say that a set of cards is
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compatible if it does not contain two regular cards of different values.
The goal is to find hands with four compatible cards. Write a function
find_compatible that given a hand (given as an unordered list of cards)
returns a list of solutions. Each solution should be a compatible set of
cards (represented as an unordered list of cards) of size greater or equal
to four, and two different solutions should be incompatible. Answer

Data types may also be parametric, that is, some of their construc-
tors may take arguments of arbitrary types. In this case, the type of
these arguments must be shown as an argument to the type (symbol) of
the data-structure. For instance, OCaml pre-defines the option type as
follows:

type ’a option = Some of ’a | None
The option type can be used to get inject values v of type ’a into Some(v)
of type ’a option with an extra value None. (For historical reason, the
type argument ’a is postfix in ’a option.)

2.1.2 Formalization of superficial pattern matching

Superficial pattern matching (i.e. testing only the top constructor) can
easily be formalized in core ML by the declaration of new type construc-
tors, new constructors, and new constants. For the sake of simplicity, we
assume that all datatype definitions are given beforehand. That is, we
parameterize the language by a set of type definitions. We also consider
the case of a single datatype definition, but the generalization to several
definitions is easy.

Let us consider the following definition, prior to any expression:

type g(α) = Cg
1 of τi | . . . Cg

n of τn

where free variables of τi are all taken among α. (We use the standard
prefix notation in the formalization, as opposed to OCaml postfix nota-
tion.)

This amounts to introducing a new type symbol gf of arity given by
the length of α, n unary constructors Cg

1 , . . .Cg
n, and a primitive f g of
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arity n + 1 with the following δ-rule:

f g (Cg
k v) v1 . . . vk . . . vn −→ vk v (δg)

The typing environment must also be extended with the following type
assumptions:

Cg
i : ∀α. τi → g(α)

f g : ∀α, β. g(α)→ (τ1 → β)→ . . . (τn → β)→ β

Finally, it is convenient to add the syntactic sugar

match a with Cg
1 (x)⇒ a1 . . . | Cg

n (x)⇒ an

for
f g a (λx.a1) . . . (λx.an)

Exercise 14 ((***) Type soundness for data-types) Check that
the hypotheses 1 and 2 are valid.

Exercise 15 ((**) Data-type definitions) What happens if a free vari-
able of τi is not one of the α’s? And conversely, if one of the α’s does
not appear in any of the τi’s? Answer

Exercise 16 ((*) Booleans as datatype definitions) Check that
the booleans are a particular case of datatypes. Answer

Exercise 17 ((***) Pairs as datatype definitions) Check that pairs
are a particular case of a generalization of datatypes. Answer

2.1.3 Recursive datatype definitions

Note that, since we can assume that the type symbol g is given first, then
the types τi may refer to g. This allows, recursive types definitions such
as the natural numbers in unary basis (analogous to the definition of list
in OCaml!):

type IN = Zero | Succ of IN
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OCaml imposes a restriction, however, that if a datatype definition of
g(α) is recursive, then all occurrences of g should appear with exactly
the same parameters α. This restriction preserves the decidability of
the equivalence of two type definitions. That is, the problem “Are two
given datatype definitions defining isomorphic structures?” would not be
decidable anymore, if the restriction was relaxed. However, this question
is not so meaningful, since datatype definitions are generative, and types
(of datatypes definitions) are always compared by name. Other dialects
of ML do not impose this restriction. However, the gain is not significant
as long as the language does not allow polymorphic recursion, since it
will not be possible to write interesting function manipulating datatypes
that would not follow this restriction.

As illustrated by the following exercise, the fix-point combinator, and
more generally the whole lambda-calculus, can be encoded using variant
datatypes. Note that this is not surprising, since the fix point can be
implemented by a δ-rule, and variant datatypes have been encoded with
special forms of δ-rules.

Note that the encoding uses negative recursion, that is, a recursive
occurrence on the left of an arrow type. It could be shown that restricting
datatypes to positive recursion would preserve termination (of course, in
ML without any other form of recursion).

Exercise 18 ((**) Recursion with datatypes) The first goal is to
encode lambda-calculus. Noting that the only forms of values in the
lambda calculus are functions, and that a function take a value to even-
tually a value, use a datatype value to define two inverse functions fold
and unfold of respective types:

val fold : (value -> value) -> value = <fun>
val unfold : value -> value -> value = <fun>

Answer
Propose a formal encoding [[·]] of lambda-calculus into ML plus the two
functions fold and unfold so that for an expression of the encode of
any expression of the lambda calculus are well-typed terms. Answer
Finally, check that [[fix ]] is well-typed. Answer
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2.1.4 Type abbreviations

OCaml also allows type abbreviations declared as type g(α) = τ . These
are conceptually quite different from datatypes: note that τ is not pre-
ceded by a constructor here, and that multiple cases are not allowed.
Moreover, a data type definition type g(α) = Cg τ would define a new
type symbol g incompatible with all others. On the opposite, the type
abbreviation type g(α) = τ defines a new type symbol g that is compat-
ible with the top type symbol of τ since g(τ ′) should be interchangeable
with τ anywhere.

In fact, the simplest, formalization of abbreviations is to expand them
in a preliminary phase. As long as recursive abbreviations are not al-
lowed, this allows to replace all abbreviations by types without any ab-
breviations. However, this view of abbreviation raises several problem.
As we have just mentioned, it does not work if abbreviations can be de-
fined recursively. Furthermore, compact types may become very large
after expansions. Take for example an abbreviation window that stands
for a product type describing several components of windows: title,
body, etc. that are themselves abbreviations for larger types.

Thus, we need another more direct presentation of abbreviations. For-
tunately, our treatment of unifications with unificands is well-adapted to
abbreviations: Formally, defining an abbreviation amounts to introduc-
ing a new symbol h together with an axiom h(α) = τ . (Note that this
is an axiom and not a multi-equation here.) Unification can be param-
eterized by a set of abbreviation definitions {h(αh) = τh | h ∈ A} Ab-
breviations are then expanded during unification, but only if they would
otherwise produce a clash with another symbol. This is obtained by
adding the following rewriting rule for any abbreviation h:

Abbrev if g 6= h

α
·
= h(α)

·
= g(τ)

·
= e

α
·
= τh[α/αh]

·
= g(τ)

·
= e

Ã

Note that sharing is kept all the way, which is represented by variable α
in both the premise and the conclusion: before expansions, several parts
of the type may use the same abbreviation represented by α, and all of
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these nodes will see the expansions simultaneously.
The rule Abbrev can be improved, so as to keep the abbreviation

even after expansion:

Abbrev’ if g 6= h

α
·
= h(α)

·
= g(τ)

·
= e

∃α′. (α ·
= h(α)

·
= e ∧ α′

·
= τh[α/αh]

·
= g(τ))

Ã

The abbreviation can be recursive, in the sense that h may appear in τh

but, as for data-types, with the tuple of arguments α as the one of its
definition. The the occurrence of τh in the conclusion of rule Abbrev’
must be replaced by τh[α/g(α)].

Exercise 19 ((*) Mutually recursive definitions of abbreviations)
Explain how to model recursive definitions of type abbreviations type
h1(α) = τ1 and h2(α2) = τ2 in terms of several single but recursive
definitions of abbreviations. Answer

See also Section 3.2.1 for use of abbreviations with object types.

2.1.5 Record types

Record type definitions can be formalized in a very similar way to variant
type definitions. The definition

type g(α) = {f g
1 : τ1; . . . f

g
2 : τn}

amounts to the introduction of a new type symbol g of arity given by the
length of α, one n-ary constructor Cg and n unary primitives f g

i with
the following δ-rules:

f g
i (Cg v1 . . . vi . . . vn) −→ vi (δg)

As for variant types, we require that all free variables of τi be taken
among α. The typing assumptions for these constructors and constant
are:

Cg : ∀α. τ1 → . . . τn → α g

f g
i : ∀α. g(α)→ τi

The syntactic sugar is to write a.f g
i and {f g

1 = a1; . . . f
g
n= an} instead of

f g
i a and Cg a1 . . . an.
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2.2 Mutable storage and side effects

The language we have described so far is purely functional. That is, sev-
eral evaluations of the same expression will always produce the same an-
swer. This prevents, for instance, the implementation of a counter whose
interface is a single function next : unit -> int that increments the
counter and returns its new value. Repeated invocation of this function
should return a sequence of consecutive integers —a different answer each
time.

Indeed, the counter needs to memorize its state in some particular
location, with read/write accesses, but before all, some information must
be shared between two calls to next. The solution is to use mutable
storage and interact with the store by so-called side effects.

In OCaml, the counter could be defined as follows:

let new_count =
let r = ref 0 in
let next () = r := !r+1; !r in
next;;

Another, maybe more concrete, example of mutable storage is a bank
account. In OCaml, record fields can be declared mutable, so that new
values can be assigned to them later. Hence, a bank account could be
a two-field record, its number, and its balance, where the balance is
mutable.

type account = { number : int; mutable balance : float }
let retrieve account requested =

let s = min account.balance requested in
account.balance <- account.balance −. s; s;;

In fact, in OCaml, references are not primitive: they are special cases of
mutable records. For instance, one could define:

type ’a ref = { mutable content : ’a }
let ref x = { content = x }
let deref r = r.content
let assign r x = r.content <- x; x
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2.2.1 Formalization of the store

We choose to model single-field store cells, i.e. references. Multiple-field
records with mutable fields can be modeled in a similar way, but the
notations become heavier.

Certainly, the store cannot be modeled by just using δ-rules. There
should necessarily be another mechanism to produce some side effects so
that repeated computations of the same expression may return different
values.

The solution is to model the store, rather intuitively. For that pur-
pose, we introduce a denumerable collection of store locations ` ∈ L.
We also extend the syntax of programs with store locations and with
constructions for manipulating the store:

a ::= . . . | ` | ref a | deref a | assign a a′

Following the intuition, the store is modeled as a global partial mapping
s from store locations to values. Small-step reduction should have access
to the store and be able to change its content. We model this by trans-
forming pairs a/s composed of an expression and a store rather than by
transforming expressions alone.

Store locations are values.

v ::= . . . | `
The semantics of programs that do not manipulate the store is simply
lifted to leave the store unchanged:

a/s −→ a′/s if a −→ a′

Primitives operating on the store behaves as follows:

ref v/s −→ `/s, ` 7→ v ` /∈ dom (s)
deref `/s −→ s(`)/s ` ∈ dom (s)

assign ` v/s −→ v/s, ` 7→ v ` ∈ dom (s)

Hence, we must count store location among values: Additionally, we lift
the context rule to value-store pairs:

E[a]/s −→ E[a′]/s if a/s −→ a′/s
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Example 3 Here is a simple example of reduction:

let x = ref 1 in assign x (1 + deref x)/∅
−→ let x = ` in assign x (1 + deref x)/` 7→ 1

−→ assign ` (1 + deref `)/` 7→ 1
−→ assign ` (1 + 1)/` 7→ 1
−→ assign ` (2)/` 7→ 1

−→ 2/` 7→ 2

Remark 5 Note that, we have not modeled garbage collection: new lo-
cations created during reduction by the Ref rule will remain in the store
forever.

An attempt to model garbage collection of unreachable locations is to
use an additional rule.

a/s −→ a/(s \ `) ` /∈ a

However, this does not work for several reasons.

Firstly, the location ` may still be accessible, indirectly: starting from
the expression a one may reach a location `′ whose value s(`′) may still
refer to `. Changing the condition to ` /∈ a, (s \ `) would solve this
problem but raise another one: cycles in s will never be collected, even if
not reachable from a. So, the condition should be that of the form “` is
not accessible from a using store s”. Writing, this condition formally, is
the beginning of a specification of garbage collection...

Secondly, it would not be correct to apply this rule locally, to a sub-
term, and then lift the reduction to the whole expression by an application
of the context rule. There are two solutions to this last problem: one is
to define a notion of toplevel reduction to prevent local applications of
garbage collection; The other one is to complicate the treatment of store
so that locations can be treated locally (see [77] for more details).

In order to type programs with locations, we must extend typing
environment with assumptions for the type of locations:

A ::= . . . | A, ` : τ
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Remark that store locations are not allowed to be polymorphic (see the
discussion below). Hence the typing rule for using locations is simply

Loc
` : τ ∈ A

A ` ` : τ

Operations on the store can be typed as the application of constants with
the following type schemes in the initial environment A0:

ref : ∀α. α→ ref α
deref : ∀α. ref α→ α

assign : ∀α. ref α→ α→ α

(Giving specific typing rules Ref, Deref, and Assign would unneces-
sarily duplicate rule App into each of them)

2.2.2 Type soundness

We first define store typing judgments: we write A ` a/s : τ if there
exists a store extension A′ of A (i.e. outside of domain of A) such that
A′ ` a : τ and A′ ` s(`) : A′(`) for all ` ∈ dom (A′). We then redefine v
to be the inclusion of store typings.

(a/s v a′/s′) ⇐⇒ ∀(A, τ)(A ` a/s : τ =⇒ A ` a′/s′ : τ)

Theorem 5 (Subject reduction) Store-reduction preserves store-typings.

Theorem 6 (Progress) If A0 ` a/s : τ , then either a is a value, or
a/s can be further reduced.

2.2.3 Store and polymorphism

Note that store locations cannot be polymorphic. Furthermore, so as
to preserve subject reduction, expressions such as ref v should not be
polymorphic either, since ref v reduces to ` where ` is a new location
of the same type as the type of v. The simplest solution to enforce this
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restriction is to restrict let x = a in a′ to the case where a is a value v
(other cases can still be seen as syntactic sugar for (λx.a′) a.) Since ref a
is not a value —it is an application— it then cannot be polymorphic.
Replacing a by a value v does not make any difference, since ref is not
a constructor but a primitive. Of course, this solution is not optimal,
i.e. there are safe cases that are rejected. All other solutions that have
been explored end up to be too complicated, and also restrictive. This
solution, known as “value-only polymorphism” is unambiguously the best
compromise between simplicity and expressiveness.

To show how subject reduction could fail with polymorphic references,
consider the following counter-example.

let id = ref (fun x -> x) in (id := succ; !id true);;

If ”id” had a polymorphic type ∀α. τ , it would be possible to assign to id

a function of the less general type, e.g. the type int -> int of succ, and
then to read the reference with another incompatible less general type
bool -> bool; however, the new content of id, which is the function
succ, does not have type bool -> bool.

Another solution would be to ensure that values assigned to id have
a type scheme at least as general as the type of the location. However,
ML cannot force expressions to have polymorphic types.

Exercise 20 ((**) Recursion with references) Show that the fix point
combinator fix can be defined using references alone (i.e. using without
recursive bindings, recursive types etc.). Answer

2.2.4 Multiple-field mutable records

In OCaml references cells are just a particular case of records with mu-
table fields. To model those, one should introduce locations with several
fields as well. The does not raise problem in principle but makes the
notations significantly heavier.
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2.3 Exceptions

Exceptions are another imperative construct. As for references, the se-
mantics of exceptions cannot be given only by introducing new primitives
and δ-rules.

We extend the syntax of core ML with:

a ::= . . . | try a with x⇒ a | raise a

We extend the evaluation contexts, so as to allow evaluation of exceptions
and exception handlers.

E :: . . . | try E with x⇒ a | raise E

Finally, we add the following redex rules:

try v with x⇒ a −→ v (Try)
try E ′[raise v] with x⇒ a −→ let x = v in a (Raise)

with the side condition for the Raise rule that the evaluation context
E ′ does not contain any node of the form (try with ⇒ ). More
precisely, such evaluation contexts can be defined by the grammar:

E ′ ::= [·] | E ′ a | v E ′ | raise E ′

Informally, the Raise rule says that if the evaluation of a raises an ex-
ception with a value v, then the evaluation should continue at the first
enclosing handler by applying the right hand-side of the handler value
v. Conversely, is the evaluation of a returns a value, then the Try rule
simply removes the handler.

The typechecking of exceptions raises similar problems to the type-
checking of references: if an exception could be assigned a polymorphic
type σ, then it could be raised with an instance τ1 of σ and handled with
the asumption that it has type τ2 —another instance of σ. This could
lead to a type error if τ1 and τ2 are incompatible. To avoid this situation,
we assume given a particular closed type τ0 to be taken for the type of
exceptions. The typing rules are:

Raise
A ` a : τ0

A ` raise a : α

Try
A ` a1 : τ A, x : τ0 ` a2 : τ

A ` try a1 with x⇒ a2 : τ
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Exercise 21 ((**) Type soundness of exceptions) Show the correct-
ness of this extension.

Exercise 22 ((**) Recursion with exceptions) Can the fix-point com-
binator be defined with exceptions?

Answer

Further reading

We have only formalized a few of the ingredients of a real language.
Moreover, we abstracted over many details. For instance, we assumed
given the full program, so that type declaration could be moved ahead
of all expressions.

Despite many superficial differences, Standard ML is actually very
close to OCaml. Standard ML has also been formalized, but in much
more details [51, 50]. This is a rather different task: the lower level and
finer grain exposition, which is mandatory for a specification document,
may unfortunately obscure the principles and the underlying simplicity
behind ML.

Among many extensions that have been proposed to ML, a few of
them would have deserved more attention, because there are expressive,
yet simple to formalize, and in essence very close to ML.

Records as datatype definitions have the inconvenience that they must
always be declared prior to their use. Worse, they do not allow to define
a function that could access some particular field uniformly in any record
containing at least this field. This problem, known as polymorphic record
access, has been proposed several solutions [65, 57, 33, 37], all of which
relying more or less directly on the powerful idea of row variables [73].
Some of these solutions simultaneously allow to extend records on a given
field uniformly, i.e. regardless of the other fields. This operation, known
as polymorphic record extension, is quite expressive. However, extensible
records cannot be typed as easily or compiled as efficiently as simple
records.
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Dually, variant allows building values of an open sum type by tagging
with labels without any prior definition of all possible cases. Actually,
OCaml was recently extended with such variants [23]

Datatypes can also be used to embed existential or universal types
into ML [41, 64, 53, 24].
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Chapter 3

The object layer

We first introduce objects and classes, informally. Then, we present the
core of the object layer, leaving out some of the details. Last, we show a
few advanced uses of objects.

3.1 Discovering objects and classes

In this section, we start with a series of very basic examples, and present
the key features common to all object oriented languages; then we intro-
duce polymorphism, which play an important role in OCaml.

Object, classes, and types. There is a clear distinction to be em-
phasized between objects, classes, and types. Objects are values which
are returned by evaluation and that can be sent as arguments to func-
tions. Objects only differ from other values by the way to interact with
them, that is to send them messages, or in other words, to invoke their
methods.

Classes are not objects, but definitions for building objects. Classes
can themselves be built from scratch or from other classes by inheri-
tance. Objects are usually created from classes by instantiation (with
the new construct) but can also be created from other objects by cloning
or overriding.

69
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Neither classes nor objects are types. Object have object types, which
are regular types, similar to but different from arrow or product types.
Classes also have types. However, class types are not regular types, as
much as classes are not regular expressions, but expressions of a small
class language.

Classes may be in an inheritance (sub-classing) relation, which is the
case when a class inherits from another one. Object types may be in
a subtyping relation. However, there is no correspondence to be made
between sub-classing and subtyping, anyway.

3.1.1 Basic examples

A class is a model for objects. For instance, a class counter can be
defined as follows.

class counter = object
val mutable n = 0
method incr = n <- n+1
method get = n

end;;

That is, objects of the class counter have a mutable field n and two
methods incr and get. The field n is used to record the current value
of the counter and is initialized to 0. The two methods are used to
increment the counter and read its current, respectively.

As for any other declaration, the OCaml system infer a principal type
for this declaration:

class counter :
object

val mutable n : int
method get : int
method incr : unit

end

The class type inferred mimics the declaration of the class: it describes
the types of each field and each method of the class.

An object is created from a class by taking an instance using the new

construct:

let c = new counter;;
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val c : counter = <obj>

Then, methods of the object can be invoked —this is actually the only
form of interaction with objects.

c#incr; c#incr; c#get;;

− : int = 2

Note the use of # for method invocation. The expression c.incr would
assume that c is a record value with an incr field, and thus fail here.

Fields are encapsulated, and are accessible only via methods. Two
instances of the same class produce different objects with different en-
capsulated state. The field n is not at all a class-variable that would be
shared between all instances. On the contrary, it is created when taking
an instance of the class, independently of other objects of the same class.

(new counter)#get;;

− : int = 0

Note that the generic equality (the infix operator =) will always distin-
guish two different objects even when they are of the same class and
when their fields have identical values:

(new counter) = (new counter);;

− : bool = false

Objects have their own identity and are never compared by structure.

Classes Classes are often used to encapsulate a piece of state with
methods. However, they can also be used, without any field, just as a
way of grouping related methods:

class out =
object

method char x = print_char x
method string x = print_string x

end;;

A similar class with a richer interface and a different behavior:

class fileout filename =
object

val chan = open_out filename
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method char x = output_char chan x
method string x = output_string chan x
method seek x = seek_out chan x

end;;

This favors the so-called “programming by messages” paradigm:

let stdout = new out and log = new fileout ”log”;;
let echo_char c = stdout#char c; log#char c;;

Two objects may answer the same message differently, by running their
own methods, i.e. depending on their classes.

Inheritance Classes are used not only to create objects, but also to
create richer classes by inheritance. For instance, the fileout class can
be enriched with a method to close the output channel:

class fileout’ filename =
object (self)

inherit fileout filename
method close = close_out chan

end

It is also possible to define a class for the sole purpose of building other
classes by inheritance. For instance, we may define a class of writer as
follows:

class virtual writer =
object (this)

method virtual char : char -> unit
method string s =

for i = 0 to String.length s −1 do this#char s.[i] done
method int i = this#string (string_of_int i)

end;;

The class writer refers to other methods of the same class by sending
messages to the variable this that will be bound dynamically to the
object running the method. The class is flagged virtual because it
refers to the method char that is not currently defined. As a result, it
cannot be instantiated into an object, but only inherited. The method
char is virtual, and it will remain virtual in subclasses until it is defined.
For instance, the class fileout could have been defined as an extension
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of the class writer.

class fileout filename = object
inherit writer
method char x = output_char chan x
method seek pos = seek_out pos

end

Late binding During inheritance, some methods of the parent class
may be redefined. Late binding refers to the property that the most
recent definition of a method will be taken from the class at the time
of object creation. For instance, another more efficient definition of the
class fileout would ignore the default definition of the method string

for writers and use the direct, faster implementation:

class fileout filename = object
inherit writer
method char x = output_char chan x
method string x = output_string chan x
method seek pos = seek_out pos

end

Here the method int will call the new efficient definition of method
string rather than the default one (as an early binding strategy would
do). Late binding is an essential aspect of object orientation. However,
it is also a source of difficulties.

Type abbreviations The definition of a class simultaneously defines
a type abbreviation for the type of the objects of that class. For instance,
when defining the objects out and log above, the system answers were:

val stdout : out = <obj>
val log : fileout = <obj>

Remember that the types out and fileout are only abbreviations. Ob-
ject types are structural, i.e. one can always see their exact structure by
expanding abbreviations at will:

(stdout : < char : char -> unit; string : string -> unit >);;

− : out = <obj>
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(Abbreviations have stronger priority than other type expressions and
are kept even after they have been expanded if possible.) On the other
hand, the following type constraint fails because the type fileout of log
contains an additional method seek.

(log : < char : char -> unit; string : string -> unit >);;

3.1.2 Polymorphism, subtyping, and parametric classes

Polymorphism play an important role in the object layer. Types of
objects such as out, fileout or

<char : char -> unit; string: string -> unit >

are said to be closed. A closed type exhaustively enumerates the set of
accessible methods of an object of this types. On the opposite, an open
object type only specify a subset of accessible methods. For instance,
consider the following function:

let send_char x = x#char;;

val send_char : < char : ’a; .. > -> ’a = <fun>

The domain of send_char is an object having at least a method char

of type ’a. The ellipsis .. means that the object received as argument
may also have additional methods. In fact, the ellipsis stands for an
anonymous row variable, that is, the corresponding type is polymorphic
(not only in ’a but also in ..). It is actually a key point that the function
send_char is polymorphic, so that it can be applied to any object having
a char method. For instance, it can be applied to both stdout or log,
which are of different types:

let echo c = send_char stdout c; send_char log c;;

Of course, this would fail without polymorphism, as illustrated below:

(fun m -> m stdout c; m log c) send_char;;

Subtyping In most object-oriented languages, an object with a larger
interface may be used in place of an object with a smaller one. This
property, called subtyping, would then allow log to be used with type
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out, e.g. in place of stdout. This is also possible in OCaml, but the use
of subtyping must be indicated explicitly. For instance, to put together
stdout and log in a same homogeneous data-structure such as a list,
log can be coerced to the typed stdout:

let channels = [stdout; (log : fileout :> out)];;

val channels : out list = [<obj>; <obj>]

let braodcast m = List.iter (fun x -> x#string m) channels;;

The domain of subtyping coercions may often (but not always) be omit-
ted; this is the case here and we can simply write:

let channels = [stdout; (log :> out)];;

In fact, the need for subtyping is not too frequent in OCaml, because
polymorphism can often advantageously be used instead, in particular,
for polymorphic method invocation. Note that reverse coercions from a
supertype to a supertype are never possible in OCaml.

Parametric classes Polymorphism also plays an important role in
parametric classes. Parametric classes are the counterpart of polymor-
phic data structures such as lists, sets, etc. in object-oriented style. For
instance, a class of stacks can be parametric in the type of its elements:

class [’a] stack = object
val mutable p : ’a list = []
method push v = p <- v :: p
method pop =

match p with h :: t -> p <- t; h | [] -> failwith ”Empty”
end;;

The system infers the following polymorphic type.
class [’a] stack :

object
val mutable p : ’a list

method pop : ’a method push : ’a -> unit

end

The parameter must always be introduced explicitly (and used inside the
class) when defining parametric classes. Indeed, a parametric class does
not only define the code of the class, but also defines a type abbreviation
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for objects of this class. So this constraint is analogous to the fact that
type variables free in the definition of a type abbreviation should be
bound in the parameters of this abbreviation.

Parametric classes are quite useful when defining general purpose
classes. For instance, the following class can be used to maintain a list of
subscribers and relay messages to be sent all subscribers via the message
send.

class [’a] relay = object
val mutable l : ’a list = []
method add x = if not (List.mem x l) then l <- x::l
method remove x = l <- List.filter (fun y -> x <> y) l
method send m = List.iter m l

end;;

While parametric classes are polymorphic, objects of parametric classes
are not. The creation of an instance of a class new c must be compared
with the creation of a reference ref a. Indeed, the creation of an object
may also create mutable fields, and therefore it cannot safely be poly-
morphic. (Even if the class types does not show any mutable fields, they
might have just been hidden from a parent class.)

The type of self Another important feature of OCaml is its ability
to precisely relate the types of two objects without knowing their exact
shape. For instance, consider the library function that returns a shallow
copy (a clone) of any object given as argument:

Oo.copy : (< .. > as ’a) -> ’a

Firstly, this type indicates that the argument must be an object; we can
recognize the anonymous row variable “..”, which stands for “any other
methods”; secondly, it indicates that whatever the particular shape of the
argument is, the result type remains exactly the same as the argument
type. This type of Oo.copy is polymorphic, the types fileout -> fileout,
<gnu : int> -> <gnu : int>, or < > -> < > being some example of
instances. On the opposite, int -> int is not a correct type for Oo.copy.

Copying may also be internalized as a particular method of a class:

class copy = object (self) method copy = Oo.copy self end;;
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class copy : object (’a) method copy : ’a end

The type ’a of self, which is put in parentheses, is called self-type. The
class type of the class copy indicates that the class copy has a method
copy and that this method returns an object with of self-type. Moreover,
this property will remain true in any subclass of copy, where self-type
will usually become a specialized version of the the self-type of the parent
class.

This is made possible by keeping self-type an open type and the class
polymorphic in self-type. On the contrary, the type of the objects of a
class is always closed. It is actually an instance of the self-type of its
class. More generally, for any class C, the type of objects of a subclass
of C is an instance of the self-type of class C.

Exercise 23 ((*) Self types) Explain the differences between the fol-
lowing two classes:

class c1 = object (self) method c = Oo.copy self end
class c2 = object (self) method c = new c2 end;;

Answer

Exercise 24 ((**) Backups) Define a class backup with two methods
save and restore, so that when inherited in an (almost) arbitrary class
the method save will backup the internal state, and the method restore

will return the object in its state at the last backup. Answer

There is a functional counterpart to the primitive Oo.copy that avoids
the use of mutable fields. The construct {< >} returns a copy of self;
thus, it can only be used internally, in the definition of classes. However,
it has the advantage of permitting to change the values of fields while
doing the copy. Below is a functional version of backups introduced in
the exercise 24 (with a different interface).

class original =
object (self)

val original = None
method copy = {< original = Some self >}
method restore =

match original with None -> self | Some x -> x
end;;
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Here, the method copy, which replaces the method save of the imperative
version, returns a copy of self in which the original version has been stored
unchanged. Remark that the field original does not have to be mutable.

Exercise 25 ((***) Logarithmic Backups) Write a variant of ei-
ther the class backup or original that keeps all intermediate backups.

Add a method clean that selectively remove some of the intermediate
backups. For instance, keeping only versions of age 20, 21, ... 2n.

Binary methods We end this series of examples with the well-known
problem of binary methods. These are methods that take as argument
an object (or a value containing an object) of the same type as the type
of self. Inheriting from such classes in often a problem. However, this
difficulty is unnoticeable in OCaml as a result of the expressive treatment
of self types and the use of polymorphism.

As an example, let us consider two players: an amateur and a profes-
sional. Let us first introduce the amateur player.

class amateur = object (self)
method play x risk = if Random.int risk > 0 then x else self

end;;

The professional player inherits from the amateur, as one could expect. In
addition, the professional player is assigned a certain level depending on
his past scores. When a professional player plays against another player,
he imposes himself a penalty so as to compensate for the difference of
levels with his partner.

class professional k = object (self)
inherit amateur as super
method level = k
method play x risk = super#play x (risk + self#level − x#level)

end;;

The class professional is well-typed and behaves as expected.
However, a professional player cannot be considered as an amateur

player, even though he has more methods. Otherwise, a professional
could play with an amateur and ask for the amateur’s level, which an
amateur would not like, since he does not have any level information.
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This is a common pattern with binary methods: as the binary method
of a class C expects an argument of self-type, i.e. of type the type of
objects of class C, an object of a super-class C ′ of C does not usually
have is an interface rich enough to be accepted by the method of C.

An object of a class with a binary method has a recursive type where
recursion appears at least once in a contravariant position (this actually
is a more accurate, albeit technical definition of binary methods).

class amateur : object (’a)
method play : ’a -> int -> ’a

end
class professional : object (’a)

method level : int
method play : ’a -> int -> ’a

end

As a result of this contravariant occurrence of recursion, the type of an
object that exposes a binary method does not possess any subtype but
itself. For example, professional is not a subtype of amateur, even
though it has more methods. Conversely, < level : int > is a correct
subtype for an object of the class professional that does not expose its
binary method; thus, this type has non-trivial subtypes, such as amateur
or professional.

Exercise 26 ((**) Object-oriented strings) Define a class string

that embeds most important operations on strings in a class.
Extend the previous definition with a method concat. Answer

3.2 Understanding objects and classes

In this section, we formalize the core of the object layer of OCaml. In
this presentation, we make a few simplifications that slightly decrease the
expressiveness of objects and classes, but retain all of their interesting
facets.

One of the main restrictions is to consider fields immutable. Indeed,
mutable fields are important in practice, but imperative features are
rather orthogonal to object-oriented mechanisms. Imperative objects are
well explained as the combination of functional objects with references:
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mutable fields can usually be replaced by immutable fields whose content
is a reference. There is a lost though, which we will discuss below. Thus
we shall still describe mutable fields, including their typechecking, but
we will only describe their semantics informally.

As was already shown in the informal presentation of objects and
classes, polymorphism is really a key to the expressiveness of OCaml’s
objects and classes. In particular, it is essential that:

• Object types are structural (i.e. they structure is transparent) and
use row variables to allow polymorphism;

• Class types are polymorphic in the type of self to allow further
refinements.

Besides increasing expressiveness, polymorphism also plays an important
role for type inference: it allows to send messages to objects of unknown
classes, and in particular, without having to determine the class they
belong to. This is permitted by the use of structural object types and
row variables. Structural types mean that the structure of types is always
transparent and cannot be hidden by opaque names. (We also say that
object-types have structural equality, as opposed to by-name equality of
data-types.) Of course, objects are “first class” entities: they can be
parameters of functions, passed as arguments or return as results.

On the contrary, classes are “second class” entities: they cannot be
parameters of other expressions. Hence, only existing classes, i.e. of
known class types can be inherited or instantiated into objects. As a
result, type reconstruction for classes does not require much more ma-
chinery than type inference for components of classes, that is, roughly,
than type inference for expressions of the core language.

Syntax for objects and classes We assume three sets u ∈ F of field
names, m ∈M of method names, and z ∈ Z of class names.

To take objects and classes into account, the syntax of the core
language is extended as described in fig 3.1. Class bodies are either
new classes, written object B end, or expressions of a small calculus
of classes that including class variables, abstraction (over regular values
—not classes), and application of classes to values.
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Figure 3.1: Syntax for objects and classes

Expressions

a ::= . . . | new a | a#m | class z = d in a

Class expressions

d ::= object B end︸ ︷︷ ︸
creation

| z | λx.d | d a︸ ︷︷ ︸
abstraction and instantiation

Class bodies

B ::= ∅ | B inherit d | B u = a︸ ︷︷ ︸
field

| B m = ς(x) a︸ ︷︷ ︸
method

A minor difference with OCaml is we chose to bind self in each method
rather than once for all at the beginning of each class body. Methods are
thus of the form ς(x) m where x is a binder for self. Of course, we can
always see the OCaml expression object (x) u=a; m1=a1; m2=a1 end as
syntactic sugar for object u = a; m1 = ς(x) a1; m2 = ς(x) a1 end. Indeed,
the latter is easier to manipulate formally, while the former is shorter
and more readable in programs.

As suggested above, type-checking objects and classes are orthogonal,
and rely on different aspects of the design. We consider them separately
in two different sections.

3.2.1 Type-checking objects

The successful type-checking of objects results from a careful combination
of the following features: structural object types, row variables, recursive
types, and type abbreviations. Structural types and row polymorphism
allow polymorphic invocation of messages. The need for recursive types
arise from the structural treatment of types, since object types are recur-
sive in essence (objects often refer to themselves). Another consequence
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of structural types is that the types of objects tend to be very large. In-
deed, they describe the types of all accessible methods, which themselves
are often functions between objects with large types. Hence, a smart type
abbreviation mechanism is used to keep types relatively small and their
representation compact. Type abbreviations are not required in theory,
but they are crucial in practice, both for smooth interaction with the user
and for reasonable efficiency of type inference. Furthermore, observing
that some forms of object types are never inferred allows to keep all row
variables anonymous, which significantly simplifies the presentation of
object types to the user.

Object types Intuitively, an object type is composed of the row of all
visible methods with their types (for closed object types), and optionally
ends with a row variable (for open object types). However, this presen-
tation is not very modular. In particular, replacing row variables by a
row would not yield a well-formed type. Instead, we define types in two
steps. Assuming a countable collection of row variables % ∈ R, raw types
and rows are described by the following grammars:

τ ::= . . . | 〈ρ〉 ρ ::= 0 | % | m : τ ; ρ

This prohibits row variables to be used anywhere else but at the end of
an object type. Still, some raw types do not make sense, and should be
rejected. For instance, a row with a repeated label such as (m : τ ; m :
τ ′; ρ) should be rejected as ill-formed. Other types such as 〈m : τ ; ρ〉 →
〈ρ〉 should also be ruled out since replacing ρ by m : τ ′; ρ would produce
an ill-formed type. Indeed, well-formedness should be preserved by well-
formed substitutions. A modular criteria is to sort raw types by assigning
to each row a set of labels that it should not define, and by assigning to
a toplevel row ρ (one appearing immediately under the type constructor
〈·〉) the sort ∅.

Then, types are the set of well-sorted raw types. Furthermore, rows
are considered modulo left commutation of fields. That is, m : τ ; (m′ :
τ ′; ρ) is equal to m′ : τ ′; (m : τ ; ρ). For notational convenience, we
assume that (m : ; ) binds tighter to the right, so we simply write
(m : τ ; m′ : τ ′; ρ).
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Remark 6 Object types are actually similar to types for (non-extensible)
polymorphic records: polymorphic record access corresponds to message
invocation; polymorphic record extension is not needed here, since OCaml
class-based objects are not extensible. Hence, some simpler kinded ap-
proach to record types can also be used [57]. (See end of Chapter 2, page
66 for more references on polymorphic records.)

Message invocation Typing message invocation can be described by
the following typing rule:

Message
A ` a : 〈m : τ ; ρ〉

A ` a#m : τ

That is, if an expression a is an object with a method m of type τ and
maybe other methods (captured by the row ρ), then the expression a#m
is well-typed and has type τ .

However, instead of rule Message, we prefer to treat message invo-
cation (a#m) as the application of a primitive ( #m) to the expression a.
Thus, we assume that the initial environment contains the collection of
assumptions (( .m) : ∀α, %. 〈m : α; %〉 → α)m∈M. We so take advan-
tage of the parameterization of the language by primitives and avoid the
introduction of new typing rules.

Type inference for object types Since we have not changed the set
of expressions, the problem of type inference (for message invocation)
reduces to solving unification problems, as before. However, types are
now richer and include object types and rows. So type inference reduces
to unification with those richer types.

The constraint that object types must be well-sorted significantly
limits the application of left-commutativity equations and, as a result,
solvable unification problems possess principal solutions. Furthermore,
the unification algorithm for types with object-types can be obtained by
a simple modification of the algorithm for simple types.

Exercise 27 ((**) Object types) Check that the rewriting rules pre-
serves the sorts.
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Figure 3.2: Unification for object types

Use rules of table 1.5 where Fail excludes pairs composed of two sym-
bols of the form (m : ; ). and add the following rule:

Mute if m1 6= m2 and α /∈ {α1, α2} ∪ ftv(e)

(m1 : α1; %1)
·
= (m2 : α2; %2)

·
= e

∃%. (m1 : α1; m2 : α2; %)
·
= e ∧ %1

·
= (m2 : α2; %) ∧ %2

·
= (m1 : α1; %)

Ã

Anonymous row variables In fact, OCaml uses yet another restric-
tion on types, which is not mandatory but quite convenient in practice,
since it avoids showing row variables to the user. This restriction is
global: in any unificand we forces any two rows ending with the same
row variable to be equal. Such unificands can always may be written as

U ∧
∧

i∈I
(
∃%i. 〈mi : τi; %i〉 ·= ei

)

where U , all τi’s and ei’s do not contain any row variable. In such a

case, we may abbreviate ∃%i. 〈mi : τi; %i〉 ·= ei as 〈mi : τi; 1〉 ·= e, using an
anonymous row variable 1 instead of %.

It is important to note that the property can always be preserved
during simplification of unification problems.

Exercise 28 ((**) Unification for object types) Give simplification
rules for restricted unification problems that maintain the problem in a
restricted form (using anonymous row variables). Answer

An alternative presentation of anonymous row variables is to use

kinded types instead: The equation α
·
= 〈m : τ ; 1〉 can be replaced by

a kind constraint α :: 〈m : τ ; 1〉 (then α
·
= 〈m : τ ; 0〉 is also replaced by

α :: 〈m : τ ; 0〉).

Recursive types Object types may be recursive. Recursive types ap-
pear with classes that return self or that possess binary methods; they
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also often arise with the combination of objects that can call one another.
Unquestionably, recursive types are important.

In fact, recursive types do not raise any problem at all. Without
object types, i.e. in ML, types are terms of a free algebra, and unification
with infinite terms for free algebras is well-known: deleting rule Cycle
from the rewriting rules of figure 1.5 provides a unification algorithm for
recursive simple types.

However, in the presence of object types, types are no longer the terms
of a free algebra, since row are considered modulo left-commutativity ax-
ioms. Usually, axioms do not mix well with recursive types (in general,
pathological solutions appear, and principal unifiers may be lost.) Un-
restricted left-commutativity axiom is itself problematic. Fortunately,
the restriction of object types by sort constraints, which limits the use of
left-commutativity, makes objects-types behave well with recursive types.

More precisely, object-types can be extended with infinite terms ex-
actly as simple types. Furthermore, a unification algorithm for recur-
sive object types can be obtained by removing the Cycle rule from the
rewriting rules of both figures 1.5 and 3.2.

Remark 7 Allowing recursive types preserves type-soundness. However,
it often turns programmers’ simple mistakes, such as the omission of
an argument, into well-typed programs with unexpected recursive types.
(All terms of the λ-calculus —without constants— are well-typed with
recursive types.) Such errors may be left undetected, or only detected
at a very late stage, unless the programmer carefully check the inferred
types.

Recursive types may be restricted, e.g. such that any recursive path
crosses at least an object type constructor. Such a restriction may seem
arbitrary, but it is usually preferable in practice to no restriction at all.

Type sharing Finite types are commonly represented as trees. Re-
cursive types, i.e. infinite regular trees, can be represented in several
ways. The standard notation µθ.τ can be used to represent the infinitely
unfolded tree τ [τ [. . . /θ]/θ]. Alternatively, a regular tree can also be rep-
resented as a pair τ | U of a term and a set of equations in canonical
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form. The advantage of this solution is to also represent shared sub-

terms. For instance, the type α → α | α ·
= τ is different from the type

τ → τ when sharing is taken into account. Sharing may be present in
the source program (for instance if the user specifies type constraints;)
it may also be introduced during unification. Keeping sharing increases
efficiency; when displaying types, it also keeps them concise, and usually,
more readable.

Moreover, type sharing is also used to keep row variables anonymous.
For instance, 〈m : int; %〉 → 〈m : int; %〉, is represented as α→ α where

α
·
= 〈m : int; 1〉. The elimination of sharing would either be incorrect

or require the re-introduction of row variables.
In OCaml, type sharing is displayed using the as construct. A shared

sub-term is printed as a variable, and its equation is displayed in the
tree at the left-most outer-most occurrence of the sub-term. The last
example is thus displayed as (〈m : int; 1〉 as α) → α. The previous
example is simply (τ as α)→ α. The recursive type µα.〈m : int→ α〉,
which is represented by α where α

·
= 〈m : int → α〉, is displayed as

(〈m : int→ α〉 as α).
Remark that the as construct binds globally (while in (µα.τ) → α,

the variable α used to name the recursive sub-term of the left branch is
a free variable of the right branch).

Type abbreviations Although object types are structural, there are
also named, so as to be short and readable. This is done using type
abbreviations, generated by classes, and introduced when taking object
instances.

Type abbreviations are transparent, i.e. they can be replaced at any
time by their definitions. For instance, consider the following example

class c = object method m = 1 end;;

class c : object method m : int end

let f x = x#m in let p = new c in f p;;

The function f expects an argument of type 〈m : α; 1〉 while p has type c.
If c were a regular type symbol, the unification of those two types would
fail. However, since it is an abbreviation, the unification can proceed,
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replacing c by its definition 〈m : int〉, and finally returning the substi-
tution α 7→ int.

3.2.2 Typing classes

Typechecking classes is eased by a few design choices. First, we never
need to guess types of classes, because the only form of abstraction over
classes is via functors, where types must be declared. Second, the dis-
tinction between fields and methods is used to make fields never visible
in objects types; they can be accessed only indirectly via method calls.
Last, a key point for both simplicity and expressiveness is to type classes
as if they were taking self as a parameter; thus, the type of self is an
open object type that collects the minimum set of constraints required
to type the body of the class. In a subclass a refined version of self-type
with more constraints can then be used.

In summary, the type of a basic class is a triple ζ(τ)(F ; M) where τ
is the type of self, F the list of fields with their types, and M the list
of methods with their types. However, classes can also be parameterized
by values, i.e. functions from values to classes. Hence, class types also
contain functional class types. More precisely, they are defined by the
following grammar (we use letter ϕ for class types):

ϕ ::= ζ(τ)(F ; M) | τ → ϕ

Class bodies Typing class bodies can first be explored on a small ex-
ample. Let us consider the typing of class object u=au; m=ς(x) am end
in a typing context A. This class defines a field u and a method m, so
it should have a class type of the form ζ(τ)(u : τu; m : τm). The com-
putation of fields of an object takes place before to the creation of the
object itself. So as to prevent from accessing yet undefined fields, neither
methods nor self are visible in field expressions. Hence, the expression
au is typed in context A. That is, we must have A ` au : τu. On the
contrary, the body of the method m can see self and the field u, of types
τ and τu, respectively. Hence, we must have A, x : τ, u : τu ` am : τm.
Finally, we check that the type assumed for the m method in the type of
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Figure 3.3: Typing rules for class bodies

Empty

A ` ∅ : ζ(τ)(∅; ∅)

Field
A ` B : ζ(τ)(F ; M) A ` a : τ ′

A ` (B, u = a) : ζ(τ)(F ⊕ u : τ ′; M)

Method
A ` B : ζ(τ)(F ; M) A, x : τ, F ` a : τ ′

A ` (B, m = ς(x) a) : ζ(τ)(F ; M ⊕m : τ ′)

Inherit
A ` B : ζ(τ)(F ; M) A ` d : ζ(τ)(F ′; M ′)

A ` B inherit d : ζ(τ)(F ⊕ F ′; M ⊕M ′)

self is the type inferred for method m in the class body. That is, i.e. we
must have τ = 〈m : τm; ρ〉.

The treatment of the general case uses an auxiliary judgment A `
B : ζ(τ)(F ; M) to type the class bodies, incrementally, considering dec-
larations from left to right. The typing rules for class bodies are given in
figure 3.3. To start with, an empty body defines no field and no method
and leaves the type of self unconstrained (rule Empty). A field declara-
tion is typed in the current environment and the type of body is enriched
with the new field type assumption (rule Field). A method declaration
is typed in the current environment extended with the type assumption
for self, and all type assumptions for fields; then the type of the body is
enriched with the new method type assumption (rule Method). Last,
an inheritance clause simply combines the type of fields and methods
from the parent class with those of current class; it also ensures that the
type of self in the parent class and in the current class are compatible.
Fields or methods defined on both sides should have compatible types,
which is indicated by the ⊕ operator, standing for compatible union.
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Figure 3.4: Typing rules for class expressions

Object
A ` B : ζ(τ)(F ; M) τ = 〈M ; ρ〉
A ` object B end : ζ(τ)(F ; M)

Class-Var
d : ∀α. ϕ

A ` d : ϕ[τ/α]

Class-Fun
A, x : τ ` d : ϕ

A ` λx.d : τ → ϕ

Class-App
A ` d : τ → ϕ A ` a : τ

A ` d a : ϕ

Figure 3.5: Extra typing rules for expressions

Class
A ` d : ϕ A, z : ∀(ftv(ϕ) \ ftv(A)). ϕ ` a : τ

A ` class z = d in a : τ

New
A ` d : ζ(τ)(F ; M) τ = 〈M ; 0〉

A ` new d : τ

Class expressions The rules for typing class expressions, described in
Figure 3.4, are quite simple. The most important of them is the Object
rule for the creation of a new class: once the body is typed, it suffices to
check that the type of self is compatible with the types of the methods of
the class. The other rules are obvious and similar to those for variables,
abstraction and application in Core ML.

Finally, we must also add the rules of Figure 3.5, for the two new
forms of expressions. A class binding class z = d in a is similar to a let-
binding (rule Class): the type of the class d is generalized and assigned
to the class name z before typing the expression a. Thus, when the class
z is inherited in a, its class type is an instance of the class type of d.
Last, the creation of objects is typed by constraining the type of self to
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be exactly the type of the methods of the class (rule New). Note the
difference with Object rule where the type of self may contain methods
that are not yet defined in the class body. These methods would be
flagged virtual in OCaml. Then the class itself would be virtual, which
would prohibit taking any instance. Indeed, the right premise of the
New rule would fail in this case. Of course, the New rule enforces that
all methods that are used recursively, i.e. bound in present type of self,
are also defined.

Mutable fields The extension with mutable fields is mostly orthogonal
to the object-oriented aspect. This could use an operation semantics with
store as in Section 2.2.

Then, methods types should also see for each a field assignment prim-
itive (u ← ) for every field u of the class. Thus the Method typing
rule could be changed to

Method
A ` B : ζ(τ)(F ; M) A, x : τ, F, F← ` a : τ ′

A ` (B, m = ς(x) a) : ζ(τ)(F ; M ⊕m : τ ′)

where F← stands for {(u← : F (u)→ unit) | u ∈ dom (F )}.
Since now the creation of objects can extend the store, the New rule

should be treated as an application, i.e. preventing type generalization,
while with applicative objects it could be treated as a non-expansive
expression and allow generalization.

Overriding As opposed to assignment, overriding creates a new fresh
copy of the object where the value of some fields have been changed.
This is an atomic operation, hence the overriding operation should take
a list of pairs, each of which being a field to be updated and the new
value for this field.

Hence, to formalize overriding, we assume given a collection of primi-
tives {〈u1 = ; . . . ; un = 〉} for all n ∈ IN and all sets of fields {u1, . . . un}
of size n. As for assignment, rule methods should make some of these
primitives visible in the body of the method, by extending the typing
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Figure 3.6: Closure and consistency rules for subtyping

Closure rules
τ1 → τ2 ≤ τ ′1 → τ ′2 =⇒ τ ′1 ≤ τ1 ∧ τ2 ≤ τ ′2

〈τ〉 ≤ 〈τ ′〉 =⇒ τ ≤ τ ′

(m : τ1; τ2) ≤ (m : τ ′1; τ
′
2) =⇒ τ1 ≤ τ ′1 ∧ τ2 ≤ τ ′2

Consistency rules
τ ≤ τ1 → τ2 =⇒ τ is of the shape τ ′1 → τ ′2

τ ≤ 〈τ0〉 =⇒ τ is of the shape 〈τ ′0〉
τ ≤ (m : τ1; τ2) =⇒ τ is of the shape (m : τ ′1; τ

′
2)

τ ≤ Abs =⇒ τ = Abs
τ ≤ α =⇒ τ = α

environment of the Method rule of Figure 3.3. We use the auxiliary
notation {〈u1 : τ1; . . . un : τn〉}τ for the typing assumption

({〈u1 = ; . . . un = 〉} : τ1 → . . . τn → τ)

and F ? τ the typing environment
⋃

F ′⊂F{〈F ′〉}τ . Then, the new version
of the Method rule is:

Method
A ` B : ζ(τ)(F ; M) A, x : τ, F, F ? τ ` a : τ ′

A ` (B, m = ς(x) a) : ζ(τ)(F ; M ⊕m : τ ′)

Subtyping Since uses of subtyping are explicit, they do not raise any
problem for type inference. In fact, subtyping coercions can be typed as
applications of primitives. We assume a set of primitives ( : τ1 :> τ2) of
respective type scheme ∀α. τ1 → τ2 for all pairs of types such that τ1 ≤ τ2.
Note that the types τ1 and τ2 used here are given and not inferred.

The subtyping relation ≤ is standard. It is structural, covariant for
object types and on the right hand side of the arrow, contravariant on
the left hand side of the arrow, and non-variant on other type construc-
tors. Formally, the relation ≤ can be defined as the largest transitive
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relation on regular trees that satisfies the closure and consistency rules
of figure 3.6:

Subtyping should not be confused with inheritance. First, the two re-
lations are defined between elements of different sets: inheritance relates
classes, while subtyping relates object types (not even class types). Sec-
ond, there is no obvious correspondence between the two relations. On
the one hand, as shown by examples with binary methods, if two classes
are in an inheritance relation, then the types of objects of the respective
classes are not necessarily in a subtyping relation. On the other hand,
two classes that are implemented independently are not in an inheritance
relation; however, if they implement the same interface (e.g. in particular
if they are identical), the types of objects of these classes will be equal,
hence in a subtyping relation. (The two classes will define two different
abbreviations for the same type.) This can be checked on the following
program:

class c1 = object end
class c2 = object end;;
fun x -> (x : c1 :> c2);;

We have c1 ≤ c2 but c1 does not inherit from c2.

Exercise 29 (Project —type inference for objects) Extend the small
type checker given for the core calculus to include objects and classes.

3.3 Advanced uses of objects

We present here a large, realistic example that illustrates many facets of
objects and classes and shows the expressiveness of Objective Caml.

The topic of this example is the modular implementation of window
managers. Selecting the actions to be performed (such as moving or re-
displaying windows) is the managers’ task. Executing those actions is
the windows’ task. However, it is interesting to generalize this example
into a design pattern known as the subject-observer. This design pattern
has been a challenge [10]. The observers receive information from the
subjects and, in return, request actions from them. Symmetrically, the
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subjects execute the requested actions and communicate any useful in-
formation to their observers. Here, we chose a protocol relying on trust,
in which the subject asks to be observed: thus, it can manage the list of
its observers himself. However, this choice could really be inverted and
a more authoritative protocol in which the master (the observer) would
manage the list of its subjects could be treated in a similar way.

Unsurprisingly, we reproduce this pattern by implementing two classes
modeling subjects and observers. The class subject that manages the
list of observers must be parameterized by the type ’observer of the
objects of the class observer. The class subject implements a method
notify to relay messages to all observers, transparently. A piece of
information is represented by a procedure that takes an observer as pa-
rameter; the usage is that this procedure calls an appropriate message
of the observer; the name of the message and its arguments are hid-
den in the procedure closure. A message is also parameterized by the
sender (a subject); the method notify applies messages to their sender
before broadcasting them, so that the receiver may call back the sender
to request a new action, in return.

class [’observer] subject =
object (self : ’mytype)

val mutable observers : ’observer list = []
method add obs = observers <- obs :: observers
method notify (message : ’observer -> ’mytype -> unit) =
List.iter (fun obs -> message obs self) observers

end;;

The template of the observer does not provide any particular service and
is reduced to an empty class:

class [’subject] observer = object end;;

To adapt the general pattern to a concrete case, one must extend, in par-
allel, both the subject class with methods implementing the actions that
the observer may invoke and the observer class with informations that
the subjects may send. For instance, the class window is an instance of the
class subject that implements a method move and notifies all observers
of its movements by calling the moved method of observers. Consistently,
the manager inherits from the class observer and implements a method
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moved so as to receive and treat the corresponding notification messages
sent by windows. For example, the method moved could simply call back
the draw method of the window itself.

class [’observer] window =
object (self : ’mytype)

inherit [’observer] subject
val mutable position = 0
method move d =
position <- position + d; self#notify (fun x -> x#moved)

method draw = Printf.printf ”[Position = %d]” position;
end;;

class [’subject] manager =
object

inherit [’subject] observer
method moved (s : ’subject) : unit = s#draw

end;;

An instance of this pattern is well-typed since the manager correctly
treats all messages that are send to objects of the window class.

let w = new window in w#add (new manager); w#move 1;;

This would not be the case if, for instance, we had forgotten to implement
the moved method in the manager class.

The subject-observer pattern remains modular, even when special-
ized to the window-manager pattern. For example, the window-manager
pattern can further be refined to notify observers when windows are re-
sized. It suffices to add a notification method resize to windows and,
accordingly, an decision method resized to managers:

class [’observer] large_window =
object (self)

inherit [’observer] window as super
val mutable size = 1
method resize x =
size <- size + x; self#notify (fun x -> x#resized)

method draw = super#draw; Printf.printf ”[Size = %d]” size;
end;;
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class [’subject] big_manager =
object

inherit [’subject] manager as super
method resized (s:’subject) = s#draw

end;;

Actually, the pattern is quite flexible. As an illustration, we now add
another kind of observer used to spy the subjects:

class [’subject] spy =
object

inherit [’subject] observer
method resized (s:’subject) = print_string ”<R>”
method moved (s:’subject) = print_string ”<M>”

end;;

To be complete, we test this example with a short sequence of events:

let w = new large_window in
w#add (new big_manager); w#add (new spy);
w#resize 2; w#move 1;;

<R>[Position = 0][Size = 3]<M>[Position = 1][Size = 3]− : unit = ()

Exercise 30 (Project —A widget toolkit) Implement a widget toolkit
from scratch, i.e. using the Graphics library. For instance, starting with
rectangular areas as basic widgets, containers, text area, buttons, menus,
etc. can be derived objects. To continue, scroll bars, scrolling rectangles,
etc. can be added.

The library should be design with multi-directional modularity in mind.
For instance, widgets should be derived from one another as much as pos-
sible so as to ensure code sharing. Of course, the user should be able to
customize library widgets. Last, the library should also be extensible by
an expert.

In additional to the implementation of the toolkit, the project could
also illustrate the use of the toolkit itself on an example.

The subject/observer pattern is an example of component inheri-
tance. With simple object-oriented programming, inheritance is related
to a single class. For example, figure 3.7 sketches a common, yet ad-
vanced situation where several objects of the same worker class interact
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Figure 3.7: Traditional inheritance
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intimately, for instance through binary methods. In an inherited slave

class, the communication pattern can then be enriched with more con-
nections between objects of the same class. This pattern can easily be
implemented in OCaml, since binary methods are correctly typed in in-
herited classes, as shown on examples in Section 3.1.2.

A generalization of this pattern is often used in object-oriented com-
ponents. Here, the intimate connection implies several objects of related
but different classes. This is sketched in figure 3.8 where objects of the
worker class interact with objects of the manager class. What is then
often difficult is to allow inheritance of the components, such that objects
of the subclasses can have an enriched communication pattern and still
interact safely. In the sketched example, objects of the slave class on
the one hand and object of boss or spy classes on the other hand do
interact with a richer interface.

The subject/observer is indeed an instance of this general pattern.
As shown above, it can be typed successfully. Moreover, all the expected
flexibility is retained, including in particular, the refinement of the com-
munication protocol in the sub-components.

The key ingredient in this general pattern is, as for binary methods,
the use of structural open object types and their parametric treatment
in subclasses. Here, not only the selftype of the current class, but also
the selftype the other classes recursively involved in the pattern are ab-
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Figure 3.8: Component inheritance
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stracted in each class.

Further reading

The addition of objects and classes to OCaml was first experimented
in the language ML-ART [64] —an extension of ML with abstract types
and record types— in which objects were not primitive but programmed.
Despite some limitations imposed in OCaml, for sake of simplification,
and on the opposite some other extensions, ML-ART can be still be seen
as an introspection of OCaml object oriented features. Conversely, the
reader is referred to [66, 72] for a more detailed (and more technical)
presentation.

Moby [20] is another experiment with objects to be mentioned because
it has some ML flavor despite the fact that types are no longer inferred.
However, classes are more closely integrated with the module system,
including a view mechanism [68].

A short survey on the problem of binary methods is [9]. The “Subjec-
t/Observer pattern” and other solutions to it are also described in [10].
Of course, they are also many works that do not consider type inference.
A good but technical reference book is [1].
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Chapter 4

The module language

Independently of classes, Objective Caml features a powerful module
system, inspired from the one of Standard ML.

The benefits of modules are numerous. They make large programs
compilable by allowing to split them into pieces that can be separately
compiled. They make large programs understandable by adding structure
to them. More precisely, modules encourage, and sometimes force, the
specification of the links (interfaces) between program components, hence
they also make large programs maintainable and reusable. Additionally,
by enforcing abstraction, modules usually make programs safer.

4.1 Using modules

Compared with other languages already equipped with modules such as
Modular-2, Modula-3, or Ada, the originality of the ML module system
is to be a small typed functional language “on top” of the base lan-
guage. The ML module system can actually be parameterized by the
base language, which need not necessarily be ML. Thus, it could provide
a language for modules other base languages.

99
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4.1.1 Basic modules

Basic modules are structures, i.e. collections of phrases, written struct
p1 . . . pn end. Phrases are those of the core language, plus definitions of
sub modules module X = M and of module types module type T = S.
Our first example is an implementation of stacks.

module Stack =
struct

type ’a t = {mutable elements : ’a list }
let create () = { elements = [] }
let push x s = s.elements <- x :: s.elements
let pop s =

match s.elements with
h ::t -> s.elements <- t; h
| [] -> failwith ”Empty stack”

end;;

Components of a module are referred to using the “dot notation”:

let s = Stack.create () in Stack.push 1 s; Stack.push 2 s; Stack.pop s;;

− : int = 2

Alternatively, the directive open S allows to further skip the prefix and
the dot, simultaneously: struct open S . . . (f x : t) . . . end. A module
may also be a subcomponent of another module:

module T =
struct

module R = struct let x = 0 end
let y = R.x + 1

end

The “dot notation” and open extends to and can be used in sub-modules.
Note that the directive open T.R in a module Q makes all components
of T.R visible to the rest of the module Q but it does not add these
components to the module Q.

The system infers signatures of modules, as it infers types of values.
Types of basic modules, called signatures, are sequences of (type) speci-
fications, written sig s1 . . . sn end. The different forms of specifications
are described in figure 4.1. For instance, the system’s answer to the
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Figure 4.1: Specifications

Specification of form

values val x : σ
abstract types type t
manifest types type t = τ
exceptions exception E
classes class z :object . . . end
sub-modules module X : S
module types module type T [ = M ]

Stack example was:

module Stack :
sig

type ’a t = { mutable elements : ’a list; }
val create : unit -> ’a t
val push : ’a -> ’a t -> unit
val pop : ’a t -> ’a

end

An explicit signature constraint can be used to restrict the signature
inferred by the system, much as type constraints restrict the types in-
ferred for expressions. Signature constraints are written (M : S) where
M is a module and S is a signature. There is also the syntactic sugar
module X : S = M standing for module X = (M : S).

Precisely, a signature constraint is two-fold: first, it checks that the
structure complies with the signature; that is, all components specified in
S must be defined in M , with types that are at least as general; second,
it makes components of M that are not components of S inaccessible.
For instance, consider the following declaration:

module S : sig type t val y : t end =
struct type t = int let x = 1 let y = x + 1 end

Then, both expressions S.x and S.y + 1 would produce errors. The
former, because x is not externally visible in S. The latter because the
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component S.y has the abstract type S.t which is not compatible with
type int.

Signature constraints are often used to enforce type abstraction. For
instance, the module Stack defined above exposes its representation.
This allows stacks to be created directly without calling Stack.create.

Stack.pop { Stack.elements = [2; 3]};;
However, in another situation, the implementation of stacks might have
assumed invariants that would not be verified for arbitrary elements of
the representation type. To prevent such confusion, the implementation
of stacks can be made abstract, forcing the creation of stacks to use the
function Stack.create supplied especially for that purpose.

module Astack :
sig

type ’a t
val create : unit -> ’a t
val push : ’a -> ’a t -> unit
val pop : ’a t -> ’a

end = Stack;;

Abstraction may also be used to produce two isomorphic but incompati-
ble views of a same structure. For instance, all currencies are represented
by floats; however, all currencies are certainly not equivalent and should
not be mixed. Currencies are isomorphic but disjoint structures, with re-
spective incompatible units Euro and Dollar. This is modeled in OCaml
by a signature constraint.

module Float =
struct

type t = float
let unit = 1.0
let plus = (+.)
let prod = ( ∗. )

end;;

module type CURRENCY =
sig

type t
val unit : t
val plus : t -> t -> t
val prod : float -> t -> t

end;;

Remark that multiplication became an external operation on floats in
the signature CURRENCY. Constraining the signature of Float to be
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CURRENCY returns another, incompatible view of Float. Moreover, re-
peating this operation returns two isomorphic structures but with in-
compatible types t.

module Euro = (Float : CURRENCY);;
module Dollar = (Float : CURRENCY);;

In Float the type t is concrete, so it can be used for ”float”. Conversely,
it is abstract in modules Euro and Dollar. Thus, Euro.t and Dollar.t

are incompatible.

let euro x = Euro.prod x Euro.unit;;
Euro.plus (euro 10.0) (euro 20.0);;

Euro.plus (euro 50.0) Dollar.unit;;

Remark that there is no code duplication between Euro and Dollar.

A slight variation on this pattern can be used to provide multiple
views of the same module. For instance, a module may be given a re-
stricted interface in a given context so that certain operations (typically,
the creation of values) would not be permitted.

module type PLUS =
sig

type t
val plus : t -> t -> t

end;;
module Plus = (Euro : PLUS)

module type PLUS_Euro =
sig

type t = Euro.t
val plus : t -> t -> t

end;;
module Plus = (Euro : PLUS_Euro)

On the left hand side, the type Plus.t is incompatible with Euro.t. On
the right, the type t is partially abstract and compatible with Euro.t; the
view Plus allows the manipulation of values that are built with the view
Euro. The with notation allows the addition of type equalities in a (previ-
ously defined) signature. The expression PLUS with type t = Euro.t

is an abbreviation for the signature

sig
type t = Euro.t
val plus: t -> t -> t

end
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The with notation is a convenience to create partially abstract signatures
and is often inlined:

module Plus = (Euro : PLUS with type t = Euro.t);;
Plus.plus Euro.unit Euro.unit;;

Separate compilation Modules are also used to facilitate separate
compilation. This is obtained by matching toplevel modules and their
signatures to files as follows. A compilation unit A is composed of two
files:

• The implementation file a.ml is a sequence of phrases, like phrases
within struct . . . end.

• The interface file a.mli (optional) is a sequence of specifications,
such as within sig... end.

Another compilation unit B may access A as if it were a structure, using
either the dot notation A.x or the directive open A. Let us assume that
the source files are: a.ml, a.mli, b.ml. That is, the interface of a B is
left unconstrained. The compilations steps are summarized below:

Command Compiles Creates

ocamlc -c a.mli interface of A a.cmi

ocamlc -c a.ml implementation of A a.cmo

ocamlc -c b.ml implementation of B b.cmo

ocamlc -o myprog a.cmo b.cmo linking myprog

The program behaves as the following monolithic code:

module A : sig (∗ content of a.mli ∗) end =
struct (∗ content of a.ml ∗) end

module B = struct (∗ content of b.ml ∗) end

The order of module definitions correspond to the order of .cmo object
files on the linking command line.
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4.1.2 Parameterized modules

A functor, written functor (S : T )→M , is a function from modules to
modules. The body of the functor M is explicitly parameterized by the
module parameter S of signature T . The body may access the compo-
nents of S by using the dot notation.

module M = functor(X : T) ->
struct

type u = X.t ∗ X.t
let y = X.g(X.x)

end

As for functions, it is not possible to access directly the body of M. The
module M must first be explicitly applied to an implementation of signa-
ture T.

module T1 = T(S1)
module T2 = T(S2)

The modules T1, T2 can then be used as regular structures. Note that
T1 et T2 share their code, entirely.

4.2 Understanding modules

We refer here to the literature. See the bibliography notes below for more
information of the formalization of modules [27, 44, 45, 69].

For more information on the implementation, see [46].

4.3 Advanced uses of modules

In this section, we use the running example of a bank to illustrate most
features of modules and combined them together.

Let us focus on bank accounts and, in particular, the way the bank
and the client may or may not create and use accounts. For security
purposes, the client and the bank should obviously have different access
privileges to accounts. This can be modeled by providing different views
of accounts to the client and to the bank:
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module type CLIENT = (∗ client’s view ∗)
sig

type t
type currency
val deposit : t -> currency -> currency
val retrieve : t -> currency -> currency

end;;

module type BANK = (∗ banker’s view ∗)
sig
include CLIENT
val create : unit -> t

end;;

We start with a rudimentary model of the bank: the account book is
given to the client. Of course, only the bank can create the account, and
to prevent the client from forging new accounts, it is given to the client,
abstractly.

module Old_Bank (M : CURRENCY) :
BANK with type currency = M.t =

struct
type currency = M.t
type t = { mutable balance : currency }
let zero = M.prod 0.0 M.unit and neg = M.prod (−1.0)

let create() = { balance = zero }
let deposit c x =

if x > zero then c.balance <- M.plus c.balance x; c.balance
let retrieve c x =

if c.balance > x then deposit c (neg x) else c.balance
end;;

module Post = Old_Bank (Euro);;
module Client :

CLIENT with type currency = Post.currency and type t = Post.t
= Post;;

This model is fragile because all information lies in the account itself.
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For instance, if the client loses his account, he loses his money as well,
since the bank does not keep any record. Moreover, security relies on
type abstraction to be unbreakable. . .

However, the example already illustrates some interesting benefits of
modularity: the clients and the banker have different views of the bank
account. As a result an account can be created by the bank and used
for deposit by both the bank and the client, but the client cannot create
new accounts.

let my_account = Post.create ();;
Post.deposit my_account (euro 100.0);
Client.deposit my_account (euro 100.0);;

Moreover, several accounts can be created in different currencies, with
no possibility to mix one with another, such mistakes being detected by
typechecking.

module Citybank = Old_Bank (Dollar);;
let my_dollar_account = Citybank.create();;

Citybank.deposit my_account;;
Citybank.deposit my_dollar_account (euro 100.0);;

Furthermore, the implementation of the bank can be changed while pre-
serving its interface. We use this capability to build, a more robust —yet
more realistic— implementation of the bank where the account book is
maintained in the bank database while the client is only given an account
number.

module Bank (M : CURRENCY) : BANK with type currency = M.t =
struct

let zero = M.prod 0.0 M.unit and neg = M.prod (−1.0)
type t = int
type currency = M.t

type account = { number : int; mutable balance : currency }
(∗ bank database ∗)
let all_accounts = Hashtbl.create 10 and last = ref 0
let account n = Hashtbl.find all_accounts n

let create() = let n = incr last; !last in
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Hashtbl.add all_accounts n {number = n; balance = zero}; n

let deposit n x = let c = account n in
if x > zero then c.balance <- M.plus c.balance x; c.balance

let retrieve n x = let c = account n in
if c.balance > x then (c.balance <- M.plus c.balance x; x)
else zero

end;;

Using functor application we can create several banks. As a result of gen-
erativity of function application, they will have independent and private
databases, as desired.

module Central_Bank = Bank (Euro);;
module Banque_de_France = Bank (Euro);;

Furthermore, since the two modules Old_bank and Bank have the same
interface, one can be used instead of the other, so as to created banks
running on different models.

module Old_post = Old_Bank(Euro)
module Post = Bank(Euro)
module Citybank = Bank(Dollar);;

All banks have the same interface, however they were built. In fact,
it happens to be the case that the user cannot even observe the differ-
ence between either implementation; however, this would not be true in
general. Indeed, such a property can not be enforced by the typechecker.

Exercise 31 (Polynomials with one variable)

1. Implement a library with operations on polynomials with one vari-
able.

The coefficients form a ring that is given as a parameter to the
library.

2. Use the library to check, for instance, the identity (1+X)(1−X) =
1−X2.
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3. Check the equality (X + Y )(X − Y ) = (X2 − Y 2) by treating poly-
nomials with two variables as polynomials with one variable X and
where the coefficients are the ring of the polynomials with one vari-
able Y .

4. Write a program that reads a polynomial on the command line and
evaluates it at each of the points given in stdin (one integer per
line); the result should be printed in stdout.
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Chapter 5

Mixing modules and objects

Modules and classes play different roles. On the one hand, modules can
be embedded, and parameterized by types and values. Modules also allow
value and type abstraction on a large scale. On the other hand, classes
provide inheritance and its late binding mechanism; they can also be
parameterized by values, but on a small scale. At first, there seems to be
little redundancy. Indeed, to benefit from both features simultaneously,
modules and classes are often combined together.

However, both modules and classes provide means of structuring the
code. Despite their resemblance at first glance, modular and object-
oriented programming styles are in fact diverging: once a choice has
been made to represent a structure by a module or by an object, many
other choices are forced, which is sometimes bothersome.

In this Chapter, we discusses the overlapping of features and the
specificities, and show how to use them in harmony.

5.1 Overlapping

Many abstract datatypes can be defined using either classes or modules.
A representative example is the type of stacks. Stacks have been de-
fined as a parametric class in section 3.1.2 where operations on stacks
are methods embedded into stack-objects, and as a module defining an
abstract type of stacks and the associated operations in section 4.1.1.
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The following table summarizes the close correspondence between those
two implementations.

class version module version
The type of stacks ’a stack ’a Astack.t

Create a stack new stack Astack.created ()

Push x on s s#push x Astack.push x s
Pop from s s#pop Astack.pop s

More generally, all algebraic abstract types that are modifiable in
place and such that all associated operations are unary (i.e. they take
only one argument of the abstract type) can be defined as classes or as
modules in almost the same way. Here, the choice between those two
forms is mainly a question of programming style: some programmers
prefer to see the operations of the abstract type as methods attached to
values of this type, while others prefer to see them as functions outside
values of the abstract type.

Moreover, the two alternatives are still comparable when extending
the stack implementation with new operations. For instance, in both
cases, a new implementation of stacks can be derived from the older one
with an additional method top to explore the top of the stack without
popping it. Both implementations, described in Figure 5.1, are straight-
forward: the class approach uses inheritance while the module approach
uses the include construct. (The effect of include Stack is to rebind
all components of the Stack structure in the substructure.)

However, the two approaches definitely differ when considering late
binding, which is only possible with the class approach. For instance,
redefining the implementation of pop would automatically benefit to the
implementation of top (i.e. the method top would call the new defini-
tion of pop). This mechanism does not have any counterpart in OCaml
modules.

In conclusion, if inheritance is needed, the class approach seems more
appropriate, and it becomes the only possible (direct) solution if, more-
over, late binding is required. Conversely, for abstract datatypes used
with binary operations, such as sets with a merge operation, the module
approach will be preferable, as long as inheritance is not used. Further-
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Figure 5.1: Class v.s. Module versions of stacks

class [’a] stack_ext =
object (self)

inherit [’a] stack
method top =

let s = self#pop in
self#push s; s

end;;

module StackExt =
struct
include Stack
let top p =

let s = pop p in
push s p; s

end;;

more, the module approach is the only one that allows to return private
data to the user, but abstractly, so as to preserve its integrity. Of course,
the module system is also the basis for separate compilation.

5.2 Combining modules and classes

To benefit from the advantages of objects and modules simultaneously,
an application can easily combine both aspect. Typically, modules will
be used at the outer level, to provide separate compilation, inner struc-
tures, and privacy outside of the module boundaries, while classes will
be components of modules, and offer extendibility, open recursion and
late binding mechanisms.

We first present typical examples of such patterns, with increasing
complexity and expressiveness. We conclude with a more complex —but
real— example combining many features in an unusual but interesting
manner.

5.2.1 Classes as module components

The easiest example is probably the use of modules to simply group
related classes together. For instance, two classes nil and cons that are
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related by their usage, can be paired together in a module.

module Cell = struct
exception Nil
class [’a] nil =

object (self : ’alist)
method hd : ’a = raise Nil
method tl : ’alist = raise Nil
method null = true

end;;

class [’a] cons h t =
object (_ : ’alist)

val hd = h val tl = t
method hd : ’a = h
method tl : ’alist = t
method null = false

end;;
end;;

Besides clarity of code, one quickly take advantage of such grouping. For
instance, the nil and cons classes can be extended simultaneously (but
this is not mandatory) to form an implementation of lists:

module List = struct
class [’a] nil =

object
inherit [’a] Cell.nil
method length = 0

end;;

class [’a] cons h t =
object

inherit [’a] Cell.cons h t
method length = 1+tl#length

end;;
end;;

In turn, the module List can also be extended —but in another direction—
by adding a new “constructor” append. This amounts to adding a new
class with the same interface as that of the first two.

Remark 8 In OCaml, lists are more naturally represented by a sum data
type, which moreover allows for pattern matching. However, datatypes
are not extensible.

In this example, grouping could be seen as a structuring convenience,
because a flattened implementation of all classes would have worked as
well. However, grouping becomes mandatory for friend classes.
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Friend classes State encapsulation in objects allows to abstract their
representation by hiding all instance variables. Thus, reading and writing
capabilities can be controlled by providing only the necessary methods.
However, whether to expose some given part of the state is an all-or-
nothing choice: either it is confined to the object or revealed to the
whole world.

It is often the case that some, but not all, objects can access each
other’s state. A typical example (but not the only one) are objects with
binary methods. A binary method of an object is called with another
object of the same class as argument, so as to interact with it. In most
cases, this interaction should be intimate, e.g. depend on the details of
their representations and not only on their external interfaces. For in-
stance, only objects having the same implementation could be allowed
to interact. With objects and classes, the only way to share the rep-
resentation between two different objects is to expose it to the whole
world.

Modules, which provide a finer-grain abstraction mechanism, can help
secure this situation, making the type of the representation abstract.
Then, all friends (classes or functions) defined within the same module
and sharing the same abstract view know the concrete representation.

This can be illustrated on the bank example, by turning currency into
a class:

module type CURRENCY = sig
type t
class c : float ->

object (’a)
method v : t
method plus : ’a -> ’a
method prod : float -> ’a

end
end;;
module Currency = struct

type t = float
class c x =

object (_ : ’a)
val v = x method v = v
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method plus(z:’a) = {< v = v +. z#v >}
method prod x = {< v = x ∗. v >}

end
end;;
module Euro = (Currency : CURRENCY);;

Then, all object of the class Euro.c can be combined, still hiding the
currency representation.

A similar situation arises when implementing sets with a union oper-
ation, tables with a merge operation, etc.

5.2.2 Classes as pre-modules

We end this Chapter with an example that interestingly combines some
features of classes objects and modules. This example is taken from the
algebraic-structure library of the formal computation system FOC [7].
The organization of such a library raises important problems: on the one
hand, algebraic structures are usually described by successive refinements
(a group is a monoid equipped with an additional inverse operation). The
code structure should reflect this hierarchy, so that at least the code of
the operations common to a structure and its derived structures can be
shared. On the other hand, type abstraction is crucial in order to hide
the real representations of the structure elements (for instance, to prevent
from mixing integers modulo p and integers modulo q when p is not equal
to q). Furthermore, the library should remain extensible.

In fact, we should distinguish generic structures, which are abstract
algebraic structures, from concrete structures, which are instances of
algebraic structures. Generic structures can either be used to derive
richer structures or be instantiated into concrete structures, but they
themselves do not contain elements. On the contrary, concrete structures
can be used for computing. Concrete structures can be obtained from
generic ones by supplying an implementation for the basic operations.
This schema is sketched in figure 5.2. The arrows represent the expected
code sharing.

In general, as well as in this particular example, there are two kinds
of expected clients of a library: experts and final users. Indeed, a good
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library should not only be usable, but also re-usable. Here for instance,
final users of the library only need to instantiate some generic structures
to concrete ones and use these to perform computation. In addition, a
few experts should be able to extend the library, providing new generic
structures by enriching existing ones, making them available to the final
users and to other experts.

Figure 5.2: Algebraic structures
Generic structures

Semi-Group

Monoid

Group

Ring

+

x

Implementations

Z/2Z impl

...

Concrete structures

Z/2Z ring ...

The first architecture considered in the FOC project relies on mod-
ules, exclusively; modules facilitates type abstraction, but fails to provide
code sharing between derived structures. On the contrary, the second ar-
chitecture represents algebraic structures by classes and its elements by
objects; inheritance facilitates code sharing, but this solution fails to
provide type abstraction because object representation must be exposed,
mainly to binary operations.
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The final architecture considered for the project mixes classes and
modules to combine inheritance mechanisms of the former with type ab-
straction of the latter. Each algebraic structure is represented by a mod-
ule with an abstract type t that is the representation type of algebraic
structure elements (i.e. its “carrier”). The object meth, which collects
all the operations, is obtained by inheriting from the virtual class that
is parameterized by the carrier type and that defines the derived opera-
tions. For instance, for groups, the virtual class [’a] group declares the
basic group operations (equal, zero, plus, opposite) and defines the
derived operations (not_equal, minus) once and for all:

class virtual [’a] group =
object(self)

method virtual equal: ’a -> ’a -> bool
method not_equal x y = not (self#equal x y)
method virtual zero: ’a
method virtual plus: ’a -> ’a -> ’a
method virtual opposite: ’a -> ’a
method minus x y = self#plus x (self#opposite y)

end;;

A class can be reused either to build richer generic structures by adding
other operations or to build specialized versions of the same structure
by overriding some operations with more efficient implementations. The
late binding mechanism is then used in an essential way.

(In a more modular version of the group structure, all methods would
be private, so that they can be later ignored if necessary. For instance,
a group should be used as the implementation of a monoid. All private
methods are made public, and as such become definitely visible, right
before a concrete instance is taken.)

A group is a module with the following signature:

module type GROUP =
sig

type t
val meth: t group

end;;

To obtain a concrete structure for the group of integers modulo p, for ex-
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ample, we supply an implementation of the basic methods (and possibly
some specialized versions of derived operations) in a class z_pz_impl.
The class z_pz inherits from the class [int] group that defines the de-
rived operations and from the class z_pz_impl that defines the basic
operations. Last, we include an instance of this subclass in a structure
so as to hide the representation of integers modulo p as OCaml integers.

class z_pz_impl p =
object

method equal (x : int) y = (x = y)
method zero = 0
method plus x y = (x + y) mod p
method opposite x = p − 1 − x

end;;
class z_pz p =

object
inherit [int] group
inherit z_pz_impl p

end;;
module Z_pZ =

functor (X: sig val p : int end) ->
( struct

type t = int
let meth = new z_pz X.p
let inj x =

if x >= 0 && x < X.p then x else failwith ”Z pZ.inj”
let proj x = x

end : sig
type t
val meth: t group
val inj: int -> t
val proj: t -> int

end);;

This representation elegantly combines the strengths of modules (type
abstraction) and classes (inheritance and late binding).

Exercise 32 (Project —A small subset of the FOC library) As an
exercise, we propose the implementation of a small prototype of the FOC
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library. This exercise is two-fold.

On the one hand, it should include more generic structures, starting
with sets, and up to at least rings and polynomials.

On the other hand, it should improve on the model given above, by
inventing a more sophisticated design pattern that is closer to the model
sketched in figure 5.2 and that can be used in a systematic way.

For instance, the library could provide both an open view and the
abstraction functor for each generic structure. The open view is useful
for writing extensions of the library. Then, the functor can be used to
produce an abstract concrete structure directly from an implementation.

The pattern could also be improved to allow a richer structure (e.g.
a ring) to be acceptable in place only a substructure is required (e.g. an
additive group).

The polynomials with coefficients in ZZ/2ZZ offers a simple yet inter-
esting source of examples.

Further reading

The example of the FOC system illustrates a common situation that calls
for hybrid mechanisms for code structuring that would more elegantly
combine the features of modules and classes. This is an active research
area, where several solutions are currently explored. Let us mention
in particular “mixin” modules and objects with “views”. The former
enrich the ML modules with inheritance and a late binding mechanism
[18, 4, 5]. The latter provide a better object-encapsulation mechanism,
in particular in the presence of binary operations and “friend” functions;
views also allow to forget or rename methods more freely [68, 71].

Other object-oriented languages, such as CLOS, detach methods from
objects, transforming them into overloaded functions. This approach is
becoming closer to traditional functional programming. Moreover, it ex-
tends rather naturally to multi-methods [13, 22, 8] that allow to recover
the symmetry between the arguments of a same algebraic type. This
approach is also more expressive, since method dispatch may depend
on several arguments simultaneously rather than on a single one in a
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privileged position. However, this complicates abstraction of object rep-
resentation. Indeed, overloading makes abstraction more difficult, since
the precise knowledge of the type of arguments is required to decide what
version of the method should be used.
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Further reading

The OCaml compiler, its programming environment and its documenta-
tion are available at the Web site http://caml.inria.fr. The docu-
mentation includes the reference manual of the language and some tuto-
rials.

The recent book of Chailloux, Manoury and Pagano [12] is a com-
plete presentation of the OCaml language and of its programming envi-
ronment. The book is written in French, but an English version should
be soon available electronically. Other less recent books [15, 74, 26] use
the language Caml Light, which approximatively correspond to the core
OCaml language, covering neither its module system, nor objects.

For other languages of the ML family, [58] is an excellent introductory
document to Standard ML and [51, 50] are the reference documents for
this language. For Haskell, the reference manual is [38] and [70, 30] give
a very progressive approach to the language.

Typechecking and semantics of core ML are formalized in several
articles and book Chapters. A concise and self-contained presentation
can also be found in [43, 42, chapter 1]. A more modern formalization
of the semantics, using small-step reductions, and type soundness can
be found in [77]. Several introductory books to the formal semantics
of programming languages [25, 52, 67] consider a subset of ML as an
example. Last, [11] is an excellent introductory article to type systems
in general.

The object and class layer of OCaml is formalized in [66]. A reference
book on object calculi is [1]; this book, a little technical, formalizes the
elementary mechanisms underlying object-oriented languages. Another
integration of objects in a language of the ML family lead to the prototype
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language Moby described in [20]; a view mechanism for this language has
been proposed in [21].

Several formalization of Standard ML and OCaml modules have been
proposed. Some are based on calculi with unique names [51, 48], others
use type theoretical concepts [27, 44]; both approaches are compared and
related in [45, 69].

Beyond ML

ML is actually better characterized by its type system than by its set
of features. Indeed, several generalizations of the ML type system have
been proposed to increase its expressiveness while retaining its essential
properties and, in particular, type inference.

Subtyping polymorphism, which is used both in popular languages
such as Java and in some academic higher-order languages, has long
been problematic in an ML context. (Indeed, both Java and higher-
order languages share in common that types of abstractions are not in-
ferred.) However, there has been proposals to add subtyping to ML while
retaining type-inference. They are all based on a form of subtyping con-
straints [3, 19, 62] or, more generally, on typing constraints [54] and differ
from one another mostly by their presentation. However, none of these
works have yet been turned into a large scale real implementation. In
particular, displaying types to the user is a problem that remains to be
dealt with.

Other forms of polymorphism are called ad hoc, or overloading poly-
morphism by optimists. Overloading allows to bind several unrelated
definitions to the same name in the same scope. Of course, then, for
each occurrence of an overloaded name, one particular definition must
be chosen. This selection process, which is called name resolution, can
be done either at compile-time or at run-time, and overloading is called
static or dynamic, accordingly. Name resolution for static overloading is
done in combination with type-checking and is based on the type con-
text in which the name is used. For example, static overloading is used
in Standard ML for arithmetic operations and record accesses. Type
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information may still be used in the case of dynamic overloading, but
to add, whenever necessary, run-time type information that will be used
to guide the name resolution, dynamically. For example, type classes in
Haskell [38] are a form of dynamic overloading where type information
is carried by class dictionaries [55, 36], indirectly. Extensional polymor-
phism [17] is a more explicit form of dynamic overloading: it allows to
pattern-match on the type of expressions at run-time. This resembles to,
but also differ from dynamics values [47, 2].

The system F ω
<:, which features both higher-order types and sub-

typing, is quite expressive, hence very attractive as the core of a pro-
gramming language. However, its type inference problem is not decid-
able [75]. A suggestion to retain its expressiveness and the convenience
of implicit typing simultaneously is to provide only partial type recon-
struction [60, 56]. Here, the programmer must write some, but not all,
type information. The goal is of course that very little type information
will actually be necessary to make type reconstruction decidable. How-
ever, the difficulty remains to find a simple specification of where and
when annotations are mandatory, without requiring too many obvious or
annoying annotations. An opposite direction to close the gap between
ML and higher-order type systems is to embed higher-order types into
ML types [24]. However, this raises difficulties that are similar to partial
type reconstruction.

Actually, most extensions of ML explored so far seem to fit into two
categories. Either, they reduce to insignificant technical changes to core
ML, sometimes after clever reformulation though, or they seem to in-
crease the complexity in disproportion with the gain in expressiveness.
Thus, the ML type system might be a stable point of equilibrium —a
best compromise between expressiveness and simplicity. This certainly
contributed to its (relative) success. This also raised the standards for
its its successor.
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Appendix A

First steps in OCaml

Let us first check the “Hello world” program. Use the editor to create a
file hello.ml containing the following single line:

print_string ”Hello world!\n”;;

Then, compile and execute the program as follows:

ocamlc −o hello hello.ml
./hello

Hello World

Alternatively, the same program could have been typed interactively,
using the interpreter ocaml as a big desk calculator, as shown in the
following session:

ocaml

Objective Caml version 3.00

#

print_string ”hello world!\n”;;

hello world!
− : unit = ()

To end interactive sessions type ^D (Control D) or call the exit function
of type int -> unit:

exit 0;;
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Note that the exit function would also terminate the execution in a
compiled program. Its integer argument is the return code of the program
(or of the interpreter).

Exercise 33 ((*) Unix commands true and false) Write the Unix
commands true et false that do nothing but return the codes 0 and 1,
respectively. Answer

The interpreter can also be used in batch mode, for running scripts.
The name of the file containing the code to be interpreted is passed as
argument on the command line of the interpreter:

ocaml hello.ml

Hello World

Note the difference between the previous command and the following
one:

ocaml < hello.ml

Objective Caml version 3.00

# Hello World

− : unit = ()
#

The latter is a “batch” interactive session where the input commands
are taken from the file hello.ml, while the former is a script execution,
where the commands of the file are evaluated in script mode, which turns
off interactive messages.

Phrases of the core language are summarized in the table below:

– value definition let x = e
– [mutually recursive] let [ rec ] f1 x1 ... = e1 ...

function definition[s] [ and fn xn ... = en]
– type definition[s] type q1 = t1... [ and qn = tn ]
– expression e

Phrases (optionally) end with “;;”.

(∗ That is a comment (∗ and this is a comment inside
a comment ∗) continuing on several lines ∗)
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Note that an opening comment paren “(*” will absorb everything as
part of the comment until a well-balanced closing comment paren “*)”
is found. Thus, if you inadvertently type the opening command, you
may think that the interpreter is broken because it swallows all your
input without ever sending any output but the prompt.

Use ^C (Control-C) to interrupt the evaluation of the current phrase
and return to the toplevel if you ever fall in this trap!

Typing ^C can also be used to stop a never-ending computation. For
instance, try the infinite loop

while true do () done;;

and observe that there is no answer. Then type ^C. The input is taken
into account immediately (with no trailing carriage return) and produces
the following message:

ˆC

Interrupted.

Expressions are

– local definition let x = e1 in e2

(+ mutually recursive local function definitions)
– anonymous function fun x1 ... xn -> e
– function call f x1 ... xn

– variable x (M.x if x is defined in M)
– constructed value (e1, e2)

including constants 1, ’c’, "aa"
– case analysis match e with p1 -> e1 . . . | pn -> en

– handling exceptions try e with p1 -> e1 . . . | pn -> en

– raising exceptions raise e

– for loop for i = e0 [down]to ef do e done

– while loop while e0 do e done

– conditional if e1 then e2 else e3

– sequence e; e′

– parenthesis (e) or begin e end
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Remark that there is no notion of instruction or procedure, since all
expressions must return a value. The unit value () of type unit conveys
no information: it is the unique value of its type.

The expression e in for and while loops, and in sequences must be
of type unit (otherwise, a warning message is printed).

Therefore, useless results must explicitly be thrown away. This can be
achieved either by using the ignore primitive or an anonymous binding.

ignore;;

− : ’a -> unit = <fun>

ignore 1; 2;;

− : int = 2

let _ = 1 in 2;;

− : int = 2

(The anonymous variable _ used in the last sentence could be replaced
by any regular variable that does not appear in the body of the let)

Basic types, constants, and primitives are described in the follow-
ing table.

Type Constants Operations

unit () no operation!
bool true false && || not

char ’a’ ’\n’ ’\097’ Char.code Char.chr

int 1 2 3 + - * / max_int

float 1.0 2. 3.14 6e23 +. -. *. /. cos

string "a\tb\010c\n" ^ s.[i] s.[i] <- c

Polymorphic types and operations

arrays [| 0; 1; 2; 3 |] t.(i) t.(i) <- v

pairs (1, 2) fst snd

tuples (1, 2, 3, 4) Use pattern matching!

Infixes become prefixes when put between parentheses.
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For instance, ( + ) x1 x2 is equivalent to x1 + x2. Here, it is good
practice to leave a space between the operator and the parenthesis, so
as not to fall in the usual trap: The expression “(*)” would not mean
the product used as a prefix, but the unbalanced comment starting with
the character “)” and waiting for its closing comment paren “*)” closing
paren.

Array operations are polymorphic, but arrays are homogeneous:

[| 0; 1; 3 |];;
− : int array = [|0; 1; 3|]
[| true; false |];;
− : bool array = [|true; false|]

Array indices vary from 0 to n− 1 where n is the array size.

Array projections are polymorphic: they operate on any kind of array:

fun x -> x.(0);;

− : ’a array -> ’a = <fun>

fun t k x -> t.(k) <- x;;

− : ’a array -> int -> ’a -> unit = <fun>

Arrays must always be initialized:

Array.create;;

− : int -> ’a -> ’a array = <fun>

The type of the initial element becomes the type of the array.

Tuples are heterogeneous; however, their arity is fixed by their type: a
pair (1, 2) of int * int and a triple (1, 2, 3) of type int * int * int

are incompatible.

The projections are polymorphic but are defined only for a fixed ar-
ity. For instance, fun (x, y, z) -> y returns the second component
of any triple. There is no particular syntax for projections, and pattern
matching must be used. The only exceptions are fst and snd for pairs
defined in the standard library.
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Records In OCaml, records are analogous to variants and must be
declared before being used. See for example the type regular used for
cards (Exercise 2.1, page 53). Mutable fields of records must be declared
as such at the definition of the record type they belong to.

type ’a annotation = { name : string; mutable info : ’a};;
type ’a annotation = { name : string; mutable info : ’a; }
fun x -> x.info;;

− : ’a annotation -> ’a = <fun>

let p = { name = ”John”; info = 23 };;
val p : int annotation = {name=”John”; info=23}
p.info <- p.info + 1;;

− : unit = ()

Command line Arguments passed on the command line are stored
in the string array Sys.argv, the first argument being the name of the
command.

Exercise 34 ((*) Unix command echo) Implement the Unix echo
function. Answer

The standard library Arg provides an interface to extract arguments from
the command line.

Input-output A summary of primitives for manipulating channels and
writing on them is given in the two tables below. See the core and
standard libraries for an exhaustive list.

Predefined channels

stdin : in_channel
stdout : out_channel
stderr : out_channel

Creating channels

open_out : string -> out_channel
open_in : string -> in_channel
close_out : out_channel -> unit

http://caml.inria.fr/ocaml/htmlman/libref/Pervasives.html
http://caml.inria.fr/ocaml/htmlman/libref/index.html
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Reading on stdin

read_line : unit -> string
read_int : unit -> int

Writing on stdout

print_string : string -> unit
print_int : int -> unit
print_newline : unit -> unit

Exercise 35 ((**) Unix cat and grep commands) Implement the
Unix cat command that takes a list of file names on the command line
and print the contents of all files in order of appearance; if there is no
file on the command line, it prints stdin. Answer
The Unix grep command is quite similar to cat but only list the lines
matching some regular expression. Implement the command grep by a
tiny small change to the program cat, thanks to the standard library Str.

Answer

Exercise 36 ((**) Unix wc command) Implement the Unix wc com-
mand that takes a list of file names on the command line and for each
file count characters, words, and lines; additionally, but only if there were
more than one file, it presents a global summary for the union of all files.

Answer

http://caml.inria.fr/ocaml//htmlman/manual067.html
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Appendix B

Variant types and labeled
arguments

In this appendix we briefly present two recent features of the OCaml
language and illustrate their use in combination with classes. Actually,
they jointly complement objects and classes in an interesting way: first,
they provide a good alternative to multiple class constructors, which
OCaml does not have; second, variant types are also a lighter-weight
alternative to datatype definitions and are particularly appropriate to
simulate simple typecases in OCaml. Note that the need for typecases
is sufficiently rare, thanks to the expressiveness of OCaml object type-
system, that an indirect solution to typecases is quite acceptable.

B.1 Variant types

Variants are tagged unions, like ML datatypes. Thus, they allow values
of different types to be mixed together in a collection by tagging them
with variant labels; the values may be retrieved from the collection by
inspecting their tags using pattern matching.

However, unlike datatypes, variants can be used without a preceding
type declaration. Furthermore, while a datatype constructor belong to a
unique datatype, a variant constructor may belong to any (open) variant.
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Quick overview Just like sum type constructors, variant tags must be
capitalized, but they must also be prefixed by the back-quote character
as follows:

let one = ‘Int 1 and half = ‘Float 0.5;;

val one : [> ‘Int of int] = ‘Int 1
val half : [> ‘Float of float] = ‘Float 0.5

Here, variable one is bound to a variant that is an integer value tagged
with ‘Int. The > sign in the type [> ‘Int of int] means that one

can actually be a assigned a super type. That is, values of this type can
actually have another tag. However, if they have have tag ‘Int then they
must carry integers. Thus, both one and half have compatible types and
can be stored in the same collection:

let collection = [ one; half ];;

val collection : [> ‘Int of int | ‘Float of float] list =
[‘ Int 1; ‘Float 0.5]

Now, the type of collection is a list of values, that can be integers
tagged with ‘Int or floating point values tagged with ‘Float, or values
with another tag.

Values of a heterogeneous collection can be retrieved by pattern match-
ing and then reified to their true type:

let float = function
| ‘ Int x -> float_of_int x
| ‘ Float x -> x;;

val float : [< ‘Int of int | ‘Float of float] -> float = <fun>

let total =
List.fold_left (fun x y -> x +. float y) 0. collection ;;

Implementing typecase with variant types The language ML does
not keep types at run time, hence there is no typecase construct to test
the types of values at run time. The only solution available is to explicitly
tag values with constructors. OCaml data types can be used for that
purpose but variant types may be more convenient and more flexible
here since their constructors do not have to be declared in advance, and
their tagged values have all compatible types.
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For instance, we consider one and two dimensional point classes and
combine their objects together in a container.

class point1 x = object method getx = x + 0 end;;
let p1 = new point1 1;;

To make objects of the two classes compatible, we always tag them.
However, we also keep the original object, so as to preserve direct access
to the common interface.

let pp1 = p1, ‘Point1 p1;;

We provide testing and coercion functions for each class (these two func-
tions could of also be merged):

exception Typecase;;
let is_point1 = function _, ‘Point1 q -> true | _ -> false;;
let to_point1 = function _, ‘Point1 q -> q | _ -> raise Typecase;;

as well as a safe (statically typed) coercion point1.

let as_point1 = function pq -> (pq :> point1 ∗ _);;
Similarly, we define two-dimensional points and their auxiliary functions:

class point2 x y = object inherit point1 x method gety = y + 0 end;;
let p2 = new point2 2 2;;
let pp2 = (p2 :> point1), ‘Point2 p2;;
let is_point2 = function _, ‘Point2 q -> true | _ -> false;;
let to_point2 = function _, ‘Point2 q -> q | _ -> raise Typecase;;
let as_point2 = function pq -> (pq :> point2 ∗ _);;

Finally, we check that objects of both classes can be collected together
in a container.

let l =
let ( @ :: ) x y = (as_point1 x) :: y in
pp1 @:: pp2 @ :: [];;

Components that are common to all members of the collection can be
accessed directly (without membership testing) using the first projection.

let getx p = (fst p)#getx;;
List.map getx l;;

Conversely, other components must accessed selectively via the second
projection and using membership and conversion functions:

let gety p = if is_point2 p then (to_point2 p) # gety else 0;;
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List.map gety l;;

B.2 Labeled arguments

In the core language, as in most languages, arguments are anonymous.
Labeled arguments are a convenient extension to the core language

that allow to consistently label arguments in the declaration of functions
and in their application. Labeled arguments increase safety, since ar-
gument labels are checked against their definitions. Moreover, labeled
arguments also increase flexibility since they can be passed in a different
order than the one of their definition. Finally, labeled arguments can be
used solely for documentation purposes.

For instance, the erroneous exchange of two arguments of the same
type —an error the typechecker would not catch— can be avoided by
labeling the arguments with distinct labels. As an example, the module
StdLabels.String provides a function sub with the following type:

StdLabels.String.sub;;

− : string -> pos:int -> len:int -> string = <fun>

This function expects three arguments: the first one is anonymous, the
second and third ones are labeled pos and len, respectively. A call to
this function can be written

String.sub ”Hello” ˜pos:0 ˜len:4

or equivalently,

String.sub ”Hello” ˜len:4 ˜pos:0

since labeled arguments can be passed to the function in a different order.
Labels are (lexically) enclosed between ~ and :, so as to distinguish them
from variables.

By default, standard library functions are not labeled. The module
StdLabels redefines some modules of the standard library with labeled
versions of some functions. Thus, one can include the command

open StdLabels;;

at the beginning of a file to benefit from labeled versions of the li-
braries. Then, String.sub could have been used as a short hand for
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StdLabels.String.sub in the example above.

Labeled arguments of a function are declared by labeling the argu-
ments accordingly in the function declaration. For example, the labeled
version of substring could have been defined as

let substring s ˜pos:x ˜length:y = String.sub s x y;;

Additionally, there is a possible short-cut that allows us to use the name
of the label for the name of the variable. Then, both the ending : mark
at the end of the label and the variable are omitted. Hence, the following
definition of substring is equivalent to the previous one.

let substring s ˜pos ˜length = String.sub s pos length;;

B.3 Optional arguments

Labels can also be used to declare default values for some arguments.

Quick overview Arguments with default values are called optional
arguments, and can be omitted in function calls —the corresponding
default values will be used. For instance, one could have declared a
function substring as follows

let substring ?pos:(p=0) ˜length:l s = String.sub s p l;;

This would allow to call substring with its length argument and an
anonymous string, leaving the position to its default value 0. The anony-
mous string parameter has been moved as the last argument, inverting
the convention taken in String.sub, so as to satisfy the requirement
than an optional argument must always be followed by an anonymous
argument which is used to mark the end optional arguments and replace
missing arguments by their default values.

Application to class constructors In OCaml, objects are created
from classes with the new construct. This amounts to having a unique
constructor of the same name as the name of the class, with the same
arity as that of the class.
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In object-oriented languages, it is common and often quite useful
to have several ways of building objects of the same class. One common
example are is to have default values for some of the parameters. Another
situation is to have two (or more) equivalent representations for an object,
and to be able to initialized the object using the object either way. For
instance, complex points can be defined by giving either cartesian or
polar coordinates.

One could think of emulating several constructors by defining differ-
ent variants of the class obtained by abstraction and application of the
original class, each one providing a new class constructor. However, this
schema breaks modularity, since classes cannot be simultaneously refined
by inheritance.

Fortunately, labeled arguments and variant types can be used to-
gether to provide the required flexibility, as it there were several con-
structors, but with a unique class that can be inherited.

For example, two-dimensional points can be defined as follows:

class point ˜x:x0 ?y:(y0=0) () =
object method getx = x0 + 0 method gety = y0 + 0 end;;

(The extra unit argument is used to mark the end of optional arguments.)
Then, the y coordinate may be left implicit, which defaults to 0.

let p1 = new point ˜x:1 ();;
let p2 = new point ˜x:1 ˜y:2 ();;

Conversely, one could define the class so that

class point arg =
let x0, y0 =
match arg with
| ‘ Cart (x,y) -> x, y
| ‘ Polar(r,t) -> r ∗. cos t, r ∗. sin t in

object method getx = x0 method gety = y0 end;;

Then, points can be build by either passing cartesian or polar coordinates

let p1 = new point (‘Cart (1.414, 1.));;
let p2 = new point (‘Polar (2., 0.52));;

In this case, one could also choose optional labels for convenience of
notation, but at the price of some dynamic detection of ill-formed calls:
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class point ?x ?y ?r ?t () =
let x0, y0 =

match x, y, r, t with
| Some x, Some y, None, None -> x, y
| None, None, Some r, Some t -> r ∗. cos t, r ∗. sin t
| _, _, _, _ -> failwith ”Cart and Polar coordinates can’t be mixed” in

object method getx = x0 method gety = y0 end;;
let p1 = new point ˜x:2. ˜y:0.52 ();;
let p2 = new point ˜r:1.414 ˜t:0.52 ();;
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Appendix C

Answers to exercises

Exercise 1, page 21

let rec fill_context = function
| Top, e as ce -> e
| AppL (c, l), e -> fill_context (c, App (e, l))
| AppR ((_, e1), c), e2 -> fill_context (c, App (e1, e2))
| LetL (x, c, e2), e1 -> fill_context (c, Let (x, e1, e2));;

Exercise 1 (continued)

exception Error of context ∗ expr;;
exception Value of int;;
let rec decompose_down (c,e as ce) =

match e with
| Var _ -> raise (Error (c, e))
| Const c when c.constr -> raise (Value (c.arity + 1))
| Const c -> raise (Value (c.arity))
| Fun (_, _) -> raise (Value 1)
| Let (x, e1, e2) -> decompose_down (LetL (x, c, e2), e1)
| App (e1, e2) as e ->

try decompose_down (AppL (c, e2), e1) with Value k1 ->
try decompose_down (AppR ((k1, e1), c), e2) with Value k2 ->
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if k1 > 1 then raise (Value (k1 −1)) else ce;;

Exercise 1 (continued)

let rec decompose_up k (c, v as cv) =
if k > 0 then
match c with
| Top -> raise Not_found
| LetL (x, c’, e) ->

( c’, (Let (x, v, e)))
| AppR ((k’, v’), c’) ->

decompose_up (k’−1) (c’, App (v’, v))
| AppL (c’, e) ->

try decompose_down (AppR ((k, v), c’), e)
with Value _ -> decompose_up (k−1) (c’, App (v, e))

else cv;;

Exercise 1 (continued)

We first attempt decomposing the term a further and if it is a value of
arity k, then we decompose the context E up to k left-application levels.

let decompose ce =
try decompose_down ce with Value k -> decompose_up k ce;;

Exercise 1 (continued)

let reduce_in ((c : context), e) = (c, top_reduction e);;
let eval_step ce = reduce_in (decompose ce);;

The evaluation if the iteration of the one-step reduction until the expres-
sion is a value.

let rec eval_all ce = try eval_all (eval_step ce) with Not_found -> ce;;
let eval e = fill_context (eval_all (Top, e));;
eval e;;

− : expr = Const {name=Int 9; constr=true; arity=0}
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Exercise 1 (continued)

We write a single function that enables to print a context alone, an
expression alone, or a context and an expression to put in the hole.
Actually, we print all of them as expressions but use a special constant
as a hook to recognize when we reached the context.

let hole = Const {name = Name ”[]”; arity = 0; constr = true};;
let rec expr_with expr_in_hole k out =

let expr = expr_with expr_in_hole in
let string x = Format.fprintf out x in
let paren p f =

if k > p then string ”(”; f(); if k > p then string ”)” in
function
| Var x -> string ”%s” x
| Const _ as c when c = hole ->

string ”[%a]” (expr_with hole 0) expr_in_hole
| Const {name = Int n} -> string ”%d” n
| Const {name = Name c} -> string ”%s” c
| Fun (x,a) ->

paren 0 (fun()-> string ”fun %s -> %a” x (expr 0) a)
| App (App (Const {name = Name (”+” | ”∗” as n)}, a1), a2) ->

paren 1 (fun()->
string ”%a %s %a” (expr 2) a1 n (expr 2) a2)

| App (a1, a2) ->
paren 1 (fun()-> string ”%a %a” (expr 1) a1 (expr 2) a2)

| Let (x, a1, a2) ->
paren 0 (fun()->
string ”let x = %a in %a” (expr 0) a1 (expr 0) a2);;

let print_context_expr (c, e) =
expr_with e 0 Format.std_formatter (fill_context (c, hole))

let print_expr e = expr_with hole 0 Format.std_formatter e
let print_context c = print_expr (fill_context (c, hole));;
#install_printer print_context_expr;;

Exercise 3, page 43
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let print_type t =
let rec print k out t =

let string x = Printf.fprintf out x in
let paren p f =

if k > p then string ”(”; f(); if k > p then string ”)” in
let t = repr t in
begin match desc t with
| Tvar n -> string ”’a%d” n
| Tcon (Tint, []) -> string ”int”
| Tcon (Tarrow, [t1; t2]) ->

paren 0 (fun() ->
string ”%a -> %a” (print 1) t1 (print 0) t2)

| Tcon (g, l) -> raise (Arity (t, t))
end in

acyclic t;
print 0 stdout t;;

Exercise 4, page 44

We can either chose an function version:

let ftv_type t =
let visited = marker() in
let rec visit ftv t =

let t = repr t in
if t.mark = visited then ftv
else

begin
t.mark <- visited;
match desc t with
| Tvar _ -> t::ftv
| Tcon (g, l) -> List.fold_left visit ftv l

end in
visit [] t ;;

or an imperative version:

let ftv_type t =
let ftv = ref [] in



147

let visited = marker() in
let rec visit t =

let t = repr t in
if t.mark = visited then ()
else

begin
t.mark <- visited;
match desc t with
| Tvar _ -> ftv := t::!ftv
| Tcon (g, l) -> List.iter visit l

end in
visit t; !ftv;;

Exercise 4 (continued)

let type_instance (q, t) =
acyclic t;
let copy t = let t = repr t in t, tvar() in
let copied = List.map copy q in
let rec visit t =

let t = repr t in
try List.assq t copied with Not_found ->

begin match desc t with
| Tvar _ | Tcon (_ , []) -> t
| Tcon (g, l) -> texp (Tcon (g, List.map visit l))
end in

visit t;;

Exercise 4 (continued)

To keep sharing, every instance of a node will be kept in a table, and the
mark of the old node will be equal (modulo a translation) to the index
of the corresponding node in the table. Since we do not know at the
beginning the size of the table. we write a library of extensible arrays.

module Iarray =
struct

type ’a t = { mutable t : ’a array; v : ’a }



148 APPENDIX C. ANSWERS TO EXERCISES

let create k v = { t = Array.create (max k 3) v; v = v }
let get a i =

if Array.length a.t > i then a.t.(i) else a.v
let set a i v =

let n = Array.length a.t in
if n > i then a.t.(i) <- v else
begin

let t = Array.create (2 ∗ n) a.v in
Array.blit a.t 0 t 0 n;
a.t <- t;
t.(i) <- v;

end
end;;

Now, we can define the instance function. The polymorphic variables are
created first. Then, when we meet variables that have not been created,
we know that they should be shared rather than duplicated.

let type_instance (q, t) =
let table = Iarray.create 7 (tvar()) in
let poly = marker() in
let copy_var t =

let t’ = tvar() in let p = marker() in
t.mark <- p; Iarray.set table (p − poly) t’; t’ in

let q’ = List.map copy_var q in
let rec visit t =

let t = repr t in
if t.mark > poly then Iarray.get table (t.mark −poly)
else

begin match desc t with
| Tvar _ | Tcon (_ , []) -> t
| Tcon (g, l) ->

let t’ = copy_var t in
t’.texp <- Desc (Tcon (g, List.map visit l)); t’

end in
visit t;;
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Exercise 5, page 46

The function visit_type visit all nodes of a type that are not marked
to be excluded and has not yet been visited and applying a function
f to each visited none.

let visit_type exclude visited f t = let rec visit t =
let t = repr t in
if t.mark = exclude || t.mark == visited then ()
else

begin
t.mark <- visited; f t;
match desc t with
| Tvar _ -> ()
| Tcon (g, l) -> List.iter visit l

end in
visit t;;

The generalization mark variables that are free in the environment, then
list variables in the type that are noted mark as free in the environment.

let generalizable tenv t0 =
let inenv = marker() in
let mark m t = (repr t).mark <- m in
let visit_asumption (x, (q, t)) =

let bound = marker() in
List.iter (mark bound) q; visit_type bound inenv ignore t in

List.iter visit_asumption tenv;
let ftv = ref [] in
let collect t = match desc t with Tvar _ -> ftv := t::!ftv | _ -> () in
let free = marker() in
visit_type inenv free collect t0;
! ftv;;

let x = tvar();;
generalizable [] (tarrow x x);;

Exercise 6, page 48

It suffices to remark there is a subterm f f in a context where f is
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bound to a lambda. Hence both occurrences of f must have the same
type, which is not possible since the type of the right occurrence should
be the domain of the (arrow) type of the other one.

Exercise 7, page 48

let fact’ fact x = if x = 0 then 1 else x ∗ fact (x−1);;
let fact x = fix fact’ x;;

Exercise 9, page 49

let rec f ′1 = λf2.λf3.λx. let f1 = f ′1 f2 f3 in
a1

in
let rec f ′2 = λf3.λx. let f2 = f ′2 f3 in

let f1 = f ′1 f2 f3 in
a2

in
let rec f ′3 = λx. let f3 = f ′3 in

let f2 = f ′2 f3 in
let f1 = f ′1 f2 f3 in
a3

in
a

Exercise 10, page 50

Let us be lazy and use ocaml -rectypes:

let fix =
(fun f’ ->

( fun f -> (fun x -> f’ (f f) x))
( fun f -> (fun x -> f’ (f f) x))

);;

val fix : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>
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let fact = fix fact’ in fact 5;;

− : int = 120

Exercise 10 (continued)

let fix f’ = let g f x = f’ (f f) x in g g;;

val fix : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>

let fact = fix fact’ in fact 5;;

− : int = 120

Exercise 11, page 50

let print_type t =
let cyclic = marker() in
begin try acyclic t
| with Cycle l -> List.iter (fun t -> (repr t).mark <- cyclic) l;
end;
let named = marker() in
let rec print k out t =

let string x = Printf.fprintf out x in
let paren p f =

if k > p then string ”(”; f(); if k > p then string ”)” in
let t = repr t in
if t.mark > named then string ”’a%d” (t.mark − named)
else

begin match desc t with
| Tvar n ->

t.mark <- marker(); string ”’a%d” (t.mark − named)
| Tcon (Tint, []) ->

string ”int”
| Tcon (Tarrow, [t1; t2]) when t.mark = cyclic ->

t.mark <- marker();
string ”(%a -> %a as ’a%d)”
( print 1) t1 (print 1) t2 (t.mark − named);

| Tcon (Tarrow, [t1; t2]) ->
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paren 0 (fun() ->
string ”%a -> %a” (print 1) t1 (print 1) t2)

| Tcon (g, l) -> raise (Arity (t, t))
end in

print 0 stdout t;;

Exercise 12, page 51

The only way the type-checker is by finding unbound variables, or by
unification errors. The former cannot occur with closed terms. In turn,
unification can failed either with occur check or with clashes when at-
tempting to unify two terms with different top symbols. Recursive types
removes occur-check. In the absence of primitive operations, types are
either variables or arrow types. The only type constructor is →, so that
there will never be any clash during unification.

Exercise 13, page 54

The only difficulty comes from the Joker card, which can be used in
place of any other card. As a result, we cannot use a notion of binary
equivalence of two cards, which would not be transitive. Instead, we de-
fine an asymmetric relation agrees_with: for instance, the card Joker

agrees with King, but not the converse. For convenience, we also de-
fine the relation disagree_with, which is the negation of the symmetric
relation agrees_with.

let agrees_with x y =
match x, y with
Card u, Card v -> u.name = v.name
| _, Joker -> true
| Joker, Card _ -> false

let disagrees_with x y = not (agrees_with y x);;

We actually provide a more general solution find_similar that searches
sets of k similar cards among a hand. This function is defined by induc-
tion. If the hand is empty, there is no solution. If the first element of
the hand is a Joker, we search for sets of k-1 similar elements in the
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rest of the hand and add the Joker in front of each set. Otherwise, the
first element of hand is a regular card h: we first search for the set of all
elements matching the card h in the rest of the hand; this set constitutes
a solution if its size if at least k; then, we add all other solutions among
the rest of the hand that disagree with h. Otherwise, the solutions are
only those that disagree with h.

let rec find_similar k hand =
match hand with
| [] -> []
| Joker :: t ->

List.map (fun p -> Joker::p) (find_similar (k − 1) t)
| h :: t ->

let similar_to_h = h :: List.find_all (agrees_with h) t in
let others =
find_similar k (List.find_all (disagrees_with h) t) in

if List.length similar_to_h >= k then similar_to_h :: others
else others;;

let find_carre = find_similar 4;;

Here is an example of search:

find_carre
[ king Spade; Joker; king Diamond; Joker; king Heart;
king Club; card Queen Spade; card Queen Club; club_jack ];;

− : card list list =
[[Card {suit=Spade; name=King}; Joker; Card {suit=Diamond; name=King};
Joker; Card {suit=Heart; name=King}; Card {suit=Club; name=King}];

[Joker; Joker; Card {suit=Spade; name=Queen};
Card {suit=Club; name=Queen}]]

Exercise 15, page 56

It would still be correct if τi contains a variable that does not belong to α,
since this variable would not be generalized in the types of constructors
and destructors. (Of course, it would be unsafe to generalize such a
variable: for instance, one could then define type g = Cg of α with
Cg: ∀α. α → g and f : ∀α, β. g → (α → β) → β and assign any type to

the expression e
4
= match Cg 1 with Cg y ⇒ y ≡ f (Cg 1) (λy.y), which
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reduces to the integer 1.)
Conversely, it is safe, although strange and useless, that α contains

superfluous variables. Consider for instance the definition type g(α) =
Cg of int. Then g1 would have type g(α) for any type α.

Note that the latter is allowed in OCaml, while the former is rejected.

Exercise 16, page 56

We may use the following type definition: type bool = True of unit |
False of unit and see the expression if a then a1 else a2 as syntactic
sugar for matchbool a with True x⇒ a1 | False x⇒ a2.

Exercise 17, page 56

The generalization is to allow constructors of any arity.

type g(τ) = Cg of τ i | . . . Cg of τn

This is rather easy and left as an exercise. Then, one could define:

type (α1, α2) ( ∗ ) = ( , ) of (α1, α2)

fst
4
= λz.(F∗ z (λx.λy.x))

snd
4
= λz.(F∗ z (λx.λy.y))

Exercise 18, page 57

type value = Value of (value -> value);;
let fold f = Value f
let unfold (Value f) = f;;

Exercise 18 (continued)

[[x]] = x
[[λx.a]] =fold (λx.[[a]])
[[a1 a2]] =unfold ([[a1]] [[a2]])
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Exercise 18 (continued)

Here, let us use the compiler! For sake of readability, we abbreviate fold
and unfold.

let ( ! ) f = fold f and ( @ ) a1 a2 = unfold a1 a2;;
let fix =
!( fun f’ ->

!( fun f -> !(fun x -> f’ @ (f @ f) @ x))
@ !(fun f -> !(fun x -> f’ @ (f @ f) @ x))

);;

Exercise 19, page 59

type h′1(α, α2) = τ1[α2/h2(α)]
type h2(α) = τ2[h

′
1(α, h2(α))/h1(α)]

type h1(α) = h′1(α, h2(α))

Exercise 20, page 64

The function fix should take as argument a function f’ and return a
function f so that f x is equal to f’ f x. The solution is to store f in a
reference r. We temporarily create the reference r with a dummy func-
tion (that is not meant to be used). Assuming that the reference will later
contain the correct version of f, we can define f as fun x -> f’ !r x.
Hence, the following solution:

let fix f’ =
let r = ref (fun _ -> raise (Failure ”fix”)) in
let f x = f’ !r x in
r := f ; !r ;;

val fix : ((’a -> ’b) -> ’a -> ’b) -> ’a -> ’b = <fun>

Note that the exception should never be raised because the content of
the reference is overridden by f before being reference is used.

We could also use the option type to initialized the content of the
reference to None and replace it later with Some f. However, would
not avoid raising an exception if the value of the reference where to be
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None when being read, even though this situation should never occur
dynamically in a correct implementation.

As an example, we define the factorial function:

let fact’ fact n = if n > 0 then n ∗ fact (n−1) else 1 in
fix fact’ 6;;

− : int = 720

Exercise 22, page 66

The answer is positive. The reason is that exceptions hide the types of
values that they communicate, which may be recursive types.

We first to define two inverse functions fold and unfold, using the
following exception to mask types of values:

exception Hide of ((unit -> unit) -> (unit -> unit));;

let fold f = fun (x : unit) -> (raise (Hide f); ())
let unfold f = try (f(): unit); fun x -> x with Hide y -> y;;

val fold : ((unit -> unit) -> unit -> unit) -> unit -> unit = <fun>
val unfold : (unit -> unit) -> (unit -> unit) -> unit -> unit = <fun>

The two functions fold and unfold are inverse coercions between type
U → U and U where U is unit → unit: They can be used to embed
any term of the untyped lambda calculus into a well-typed term, using
the following well-known encoding:

[[x]] = x
[[λx.a]] =fold (λx.[[a]])
[[a1 a2]] =unfold ([[a1]] [[a2]])

In particular, [[fix ]] is well-typed.

Exercise 23, page 77

They differ when being inherited:

class cm1 = object inherit c1 method m = () end
class cm2 = object inherit c2 method m = () end;;
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The method c of class cm2 returns an object of type c2 instead of cm2,
as checked below:

((new cm1)#c : cm1);;

((new cm2)#c : cm2);;

Also, while the types c1 and c2 are equal, the type cm1 is only a subtype
of cm2.

Exercise 24, page 77

class backup =
object (self)

val mutable backup = None
method save = backup <- Some (Oo.copy self)
method restore =

match backup with None -> self | Some x -> x
end;;

Exercise 26, page 79

The only problem is the method concat that is a pseudo-binary method.
There are two possible solutions. The first is not to make it a binary
method, and let the class be parametric:

class [’a] ostring s = object (self)
val s = s
method repr = s
method concat (t:’a) = {< s = s ˆ t # repr >}

end;;

The second, more natural solution is to make concat a binary method by
making the parameter be the self-type.

class ostring s = object (self : ’a)
val s = s
method repr = s
method concat (t:’a) = {< s = s ˆ t # repr >}

end;;
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Exercise 28, page 84

For sake of readability, we only describe simplified rules covering all cases.

〈p : αp; q : τq; 1〉 ·= 〈p : τp; r : τr; 1〉 ·= e

〈p : αp; q : τq; r : τr; 1〉 ·= e ∧ αp
·
= τp

Ã

〈p : τp; 1〉 ·= 〈p : αp; q : τq; 0〉 ·= e

〈p : τp; q : τq; 0〉 ·= e ∧ αp
·
= τp

Ã
〈p : τp; 0〉 ·= 〈p : αp; 0〉 ·= e

〈p : αp; 0〉 ·= e ∧ αp
·
= τp

Ã

〈q : τq; 0〉 ·= 〈r : τr; 0〉 ·= e

⊥ Ã

The generalization is obvious: the occurrences of p : αp, p : τp, q : τq, and
r : τr, can be replaced by finite mappings from labels to types P , P ′, Q,
and R of disjoint domain except for P and P ′ of identical domain.

These (generalized) rules should be added to those for simple types,
where rule Fail and Decompose are not extended to the object type
constructor, nor the row constructors.

Exercise 33, page 128

exit 0;;

exit 1;;

Exercise 34, page 132

for i = 1 to Array.length Sys.argv − 1
do print_string Sys.argv.(i); print_char ’ ’ done;
print_newline();;

Exercise 35, page 133
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let echo chan =
try while true do print_endline (input_line chan) done
with End_of_file -> ();;

if Array.length Sys.argv <= 1 then echo stdin
else

for i = 1 to Array.length Sys.argv − 1
do

let chan = open_in Sys.argv.(i) in
echo chan;
close_in chan

done;;

Exercise 35 (continued)

let pattern =
if Array.length Sys.argv < 2 then
begin
print_endline ”Usage: grep REGEXP file1 .. file2”;
exit 1

end
else
Str.regexp Sys.argv.(1);;

let process_line l =
try let _ = Str.search_forward pattern l 0 in print_endline l
with Not_found -> ()

let process_chan c =
try while true do process_line (input_line c) done
with End_of_file -> ();;

let process_file f =
let c = open_in f in process_chan c; close_in c;;

let () =
if Array.length Sys.argv > 2 then



160 APPENDIX C. ANSWERS TO EXERCISES

for i = 2 to Array.length Sys.argv − 1
do process_file Sys.argv.(i) done

else
process_chan stdin;;

Exercise 36, page 133

type count = {
mutable chars : int;
mutable lines : int;
mutable words : int;
};;

let new_count() = {chars = 0; lines = 0; words = 0};;
let total = new_count();;

let cumulate wc =
total.chars <- total.chars + wc.chars;
total.lines <- total.lines + wc.lines;
total.words <- total.words + wc.words;;

let rec counter ic iw wc =
let c = input_char ic in
wc.chars <- wc.chars + 1;
match c with
| ’ ’ | ’\t’ ->

if iw then wc.words <- wc.words + 1 else ();
counter ic false wc

| ’\n’ ->
wc.lines <- wc.lines + 1;
if iw then wc.words <- wc.words + 1 else ();
counter ic false wc

| c ->
counter ic true wc;;

let count_channel ic wc =
try counter ic false wc with
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| End_of_file -> cumulate wc; close_in ic;;

let output_results s wc =
Printf.printf ”%7d%8d%8d %s\n” wc.lines wc.words wc.chars s;;

let count_file file_name =
try

let ic = open_in file_name in
let wc = new_count() in
count_channel ic wc;
output_results file_name wc;

with Sys_error s -> print_string s; print_newline(); exit 2;;

let main () =
let nb_files = Array.length Sys.argv − 1 in
if nb_files > 0 then
begin

for i = 1 to nb_files do
count_file Sys.argv.(i)

done;
if nb_files > 1 then output_results ”total” total;

end
else

begin
let wc = new_count() in
count_channel stdin wc;
output_results ”” wc;

end;
exit 0;;

main();;
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Développement d’applications avec Objective Caml. O’Reilly, 2000.

[13] Craig Chambers. The Cecil Language: Specification & Rationale.
Technical Report 93-03-05, University of Washington, 1993.
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[32] Gérard Huet. The zipper. Journal of Functional Programming,
7(5):549–554, 1997.

[33] Lalita A. Jategaonkar and John C. Mitchell. ML with extended
pattern matching and subtypes (preliminary version). In Proceedings
of the ACM Conference on Lisp and Functional Programming, pages
198–211, Snowbird, Utah, July 1988.

[34] Trevor Jim. Principal typings and type inference. PhD thesis, Mas-
sachusetts Institute of Technology, 1996.

[35] Trevor Jim. What are principal typings and what are they good for?
In Principles of Programming Languages, pages 42–53, 1996.

[36] Mark P. Jones. Qualified Types: Theory and Practice. Cambridge
University Press, November 1994.



BIBLIOGRAPHY 167

[37] Mark P. Jones and Simon Peyton Jones. Lightweight extensible
records for haskell. In Proceedings of the 1999 Haskell Workshop,
number UU-CS-1999-28 in Technical report, 1999.

[38] Simon Peyton Jones and John Hughes. Report on the programming
language Haskell 98. Technical report, http://www.haskell.org,
1999.

[39] Gilles Kahn. Natural semantics. In Symposium on Theoretical As-
pects of Computer Science, pages 22–39, 1987.

[40] Claude Kirchner and Jean-Pierre Jouannaud. Solving equations in
abstract algebras: a rule-based survey of unification. Research Re-
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[44] Xavier Leroy. Applicative functors and fully transparent higher-
order modules. In ACM Symposium on Principles of Programming
Languages, pages 142–153. ACM Press, 1995.

[45] Xavier Leroy. A syntactic theory of type generativity and sharing.
Journal of Functional Programming, 6(5):667–698, 1996.

[46] Xavier Leroy. A modular module system. Journal of Functional
Programming, 10(3):269–303, 2000.

[47] Xavier Leroy and Michel Mauny. Dynamics in ML. Journal of
Functional Programming, 3(4):431–463, 1993.



168 BIBLIOGRAPHY

[48] David B. MacQueen and Mads Tofte. A semantics for higher-order
functors. In D. Sannella, editor, Programming languages and systems
– ESOP ’94, volume 788 of Lecture Notes in Computer Science,
pages 409–423. Springer-Verlag, 1994.

[49] Alberto Martelli and Ugo Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and Systems,
4(2):258–282, 1982.

[50] Robin Milner and Mads Tofte. Commentary on Standard ML. The
MIT Press, 1991.

[51] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen.
The definition of Standard ML (revised). The MIT Press, 1997.

[52] John C. Mitchell. Foundations for Programming Languages. MIT
Press, 1996.

[53] Martin Odersky and Konstantin Läufer. Putting type annotations
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List of all exercises

Chapter 1

1, 18 ** Representing evaluation contexts
2, 30 * Progress in lambda-calculus
3, 41 * Printer for acyclic types
4, 42 * Free type variables for recursive types
5, 44 ** Generalizable variables
6, 47 * Non typability of fix-point
7, 47 * Using the fix point combinator
8, 47 ** Type soundness of the fix-point combinator
9, 48 * Multiple recursive definitions
10, 48 * Fix-point with recursive types
11, 49 ** Printing recursive types
12, 49 ** Lambda-calculus with recursive types

Chapter 2

13, 54 ** Matching Cards
14, 56 *** Type soundness for data-types
15, 56 ** Data-type definitions
16, 56 * Booleans as datatype definitions
17, 56 *** Pairs as datatype definitions
18, 57 ** Recursion with datatypes
19, 59 * Mutually recursive definitions of abbreviations
20, 64 ** Recursion with references
21, 65 ** Type soundness of exceptions
22, 65 ** Recursion with exceptions

Chapter 3

23, 74 * Self types
24, 75 ** Backups
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25, 75 *** Logarithmic Backups
26, 77 ** Object-oriented strings
27, 81 ** Object types
28, 82 ** Unification for object types
29, 89 Project —type inference for objects
30, 92 Project —A widget toolkit

Chapter 4

31, 106 Polynomials with one variable

Chapter 5

32, 116 Project —A small subset of the FOC library

Appendix A

33, 124 * Unix commands true and false
34, 128 * Unix command echo
35, 128 ** Unix cat and grep commands
36, 129 ** Unix wc command
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binary methods, 78
cloning, 76
closures, 26
evaluation

call-by-name, 22
call-by-value, 13
context, 16
implementation, 16

fix-point, see recursion
inference rule, 26
late binding, 73
match. . . with, 54
mutable

cells, 60
object field, 90
record field, 60

natural semantics, 26
non-determinism, 24
operational semantics

big-step, 26
overriding, 90
pattern matching, 53
polymorphic recursion, 49
recursion, 47

mutual, 49
with exceptions, 66
with recursive types, 50
with references, 64

recursive types, 84
redex, 14
reduction, 13
semantics

big-step, 13
in general, 12
operational, 13
small-step, 13

side-effects, see mutable
store, see mutable
type abbreviations, 58

in object types, 73, 86
typing

classes, 87
core ML, 45
environment, 31
exceptions, 65
judgments, 32
messages, 83
polymorphism, 44
references, 63
simple types, 31

values, 13

174


	Core ML
	Discovering Core ML
	The syntax of Core ML
	The dynamic semantics of Core ML
	Reduction semantics
	Properties of the reduction
	Big-step operational semantics

	The static semantics of Core ML
	Types and programs
	Type inference
	Unification for simple types
	Polymorphism

	Recursion
	Fix-point combinator
	Recursive types
	Type inference v.s. type checking


	The core of OCaml
	Data types and pattern matching
	Examples in OCaml
	Formalization of superficial pattern matching
	Recursive datatype definitions
	Type abbreviations
	Record types

	Mutable storage and side effects
	Formalization of the store
	Type soundness
	Store and polymorphism
	Multiple-field mutable records

	Exceptions

	The object layer
	Discovering objects and classes
	Basic examples
	Polymorphism, subtyping, and parametric classes

	Understanding objects and classes
	Type-checking objects
	Typing classes

	Advanced uses of objects

	The module language
	Using modules
	Basic modules
	Parameterized modules

	Understanding modules
	Advanced uses of modules

	Mixing modules and objects
	Overlapping
	Combining modules and classes
	Classes as module components
	Classes as pre-modules


	First steps in OCaml
	Variant and labeled arguments
	Variant types
	Labeled arguments
	Optional arguments

	Answers to exercises

