Décomposition en nombres de Fibonacci (ENS)

F est la suite de Fibonacci définie par $F_0=0,\,F_1=1$ et $F_{n+2}=F_{n+1}+F_n$ pour tout $n\in {\bf N}.$

Montrer que tout entier $n \ge 0$ peut s'écrire de façon unique sous la forme $n = \sum_{i=1}^r F_{e_i}$, où $e_i - e_{i+1} > 1$ et $e_i \ge 2$.

Corrigé

Montrons d'abord par récurrence sur r que, pour toute décomposition $n = \sum_{i=1}^r F_{e_i}$, on a $n < F_{e_1+1}$. Si r = 1, c'est clair; et si on suppose le résultat pour r-1, alors $n < F_{e_1} + F_{e_2+1} \leqslant F_{e_1} + F_{e_1-1} = F_{e_1+1}$.

On démontre par récurrence sur p que tout entier < à F_p admet une unique décomposition de la forme indiquée. Pour $p \le 4$ c'est facile. Si le résultat est vérifié pour p, soit $n \in [F_p, F_{p+1}]$: $n = F_p + m$ où $0 \le m < F_{p+1} - F_p = F_{p-1}$. D'après l'hypothèse de récurrence, m admet une unique décomposition $m = \sum_{i=1}^r F_{e_i}$. Les e_i sont alors nécessairement < p-1 donc $n = F_p + \sum_{i=1}^r F_{e_i}$ est une décomposition de n. Pour vérifier l'unicité soit $n = \sum_{i=1}^s F_i$ une décomposition de n.

une décomposition de n. Pour vérifier l'unicité, soit $n = \sum_{i=1}^{s} F_{e'_i}$ une décomposition de n. Nécessairement, $e'_1 = p$ (car sinon $e'_1 < p$ et donc $n < F_{e'_1+1} \leqslant F_p$) et $\sum_{i=2}^{s} F_{e'_i}$ est donc la décomposition de m.