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Abstract
Program errors are hard to detect and are costly both to program-
mers who spend significant efforts in debugging, and for systems
that are guarded by runtime checks. Static verification techniques
have been applied to imperative and object-oriented languages, like
Java and C#, but few have been applied to a higher-order lazy func-
tional language, like Haskell. In this paper, we describe a sound and
automatic static verification framework for Haskell, that is based
on contracts and symbolic execution. Our approach is modular and
gives precise blame assignments at compile-time in the presence of
higher-order functions and laziness.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms verification, functional language

Keywords contract satisfaction, static contract checking

1. Introduction
Program errors are common in software systems, including those
that are constructed from functional languages, and much research
attention has been paid to the early and accurate detection of such
errors. Formulating and checking (dynamically or statically) logi-
cal assertions [22, 13, 4], especially in the form of contracts [24, 2],
is one popular approach to error discovery. Assertions state logical
properties of an execution state at arbitrary points in the program;
contracts specify agreements concerning the values that flow across
a boundary between distinct parts of a program (modules, proce-
dures, functions, classes). In functional languages, the presence of
higher-order values and lazily-constructed values complicate as-
sertion and contract checking, but considerable progress has been
made, especially for dynamically-checked contracts [11, 10, 18]. In
addition, recent proposals have introduced static pre/post-condition
checking and hybrid (mixed static/dynamic) contract checking for
functional languages [38, 12, 21, 20, 16].

In this paper, we present a sound and automatic method for static
contract checking for a higher-order lazy functional language,
Haskell, by combining the ideas of higher-order contract seman-
tics [11, 3] and static verification through symbolic execution [38].
Consider:
f :: [Int] -> Int
f xs = head xs ‘max‘ 0

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’09, January 18–24, 2009, Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-379-2/09/01. . . $5.00.

where head is defined in the module Prelude as follows:

head :: [a] -> a
head (x:xs) = x
head [] = error "empty list"

If we have a call (f []) in our program, its execution will result
in the following error message:

Exception: Prelude.head: empty list

This gives no information on which part of the program is wrong
except that head has been wrongly called with an empty list. Pre-
sumably, the programmer’s intention is that head should not be
called with an empty list. To express this intention, programmers
can give a contract to the function head. Contracts are imple-
mented as pragmas:

{-# CONTRACT head :: {s | not (null s)} -> {z | True} #-}

where not and null are just ordinary Haskell functions:

null :: [a] -> Bool not :: Bool -> Bool
null [] = True not True = False
null xs = False not False = True

This contract places the onus on callers of head to ensure that the
argument to head satisfies the expected precondition. With this
contract, our compiler would generate the following warning (by
giving a counter-example) when checking the definition of f:

Error: f [] calls head
which fails head’s precondition!

This paper makes the following specific contributions:

• We give a crisp, declarative specification for what it means for a
term to satisfy a contract (§4). This is unusual, with the notable
exception of Blume & McAllester [3].

• Unlike Blume & McAllester and most other related work on
higher-order contracts, we focus on static verification, and tar-
get a lazy language.

• Our contracts themselves contain unrestricted Haskell terms, so
we tackle head-on the question of what happens if the contract
itself crashes (§6) or diverges (§7).

• Despite this generality, we are able to give a very strong the-
orem expressing the soundness and completeness of contract
wrappers as compared to contract satisfaction (§5).

• We develop a concise notation (. and /) for describing con-
tract checking, that enjoys many useful properties (§5.3). Thus
equipped, we give a new proof of the soundness and complete-
ness of contract wrappers. This proof is quite simple, but setting
up the design to make it simple was much trickier than we ex-
pected.

• Our framework neatly accommodates some subtle points that
others have encountered, including: ensuring that all contracts
are inhabited (§4.3), and the Any contract (§4.4).



• We describe how to augment the contract decision procedure so
that it maintains extra information that helps the programmer to
localise the error (§8).

2. Overview
The type of a function constitutes a partial specification to the
function. For example, sqrt :: Int -> Int says that sqrt is
a function that takes an integer and returns an integer. A con-
tract of a function gives more detailed specification. For example:
{-# CONTRACT sqrt :: {x | x >= 0} -> {z | z <= x} #-}
says that the function sqrt takes a positive value and returns a
value that is smaller than the input. A contract can therefore be
viewed as a refinement to a type; it is therefore also known as
refinement type in [15, 7, 12].

This paper describes a system that allows a programmer to write
a contract on some (but, like type signatures, not necessarily all)
definitions, and then statically checks whether the definition satis-
fies the contract. This check is undecidable, and so may give the
result “definitely satisfies”, “definitely does not satisfy”, or “don’t
know”. In the latter two cases we emit information that helps to lo-
calise the (possible) bug. We begin, however, by giving the flavour
of contracts themselves with various examples, concentrating on
aspects where our approach differs from other contract systems. §4
makes contracts precise.

2.1 Base and Dependent Function Contracts
We adopt the basic contract notation from [11, 12]. For example,
here is a contract that declares that the length of the result rs is
the same as the length of the argument xs (where Ok is short for
{x | True}):

reverse :: [a] -> [a]
{-# CONTRACT

reverse :: xs:Ok -> {rs | length xs == length rs} #-}
reverse = ...

The expression (length xs == length rs) is an arbitrary
boolean-valued Haskell expression. Programmers do not need to
learn a new language of predicates; they just use Haskell.

Notice too that this is a dependent function contract, because the
argument xs is used in the result contract.

The contract notation is more expressive than the requires,
ensures notation used in our earlier work [38], because it scales
properly to higher-order functions. Consider an example adapted
from [3]:

f1 :: (Int -> Int) -> Int
f1 g = (g 1) - 1
{-# CONTRACT f1 :: ({x | True} -> {y | y >= 0})

-> {z | z >= 0} #-}
f2 = f1 (\x -> x - 1)

The contract of f1 says that if f1 takes a function that returns
a natural number when given any integer, the function f1 itself
returns a natural number.

The Findler-Felleisen algorithm in [11] (a dynamic contract check-
ing algorithm) can detect a violation of the contract of f1. How-
ever, it cannot tell that the argument of f1 in the definition of f2
fails f1’s precondition (due to the lack of witness at run-time). On
the other hand, the Sage system in [21] (a hybrid contract checking
system) can detect the failure in f2 statically, and can report con-
tract violation of f1 at run-time. Our system reports both failures
at compile-time with the following messages:

Error: f1’s postcondition fails
when (g 1) >= 0 holds

(g 1) - 1 >= 0 may not hold

Error: f2 calls f1
which fails f1’s precondition

2.2 Laziness
Laziness can cause false alarms. For example:

fst (a, b) = a
f3 = fst (5, error "f")

Syntactically, the call fst (5, error "f") appears unsafe be-
cause the existence of a call to error, but in a lazy language like
Haskell the call is perfectly safe. The only static verification tool
that caters for laziness is the ESC/Haskell system [38], which can
reduce false alarms due to laziness by inlining. In the above case,
the function fst is inlined, so the call to fst in f3 becomes 5
which is syntactically safe. However, if the size of the lazy func-
tion is big, or the function is recursive, the inlining strategy breaks
down. In this paper we therefore introduce a special contract Any,
which every expression satisfies. Now we can give fst a contract

{-# CONTRACT fst :: (Ok, Any) -> Ok #-}

which says that fst does not care what the second component of
the argument is, as long as the first component is crash-free, the
result is crash-free. Here, with the contract Any, without inlining
any function, our system can tell that f3 is safe.

This means that we give a crashing expression (such as error "msg")
the contract Any, while in [3] an expression that unconditionally
crashes satisfies no contract. This is one of the key differences in
designing the contract semantics.

2.3 Data Constructors in Contracts
In the previous section we gave fst’s argument the contract
(Ok, Any); that is, the argument should be a pair whose first com-
ponent satisfies Ok, and whose second satisfies Any. We generalise
this form for any user-defined data constructor. For example:

data A = A1 Int Bool | A2 A

f4 :: A -> Int
{-# CONTRACT f4 :: A1 {x | x > 0} Ok

-> {z | z > 0} #-}
f4 (A1 x y) = if y then x + 1

else error "f4"

Note that, the data constructor A1 is used in the above contract
while the data type A is used in the type specification. Besides
checking the sub-components of A1, a call (f4 (A2 z)) is re-
jected because the contract of f4 says that f4 can only be applied
to data constructed by A1.

2.4 Partial Functions in Contracts
A partial function is one that may crash or diverge. For example,
the function head crashes when given an argument []. Since we
allow arbitrary Haskell code in contracts, what are we to say about
contracts that crash or diverge? One possibility is to simply exclude
all such contracts—but excluding divergence requires a termination
checker, and excluding functions like head is extremely restrictive.
For example:

headPlus :: [Int] -> Int
{-# CONTRACT headPlus :: {xs | not (null xs)}

-> {z | z > head xs} #-}
headPlus [] = error "Urk"
headPlus (x:xs) = x+1

Here the postcondition uses head (which may crash), but that
seems entirely reasonable in view of the precondition that xs is



non-empty. Nevertheless, such a contract is rejected by [3], because
of the call to head.

Our approach is to permit divergence in contracts (which avoids
the requirement for a termination checker), but to require them
to be “crash-free”. Our definition of crash-free-ness for contracts
takes account of dependency, and hence is much more liberal than
requiring each Haskell term in the contract to be independently
crash-free (which excludes head). This liberality is, we believe, key
to making contracts usable in practice. We discuss crash-freeness of
contracts in §6.1 and divergence in §7.1.

2.5 The Plan for Verification
It is all very well for programmers to claim that a function satisfies
a contract, but how can we verify the claim statically (i.e. at com-
pile time)? Our overall plan, which is similar to that of Blume &
McAllester [3], is as follows.
• Our overall goal is to prove that the program does not crash,

so we must first say what programs are, and what it means to
“crash” (§3.3).

• Next, we give a semantic specification for what it means for an
expression e to “satisfy a contract” t, written e ∈ t (§4).

• From a definition f = e we form a term e . t pronounced “e
ensures t”. This term behaves just like e except that (a) if e
disobeys t then the term crashes; (b) if the context uses e in a
way not permitted by t then the term loops. The term e . t is
essentially the wrapper mechanism first described by Findler &
Felleisen [11], with some important refinements (§5).

• With these pieces in place, we can write down our main theorem
for crash-free contracts t (§5), namely that

e ∈ t ⇐⇒ (e . t) is crash-free

We must ensure that everything works properly, even if e di-
verges, or laziness is involved, or the contract contains diver-
gent or crashing terms.

• Using this theorem, we may check whether f ∈ t holds as
follows: we attempt to prove that (e . t) is crash-free — that
is, does not crash under all contexts. We conduct this proof
in a particularly straightforward way: we perform symbolic
evaluation of (e . t). If we can simplify the term to a new term
e′, where e′ is syntactically safe — that is, contains no crashes
everywhere in the expression — then we are done. This test is
sufficient, but not necessary; of course, the general problem is
undecidable.

3. The Language
The language presented in this paper, named language H, is
simply-typed lambda calculus with case-expression, constructors
and integers. Language H is simpler than the language we use in
our implementation, which is the GHC Core Language [33], which
is similar to System F and includes parametric polymorphism.

3.1 Syntax
The syntax of our languageH is shown in Figure 1. A program is a
module that contains a set of data type declarations, contract spec-
ifications and function definitions. Expressions include variables,
term abstractions and applications, constructors and case expres-
sions. We treat let-expressions as syntactic sugar:

let x = e1 in e2 ≡s (λx.e2) e1

We omit local letrec, in favour of recursive (or mutually recur-
sive) top-level functions. The language is typed, and to save clutter
in this paper we silently assume that all expressions, contexts and

pgm := def1 , . . . , defn Programs

def ∈ Definition
def := data T ~α = K1 ~τi | · · · | Kn ~τi

| f ∈ t Contract attribution
| f ~x = e Top-level definition

x, y, f, g ∈ Variables
T ∈ Type constructors
K ∈ Data constructors

a, e, p ∈ Exp Expressions
a, e, p ::= n integers

| r exception
| x | λ(x :τ).e | e1 e2

| case e0 of {alt1 . . . altn} case-expression
| K ~e constructor
| finn e finite evaluation

r ::= BAD | UNR Exceptions

alt ::= K (x1 :τ1) . . . (xn :τn) → e Alternatives
| DEFAULT → e

val ::= n | r | K ~e | λ(x :τ).e Values

τ ::= Int | Bool | () | T ~τ | τ1 → τ2 Types

Figure 1: Syntax of the language H

contracts are well-typed. Type checking for contracts can be found
in [39].

There are two exception values adopted from [38]:

BAD is an expression that crashes. A program crashes if and only if
it evaluates to BAD. For example, a user-defined function error
can be explicitly defined as:

error :: String -> a
error s = BAD

A preprocessor ensures that source programs with missing
cases of pattern matching are explicitly replaced by the cor-
responding equations with BAD constructs. For example, after
preprocessing, function head’s definition becomes:

head (x:xs) = x
head [] = BAD

UNR (short for “unreachable”) is an expression that gets stuck. We
use it to make the program halt when its context has mis-
behaved – it is unreachable when the context is well-behaved.
Hence UNR is not considered a “crash”. A program that loops
forever also does not crash, and does not deliver a result, so you
can think of UNR as a term that simply goes into an infinite loop.

3.2 Operational Semantics
The semantics of our language is given by the confluent, non-
deterministic rewrite rules in Figure 2. We use a small-step reduction-
rule semantics, rather than (say) a deterministic more machine-
oriented semantics, because the more concrete the semantics be-
comes, the more involved the proofs become too.

Most of these rules are entirely conventional. The rule [E-top]
deals with a top-level function call f . We fetch its definition from
the environment ∆, which maps a variable to its type, contract
and definition. To save clutter, we usually leave this environment



(f = λx.e) ∈ ∆
f →M λx.e

[E-top]

e →M e′ n < M
finn e →M finn+1 e′

[E-fin1]

finn UNR →M True [E-fin2]
finn val →M val [E-fin3]

(val 6= UNR and n < M)
finM e →M True [E-fin4]

(λx.e1) e2 →M e1[e2/x] [E-beta]

case Ki ~ai of
{ . . . ;
Ki ~xi → ei;
. . .}

→M ei[ai/xi] [E-match1]

case K ~a of
{pti → ei;
DEFAULT→ e}

→M e
for all i.
K ~a 6∼ pti

[E-match2]

case λx.e0 of
{DEFAULT→ e}

→M e [E-match3]

r e →M r [E-exapp]
case r of alts →M r [E-excase]

e1 →M e2

C[[e1]] →M C[[e2]]
[E-ctx]

Contexts C ::= [[•]] | C e | e C | λx.C
| case C of {alt1; . . . ; altn}
| case e of { . . . ; pi → C; . . . }

Figure 2: Semantics of the language H

implicit, rather than writing (say) ∆ ` e1 →M e2. Rules [E-exapp]
and [E-excase] deal with exception values in the usual way. Rule
[E-ctx] allows a reduction step to take place anywhere. The relation
e1 →M e2 performs a single step reduction and the relation →∗

M

is the reflexive-transitive closure of →M .

The unconventional features are the “M” subscript on the reduction
arrow, the form finn e, and the reduction rules [E-fin1-4]. These
aspects all concern divergence, and are discussed in detail in §7.1,
where we define →∗ in terms of →∗

M . For the present, simply
ignore the subscripts and fin.

Now we can give the usual definition of contextual equivalence:

DEFINITION 1 (Semantically Equivalent). Two expressions e1 and
e2 are semantically equivalent, namely e1 ≡s e2, iff

∀C, r. C[[e1]] →∗ r ⇐⇒ C[[e2]] →∗ r

Two expressions are said to be semantically equivalent, if under all
(closing) contexts, if one evaluates to an exception r, the other also
evaluates to r.

3.3 Crashing
We use BAD to signal that something has gone wrong in the pro-
gram: it has crashed.

DEFINITION 2 (Crash). A closed term e crashes iff e →∗ BAD.

Our technique can only guarantee partial correctness: a diverging
program does not crash.

DEFINITION 3 (Diverges). A closed expression e diverges, written
e ↑, iff either e →∗ UNR, or there is no value val such that
e →∗ val.

At compile-time, one decidable way to check the safety of a pro-
gram is to see whether the program is syntactically safe.

DEFINITION 4 (Syntactic safety). A (possibly-open) expression e
is syntactically safe iff BAD /∈s e. Similarly, a context C is syntacti-
cally safe iff BAD /∈s C.

The notation BAD /∈s e means BAD does not syntactically appear
anywhere in e, similarly for BAD /∈s C. For example, λx.x is
syntactically safe while λx. (BAD, x) is not.

DEFINITION 5 (Crash-free Expression). A (possibly-open) expres-
sion e is crash-free iff :

∀C. BAD /∈s C and ` C[[e]] :: () ⇒ C[[e]] 6→∗
BAD

The notation ` C[[e]] :: () means C[[e]] is closed and well-typed. By
“closed” we mean that no variable is free in C[[e]], not even a top-
level function like head. The quantified context C serves the usual
role of a “probe” that tries to provoke e into crashing. Notice that a
crash-free expression may not be syntactically safe, for example:

\x. case x*x >= 0 of {True -> x+1; False -> BAD}

The tautology x ∗ x >= 0 is always true, so the BAD can never be
reached. On the other hand, (BAD, 3) is not crash-free because there
exists a context, fst [[•]], such that:

fst (BAD, 3) → BAD

In short, crash-freeness is a semantic concept, and hence undecid-
able, while syntactic safety is syntactic and readily decidable. Cer-
tainly, a syntactically safe expression is crash-free:

LEMMA 1 (Syntactically Safe Expression is Crash-free).

e is syntactically safe ⇒ e is crash-free

4. Contract Syntax and Semantics

t ∈ Contract
t ::= {x | p} Predicate Contract

| x : t1 → t2 Dependent Function Contract
| (t1, t2) Data Constructor Contract
| Any Polymorphic Any Contract

Figure 3: Syntax of contracts

Having discussed the language of programs, we now discuss the
language of contracts. Figure 3 gives their syntax. For reasons of
notational simplicity, we restrict data constructor contracts to pairs
only, but the idea generalises readily.

4.1 Contract Satisfaction
We give the semantics of contracts by defining “e satisfies t”, writ-
ten e ∈ t, in Figure 4. This is a purely declarative specification of
contract satisfaction, that says which terms satisfy a contract, with-
out saying how a satisfaction check might be performed. We regard
the ability to give a simple, declarative, programmer-accessible
specification of contract satisfaction as very important, but it is a
property that few related works share, with the notable and inspir-
ing exception of [3]. As that paper says



For a well-typed expression e, define e ∈ t thus:

e ∈ {x | p} ⇐⇒ e↑ or (e is crash-free and
p[e/x] 6→∗ {BAD, False}) [A1]

e ∈ x : t1 → t2 ⇐⇒ e↑ or (e →∗ λx.e2 and
∀e1 ∈ t1. (e e1) ∈ t2[e1/x]) [A2]

e ∈ (t1, t2) ⇐⇒ e↑ or (e →∗ (e1, e2) and
e1 ∈ t1, e2 ∈ t2) [A3]

e ∈ Any ⇐⇒ True [A4]

Figure 4: Contract Satisfaction

The structure of a non-compositional semantics like [the
Findler-Felleisen wrapping algorithm] is difficult to under-
stand. With just Definition 1 [which says that a term satisfies
a contract if its wrapping cannot crash] to hand, an answer
to the question “Does e satisfy t?” is not easy because it in-
volves consideration of every possible context. Nor can we
ignore this problem, since in our experience most people’s
intuition differs from [Definition 1].

To a first approximation, the rules in Figure 4 should be self-
explanatory. For example, e satisfies {x | p} if p[e/x] evaluates to
True. More interestingly, e satisfies the (non-dependent) function
contract t1 → t2 iff (e e1) satisfies t2 for any term e1 satisfying
t1. To get dependent function contracts we must simply remember
to substitute [e1/x] in t2. However, these definitions are carefully
crafted at the edges, and we now discuss the less-obvious choices.

In Figure 4, both e and t may mention functions bound in the top-
level definitions ∆. These functions are necessary for the evaluation
relation of rule [A1] to make sense. To reduce clutter, we do not
make these top-level bindings explicit, by writing ∆ ` e ∈ t, but
instead allow rule [E-top] of Figure 2 to consult ∆ implicitly.

4.2 Only Crash-free Terms Satisfy Predicate Contracts
The alert reader will notice that [A1] specifies that only crash-
free terms satisfy a predicate contract {x | p}. This means that
the contract {x | True}, which we abbreviate to Ok, is satisfied
precisely by the crash-free terms. Even the identity function only
guarantees a crash-free result if it is given a crash-free argument!
Other choices are possible, but we postpone the discussion to §5.4,
when we have more scaffolding in place.

4.3 Diverging Terms
The definitions in Figure 4 specify that a divergent term e satisfies
every contract. We made this choice because otherwise we would
often have to prove termination in order to prove that e ∈ t. For
example:

f x = if x < 10 then x else f (x/2)

Does f ∈ Ok → {x | x < 10}? The then branch clearly satisfies
the postcondition but what about the else branch? Specifying that
divergence satisfies any contract allows us to answer “yes” without
proving termination. Furthermore, despite divergence, a caller of f
can still rely on f’s postcondition:

g y = if (f y > 10) then error "Urk" else True

Here g cannot crash, because f guarantees a result less than 10, or
else diverges.

Our choice has the nice consequence that every contract is inhab-
ited (by divergence). This matters. Consider whether (λx.BAD) sat-

isfies {x | False} → Ok. If {x | False} was uninhabited, the an-
swer would be “yes”, since [A2] holds vacuously. But that choice is
incompatible with building a rigorous connection (sketched in §2.5)
between contract satisfaction and Findler-Felleisen-style wrapping.
Indeed, Findler and Blume are forced to invent an awkward (and
entirely informal) predicate form “non-empty-predicate” [10],
which we do not need.

4.4 The Any Contract
If we only have [A1]-[A3], the expression BAD would not satisfy
any contract, but we saw in §2.2 that this choice is too conservative
for a lazy language. We therefore introduce a special contract,
named Any, which is satisfied by any expression, including BAD
(case [A4] in Figure 4). Now we can give a contract to fst:

{-# CONTRACT fst :: (Ok, Any) -> Ok #-}
fst (x,y) = x

Any is also useful in post-conditions: a function whose postcondi-
tion is Any is a function that may crash. Haskell programmers often
write packaged versions of Haskell’s error function, such as

myError :: String -> a
{-# CONTRACT myError :: Ok -> Any #-}
myError s = error ("Fatal error: " ++ s)

So BAD satisfies Any. In fact, BAD satisfies only the contract Any
because it fails the constraints stated in [A1]-[A3]:

BAD 6∈ (Any, Any)
BAD 6∈ Any→ Any

4.5 Open Expressions
We have mentioned that e and t may mention functions bound
in the top-level environment. These functions participate in the
evaluation of rule [A1]. But suppose that the programmer declares

{-# CONTRACT f :: {x | x>0} -> Ok #-}
f = ...

When checking the contracts of a function g that calls f, we should
presumably assume only f’s declared contract, without looking at
its actual definition. Doing so is more modular, and allows the
programmer to leave room for future changes by specifying a
contract that is more restrictive than the current implementation.

This goal is easily achieved. Suppose the declared contracts for f
and g are tf , tg respectively, and the definition of g is g = eg where
f is called in eg . Then, instead of checking that eg ∈ tg , we check
that

(λf.eg) ∈ tf → tg

That is, simply lambda-abstract over any variables free in eg that
have declared contracts. As an alternative, we also allow the pro-
grammer to omit a contract specification (just as type signatures
are often omitted), in which case the contract checker selectively
inlines the function when proving the correctness of its callers (for
recursive functions see [39]). The exact details are a software engi-
neering matter; our point here is that the underlying infrastructure
allows a variety of choices.

The same technique simplifies the problem of checking satisfaction
for recursive functions. If the programmer specifies the contract tf

for a definition f = e, then it suffices to check that

λf.e ∈ tf → tf

which is easier because λf.e does not call f recursively. There
is nothing new here – it is just the standard technique of loop
invariants in another guise – but it is packaged very conveniently.



r1, r2 ∈ {BAD, UNR} e . t = e
BAD

./
UNR

t e / t = e
UNR

./
BAD

t

e
r1
./
r2
{x | p} = e ‘seq‘ case (fin0 p[e/x]) of {True→ e; False→ r1} [P1]

e
r1
./
r2

x : t1 → t2 = e ‘seq‘ λv.((e (v
r2
./
r1

t1))
r1
./
r2

t2[v
r2
./
r1

t1/x]) [P2]

e
r1
./
r2

(t1, t2) = case e of (x1, x2) → (x1
r1
./
r2

t1, x2
r1
./
r2

t2) [P3]

e
r1
./
r2

Any = r2 [P4]

Figure 5: Projection Definition

5. Contract Checking
So far we have a nice declarative specification of when a term e
satisfies a contract t. Of course, e ∈ t is undecidable in general,
but if we could statically check many (albeit not all) such claims,
we would have a powerful tool. For example, if we could show that
main ∈ Ok, then we would have proved that the entire program is
crash-free.

In their ground-breaking paper [11], Findler & Felleisen describe
how to “wrap” a term in a contract-checking wrapper, that checks
at run-time (a) that the term obeys its contract, and (b) that the
context of the term respects the contract. How can we do the same
at compile time? A promising approach, first suggested in [38] and
sketched in §2.5, is to wrap the term in the Findler-Felleisen way,
and check that the resulting term is crash free.

But is that sound? That is, does that prove that e ∈ t? What about
the other way round? These questions are answered by our main
theorem:

THEOREM 1 (Soundness and Completeness of Contract Checking).
For all closed expressions e, and closed crash-free contracts t,

(e . t) is crash-free ⇐⇒ e ∈ t

The form (e . t) wraps e in a Findler-Felleisen-style contract
checker, specified in Figure 5. As in the case of contract satisfac-
tion, there are tricky details, as we discuss in §5.1. Another subtle
but important point is the requirement that the contract t be “crash-
free”; this deals with contracts that crash and is discussed in §6.1.

The statement of Theorem 1 differs only in its technical details
from soundness and completeness theorems in [3], although our
proof technique is different to theirs. The reader may find a com-
plete proof in [39].

The result is very strong. It states that the wrapped term e . t is
crash-free if and only if e ∈ t. Certainly, then, if we can prove
that e . t is crash-free, we have proved that e ∈ t. But how can
we prove that e . t is crash-free? That, in turn, is undecidable, but
there are many useful approximations. For example, the approach
we take is to perform meaning-preserving transformations on e . t,
of precisely the kind that an optimising compiler might perform
(inlining, β-reduction, constant folding, etc). If we can “optimise’
(i.e. symbolically simplify) the term to a form that is syntactically
safe (§3.3), then we are done. The better the optimiser, the more
contract satisfaction checks will succeed – but none of that affects
Theorem 1. For details see [38].

5.1 Wrapping
Our goal is to define e . t such that Theorem 1 holds. Figure 5
gives the definition of a single, general combinator ./, and two no-
tational abbreviations . (pronounced “ensures”) and / (pronounced
“requires”). None of these operators are part of the syntax of ex-

pressions (Figure 1); rather they are thought of as macros, which
expand to a particular expression. Informally:

e
r1
./
r2

t

is a term that behaves just like e, except that it throws exception
r1 if e does not respect t, and throws exception r2 if the wrapped
term is used in a way that does not respect t. In the vocabulary of
“blame”, r1 means “blame e” while r2 means “blame the context”.
Figure 5 defines the convenient abbreviations

e . t = e
BAD

./
UNR

t e / t = e
UNR

./
BAD

t

So e.t crashes (with BAD) if e does not satisfy t, and diverges (with
UNR) if the context does not respect t.

Temporarily ignoring the occurrences of ‘seq‘ and ‘fin‘, the main
structure of Figure 5 is standard from earlier works [11], and we do
not belabour it here. In particular, note the inversion of r1 and r2

in the expansion of function contracts. The wrapping of Any, while
new, is also obvious after a moment’s thought. For example,

fst . (Ok, Any) → Ok
= λv.((fst (v / (Ok, Any))) . Ok)
= λv.((fst (v / (Ok, Any))))
= λv.((fst (case v of(a, b) → (a / Ok, b / Any))))
= λv.((fst (case v of(a, b) → (a, BAD))))

Here we have used the fact that e ./ Ok = e ./ {x | True} = e.
That is, considered as a wrapper Ok does nothing at all. In this
example we see that the wrapper replaces the second component
of the argument to fst with BAD, so that if fst should ever look at
it, the program will crash. That is exactly right, because the contract
says that the second component can be anything, with contract Any.

5.2 The Use of seq
The reader may wonder about the uses of seq in [P1] and [P2]
of Figure 5. The function seq (short for “sequence”) is defined as
follows:

e1 ‘seq‘ e2 = case e1 of { DEFAULT→ e2 }

It is necessary in the definition of ./ to ensure that Theorem 1 holds
for (a) divergent and (b) crashing terms. For example, if bot is a
diverging term (defined by bot = bot), then Figure 4 says that
bot ∈ {x | False}. But if [P1] lacked the seq, we would have

bot . {x | False}
= case False of { True -> bot; False -> BAD }
= BAD, which is not crash-free

thus contradicting Theorem 1. Dually, we must ensure that BAD 6∈
Ok→ Any. Without the seq in [P2] we would get

BAD . Ok→ Any = λv. ((BAD (v / Ok)) . Any)
= λv. UNR, which is crash-free



again contradicting Theorem 1. Have we covered all the cases? A
quick check shows that for any contract t, BAD 6∈ t and UNR ∈ t,
which is reassuring. More solidly, Theorem 1 goes through with the
definitions of Figure 5.

5.3 Properties of Contracts
Our contract combinators possess many nice properties. We sum-
marise these results in Figure 6. It took us some while to evolve
a set of definitions for ∈, ./, etc that validated such crisp results.
These lemmas form a basis for proving our main result: Theorem 1.

Figure 6 employs a useful ordering over expressions, called crashes
more often:

DEFINITION 6 (Crashes more often). e1 crashes more often than
e2, written e1 � e2, iff for all closing contexts C

C[[e2]] →∗
BAD ⇒ C[[e1]] →∗

BAD

Informally e1 crashes more often than e2 if they behave in exactly
the same way except that e1 may crash when e2 does not.

The proof of our main Theorem 1 is by induction on the size of
the contract t. To give a flavour of the proof we show the only
interesting case here, that for function contracts when e →∗ val /∈
{BAD, UNR}. We give only the proof for non-dependent function
contracts because the dependent case is more intricate and it is
harder to see the wood for the trees. Full proofs can be found in
[39]. The cf stands for “crash-free”.

e . t1 → t2 is cf
⇐⇒ (By definition of .)

e ‘seq‘λv.(e (v / t1)) . t2 is cf
⇐⇒ (Since e →∗ val /∈ {BAD, UNR})

λv.(e (v / t1)) . t2 is cf
⇐⇒ (Property of crash-freeness)
(†) ∀ closed, cf e′. (e (e′ / t1)) . t2 is cf

Now the proof splits into two. In the reverse direction, we start with
the assumption e ∈ t1 → t2:

e ∈ t1 → t2

⇒ (By defn of e ∈ t)
∀ e1 ∈ t1. (e e1) ∈ t2

⇒ (By Key Lemma (Figure 6))
∀ closed, cf e′. (e (e′ / t1) ∈ t2

⇐⇒ (By induction)
(†) ∀ closed, cf e′. (e (e′ / t1)) . t2 is cf

and now we have reached the desired conclusion (†). In the forward
direction, we start with (†):

(†) ∀ closed, cf e′. (e (e′ / t1)) . t2 is cf
⇒ (By induction, e1 ∈ t1 ⇒ e1 . t1 is cf)

∀ closed e1 ∈ t1. (e ((e1 . t1) / t1)) . t2 is cf
⇒ (By Projection Pair and Congruence (Figure 6))

∀ e1 ∈ t1. (e e1) . t2 is cf
⇒ (By induction)

∀ e1 ∈ t1. (e e1) ∈ t2

⇐⇒ (by definition of ∈)
e ∈ t1 → t2

There are two key steps in this short sequence. First, we choose
a particular crash-free e′, namely (e1 . t1) where e1 ∈ t1. The
second step is the appeal to the Projection Pair lemma, which itself
is non-trivial.

5.4 Why Only Crash-free Terms Satisfy Predicate Contracts
In §4.2 we promised to explain why we chose to allow only crash-
free terms to satisfy a predicate contract, regardless of the predi-
cate. An obvious alternative design choice for contract satisfaction
would be to drop the “e is crash-free” condition in the predicate
contract case:

e ∈ {x | p} ⇐⇒ e↑ or p[e/x] 6→∗ {BAD, False} [B1]

Then we could get rid of Any, because {x | True} would do
instead. On the other hand, a polymorphic contract meaning “crash-
free” is extremely useful in practice, so we would probably need a
new contract Ok (now not an abbreviation) defined thus:

e ∈ Ok ⇐⇒ e is crash-free [B2]

This all seems quite plausible, but it has a fatal flaw: we could
not find a definition for . that validates our main theorem. That
is, our chosen definition for ∈ makes Figure 5 work out, whereas
the otherwise-plausible alternative appears to prevent it doing so.

Suppose we have [B1] instead of [A1], that means (BAD, BAD) ∈
{x | True}. However, according to [P1], we have (BAD, BAD) .
{x | True} = (BAD, BAD) which is not crash-free. This means
Theorem 1 fails. Can we change [P1] to fix the theorem? It is
hard to see how to do so. The revised rule must presumably look
something like

e.{x | p} = case fin p[e/x] of { True→???; False→ BAD }

But what can we put for “???”? Since e . t is supposed to behave
like e if p[e/x] holds, the “???” must be e — but then BAD . {x |
True} would not be crash free. This difficulty motivates our choice
that predicate contracts are satisfied only by crash-free terms.

6. Contracts that Crash
Our goal is to detect crashes in a program with the help of con-
tracts; we do not expect contracts themselves to introduce crashes.
One approach, taken by Blume & McAllester [3], is to prohibit a
contract from mentioning any function that might crash. But that is
an onerous restriction, as we argued in §2.4.

It is attractive simply to allow arbitrary crashes in contracts; af-
ter all, Figure 4 specifies exactly which terms inhabit even crash-
ing contracts. Alas, if we drop the (still-to-be-defined) condition
“crash-free contract” from Theorem 1, the (⇒) direction still holds,
but the (⇐) direction fails. Here is a counter-example involving a
crashing contract. We know that:

λx.x ∈ {x | BAD} → Ok

because the only expression that satisfies {x | BAD} is an expres-
sion that diverges and a diverging expression satisfies Ok. But we
have:

λx.x . {x | BAD} → Ok = λv.(λx.x (v / {x | BAD}))
= λv.(v / {x | BAD})
= λv.(v ‘seq‘ BAD)

which is not crash-free

6.1 Crash-free Contracts
So unrestricted crashes in contracts invalidates (the ⇐ direction
of) Theorem 1. But no one is asking for unrestricted crashes! For
example, this contract doesn’t make much sense:

tbad = xs : Ok→ {r | r > head xs}
What does tbad mean if the argument list is empty? Much more
plausible is a contract like this (see §2.4):

tgood = xs : {xs | not (null xs)} → {r | r > head xs}



Congruence ∀e1, e2. e1 � e2 ⇐⇒ ∀C. C[[e1]] � C[[e2]]
Conditional Projection (w.r.t. �,�) For all e and crash-free t, if e ∈ t, then (a) e / t � e; (b) e . t � e.
Key Lemma For all crash-free e, crash-free t, e / t ∈ t.
Monotonicity of ∈ If e1 ∈ t and e1 � e2, then e2 ∈ t
Idempotence ∀e, t. (a) (e . t) . t ≡ e . t (b) (e / t) / t ≡ e / t
Projection Pair ∀e, t. (e . t) / t � e
Closure Pair ∀e, t. e � (e / t) . t

Telescoping Property For all e, crash-free t. (e
r1
./
r2

t)
r3
./
r4

t = e
r1
./
r4

t

Figure 6: Properties of . and /

which specifies that the argument list is non-empty, and guarantees
to return a result bigger than head of the argument. Thus motivated,
we define a notation of a “crash-free” contract:

DEFINITION 7 (Crash-free Contract). A contract t is crash-free iff

t is {x | p} and p is crash-free
or t is x : t1 → t2 and t1 is crash-free and

for all e1 ∈ t1, t2[e1/x] is crash-free
or t is (t1, t2) and both t1 and t2 are crash-free
or t is Any

The definition is essentially the same as that of Tsafe in [3], al-
though perhaps a little more straightforward. It simply asks that the
predicates in a contract are crash-free under the assumption that the
dependent function arguments satisfy their contracts. So, under this
definition, tbad is ill-formed while tgood is crash-free. The latter is
crash-free because head xs is crash-free for every xs that satisfies
not (null xs).

6.2 Wrapping dependent function contracts
Recall [P2] from Figure 5:

e
r1
./
r2

x : t1 → t2 = e ‘seq‘ λv. ((e (v
r2
./
r1

t1))
r1
./
r2

t2[(v
r2
./
r1

t1)/x])

Notice that v is wrapped by v
r2
./
r1

t1 even in the contract t2, as well

as in the argument to e. Could we simplify [P2] by omitting this
wrapping, thus?

e
r1
./
r2

x : t1 → t2 = e ‘seq‘ λv. ((e (v
r2
./
r1

t1))
r1
./
r2

t2[v/x])

No, we could not: Theorem 1 would fail again. Here is a counter-
example.

{-# CONTRACT h :: {x | not (null x)}
-> {z | head x == z} #-}

h (y:ys) = y

Now h satisfies its contract th, but h . th is not crash-free, as the
reader may verify.

We remarked earlier that Blume & McAllester require that con-
tracts only call crash-free functions. But the wrapping of v inside
t2 in rule [P2] might itself introduce crashes, at least if t2 uses x in
a way that does not respect t1. They therefore use another variant
of [P2], as follows:

e
r1
./
r2

x : t1 → t2 = e ‘seq‘ λv. ((e (v
r2
./
r1

t1))
r1
./
r2

t2[(v
r2
./
UNR

t1)/x])

Notice the “UNR” introduced out of thin air in the wrapping of
v in t2, which is enough to maintain their no-crashing invariant.
Happily, if the contracts are crash-free (which we need anyway, so
that it is possible to call head) there is no need for this somewhat
ad-hoc fix.

6.3 Practical consequences
One might worry that the crash-freeness condition in Theorem 1
makes the verification task more onerous: perhaps to prove e ∈ t
now we must check two things (a) that t is crash-free formed and
(b) that e . t is crash-free. Happily, this is not necessary, because
the (⇒) of Theorem 1 holds for arbitrary t:

THEOREM 2. For all closed expression e, for all contract t,

(e . t) is crash-free ⇒ e ∈ t

The proof of Theorem 2 is the same as the proof for the direction
(⇒) of Theorem 1 because only the proof for the direction (⇐) of
Theorem 1 requires the condition that t to be crash-free.

7. Contracts that diverge
Our system allows non-termination both in the programs we verify,
and in their specifications (contracts), which is most unusual for a
system supporting static verification.

As we discussed in §4.3, we allow non-termination for programs
because we work with a real-life programming language, in which
many functions actually do not terminate. We do not want to ex-
clude non-termination in general, even for specifications, because
we do not want to be forced to perform termination proofs. Since
the current advances in automatic termination proofs are still lim-
ited, especially for lazy programs, requiring termination would put
a substantial extra burden on the user of our system.

What about divergent contracts? Many program verification sys-
tems for functional programming, such as HOL, systems based on
dependent types (Coq, Agda), and ACL2, do not allow any non-
terminating definitions. The main reason is that divergent terms in-
troduce an immediate unsoundness in these systems. For example,
by an (unsound) induction proof, a constant defined as let x = x
could be proven equal to both 1 and 2, concluding that 1=2.

But it would be onerous to insist that all contracts terminate, be-
cause the programmer can write arbitrary Haskell in contracts, and
proving termination of arbitrary Haskell programs is hard. Further-
more, allowing non-termination in specifications is of direct bene-
fit. Consider a function zipE which requires two inputs to have the
same length:

{-# CONTRACT zipE :: xs:Ok
-> {ys | sameLen xs ys} -> Ok #-}

zipE [] [] = []
zipE (x:xs) (y:ys) = (x,y) : zipE xs ys
zipE _ _ = error ‘‘unequal lengths’’

sameLen [] [] = True
sameLen (x:xs) (y:ys) = sameLen xs ys
sameLen _ _ = False

Here, two infinite lists satisfy the contract for ys, since (sameLen
xs ys) diverges, and indeed zipE does not crash for such argu-



ments. Care is necessary in writing the contract: if we had in-
stead said length xs == length ys, the contract would diverge
if only one argument was infinite, but zipE would crash for such
arguments, so it would not satisfy this alternative contract. In this
way, safety properties over infinite structures are allowed. (Safety
properties are properties that always have finite counter-examples
whenever there exists any counter-example.)

Why is our approach sound? First, any contract we verify for a pro-
gram only deals with partial correctness. In other words, all con-
tracts are inhabited by non-terminating programs as well. Second,
our system does not include reasoning mechanisms like equational
reasoning. In fact, our system has no means of expressing equality
at all! Everything is expressed in terms of Haskell expressions eval-
uating to boolean values, crashing, or not-terminating. Third, any
specification that does not terminate is semantically the same as a
True contract. Why? Because of the mysterious fin construct, as
we discuss next.

7.1 Using fin in contract wrappers
Suppose we have the top-level definition bot = bot; that is, bot
diverges. Now consider e = (BAD,BAD) and t = {x | bot}.
Then e 6∈ t (since e is not crash-free). If we did not use fin in the
definition of ./ (Figure 5), e . t would reduce to this term:

case bot of { True -> (BAD, BAD); False -> BAD }

This term is contextually equivalent to bot itself, and so it is crash-
free, contradicting our main theorem (§5).

What to do? Execution has gotten stuck evaluating the diverging
contract, and has thereby missed crashes in the term itself. Our
solution is to limit the work that can be spent on contract evaluation.
The actual definition of ./ makes e . t equal to

case (fin0 bot) of
{ True -> (BAD, BAD); False -> BAD }

The operational semantics of fin (Figure 2) gives a finite M units
of “fuel” to each fin. Each reduction under a fin increases the
subscript on the fin until it reaches the maximum M (rule [E-
fin1]). When the fin subscript n reaches the limit M , fin gives
up and returns True (rule [E-fin4]). Now, in the above example, for
any finite M , we have

e . t →∗
(BAD,BAD)

So we define our full-scale reduction relation →∗ in terms of →∗
M :

DEFINITION 8. We say that e →∗ val iff there exists N such that
for any M ≥ N we have e →∗

M val.

Under this definition, e . t →∗ (BAD,BAD), and Theorem 1 holds.

7.2 Practical consequences
This may all seem a bit complicated or artificial, but it is very
straightforward to implement. First, remember that we are con-
cerned with static verification, not dynamic checking. Uses of fin
are introduced only to check contract satisfaction, and are never ex-
ecuted in the running program. Second, our technique to check that
e . t is crash-free is to optimise it and check for syntactic safety. To
be faithful to the →∗ semantics, we need only refrain from “opti-
mising” (case (fin bot) of <alts>) to bot, thereby retain-
ing any BADs lurking in <alts>. Since this particular optimisation
is a tricky one anyway, it is quite easy to omit! In other words, in
our static contract checking, we can safely omit fin and the rules
[E-fin1-4].

By being careful with our definition of →∗, we can retain Theo-
rem 1 in its full, bi-directional form. This approach is, of course,
only available to us because we are taking a static approach to ver-
ification. A dynamic checker cannot avoid divergence in contracts

(since it must evaluate them), and hence must lose the (⇒) direc-
tion of Theorem 1, as indeed is the case in [3]. To put it another
way, should our static checker fail, we cannot have recourse to a
dynamic check (as happens in hybrid systems), because if the con-
tract can diverge an otherwise perfectly correct program might di-
verge because the dynamic check loops. In any dynamic system,
the run-time checks must terminate if they are to avoid changing
the program semantics.

8. Error Reporting
Given f ∈ t, we have shown that to check f ∈ t, we check “f . t
is crash-free” instead. What happens if f . t is not crash-free? That
means when we try to optimize the term f . t to some e′ and there
are some residual BADs in e′, what we can report to the programmer
from the contract violation?

To know which function to blame [11], we need to give each BAD
a tag. That is BAD lbl where the label lbl is a function name. For
a function f with contract t, we check f . t is crash-free or not,
where

f . t = f
BAD "f"

./
UNR

t f / t = f
UNR

./
BAD "f"

t

A residual BAD "f" tells us that we should blame f . That means
assuming f takes arguments satisfying their corresponding precon-
ditions, f fails to produce a result that meets its postcondition. For
example:

{-# CONTRACT inc :: {x | x > 0} -> {z | z > x} #-}
inc x = x - 1

after optimizing (i.e. simplifying) inc . tinc, we have:

\x -> (case x > 0 of
True -> case x - 1 > x of

True -> x - 1
False -> BAD "inc"

False -> UNR)

We can report to the programmer at compile-time:

Error: inc fails its postcondition
when x > 0 holds

x - 1 > x does not hold

This error message is generated directly from the path that leads to
the BAD "inc".

case x > 0 of
True -> case x - 1 > x of

False -> BAD "inc"

How about precondition violation? Suppose we know f ∈ tf . If
f is called in a function g with contract tg , recalling the reasoning
in §4.5, we shall check (λf.eg) ∈ (tf → tg). That means we
check: (λf.eg) . (tf → tg) is crash-free or not. By the definition
of ., we have: λf. ((eg (f / tf )) . tg).

In order to trace “which function calls which function that fails
which function’s precondition”, instead of using (f / tf ), we use:

Inside lbl loc (f / tf )

The lbl is the function name (“f” in this case) and the loc indicates
the location (e.g. (row,column)) of the definition of f in the source
file.

For example, we have:

f1 x = 1 + inc x

{-# CONTRACT f2 :: {x | True} #-}
f2 [] z = 0
f2 (x:xs) z = if x > z then f1 x else 0



In our system, since f1 lacks a contract, we inline it at every
call site, thus avoiding the necessity of supplying a contract for
many trivial functions. (For recursive functions see [39].) After
optimizing f2 . {x | True}, we have:
\xs -> \z ->
case xs of
[] -> 0
(x:y) -> case x > z of

True -> Inside "f1" <l1>
(Inside "inc" <li> (BAD "inc"))

False -> ...

Note that, the "inc" in (BAD "inc") indicates which function’s
precondition is not fulfilled. Thus, the residual fragment enables
us to give one counter-example with the following meaningful
message at compile-time:
Error <l2>: f2 (x:y) z

when x > z holds
calls f1
which calls inc
which may fail inc’s precondition!

where the location <l2> indicates the location of the definition of
f2 in the source file.

This error tracing technique is adapted from ESC/Haskell [38],
which achieves the same goal as that in [23] but in a much simpler
way. However, unlike [23] we have not yet formalised the correct-
ness of its blame assignment.

9. Related Work
Static verification of software is a field dense with related work, of
which we can only summarise a limited fraction here.

9.1 Type systems
In the functional language community, type systems have played
significant roles in guaranteeing better software safety. Advanced
type systems, such as dependent types, have been advocated to
capture stronger properties. While full dependent type system (such
as Cayenne [1]) is undecidable in general, Xi and Pfenning [37]
have designed a smaller fragment based on indexed objects drawn
from a constraint domain C whose decidability closely follows
that of the constraint domain. Typical examples of objects in C
include linear inequalities over integers, boolean constraints, or
finite sets. In a more recent Omega project [32], Sheard shows
how extensible kinds can be built to provide a more expressive
dependent-style system. In comparison, our approach is much more
expressive and programmer friendly as we allow arbitrary functions
to be used in the pre/post annotations without the need to encode
them as types. It is also easier for programmers to add properties
incrementally. Moreover, our symbolic evaluation is formulated to
adhere to lazy semantics and is guaranteed to terminate when code
safety is detected or when a preset bound on the unrollings of each
recursive function is reached. Compared with the dependent type
approaches [37, 6, 32, 36] in general, we separate type and contract
declarations so that type related work (e.g. type inference) and
contract related techniques can be developed independently.

In Hoare Type Theory (HTT) [29, 28], higher-order predicates and
recursive predicates can be used in specifications. Another work
along this line is [31]. We allow higher-order functions and re-
cursive functions to be used in contracts so in terms of these two
aspects, we share the same expressiveness. As we use symbolic
execution, inlining and induction make the job of verifying such
contracts easier compared with theorem proving higher-order pred-
icates and recursive predicates. But our contracts do not contain
quantifiers while quantifiers are supported in [29, 28, 31].

9.2 Extended static checking
In an inspiring sequence of papers [22, 14, 13, 4], Leino, Nelson,
Flanagan, and their colleagues showed the feasibility of applying an
extended static checker to Modula-3 and then Java. Since then, sev-
eral other similar systems have been further developed, including
Spec#’s and its automatic verifier Boogie [2] that is applicable to
the C# language. We adapt the same idea of allowing programmers
to specify properties about each function (in the Haskell language)
with pre/post annotations, but also allow pre/post annotations to
be selectively omitted where desired. Furthermore, unlike previous
approaches based on verification condition (VC) generation which
rely solely on a theorem prover to verify, we use an approach based
on symbolic evaluation that can better capture the intended seman-
tics of a more advanced lazy functional language. With this, our
reliance on the use of theorem provers is limited to smaller frag-
ments that involve the arithmetical parts of expressions. Symbolic
evaluation gives us much better control over the process of the ver-
ification where we have customised sound and effective simplifi-
cation rules that are augmented with counter-example guided un-
rolling. More importantly, we are able to handle specifications in-
volving recursive functions and/or higher-order functions which are
not supported by either ESC/Java or Spec#.

9.3 Contracts
The idea of “contract” was first established by Parnas [30] and pop-
ularized by Meyer in its use in Eiffel [24]. More recently, Findler
and Felleisen introduced the notion of higher-order contracts, in-
cluding a careful treatment of “blame” [11]. This paper unleashed a
series of papers about contract checking in higher-order languages,
including [3, 10, 3, 18, 35, 12, 21, 20, 16]. Although they share a
common foundation, these papers differ in their notation and ap-
proach, which makes like-for-like comparisons difficult.

Of these papers, the work of Blume and McAllester [3] is by far
the most closely related because they give a declarative semantics
for contract satisfaction, and prove a connection with the dynamic
wrappers of Findler and Felleisen. Here is a brief summary of the
differences between some of this work, especially [3], and our own:

• We aim at static contract checking, for a statically typed lan-
guage, whereas most of the related work deals with dynamic
checks, or a hybrid checking strategy for a dynamically typed
language.

• We deal with a lazy language; all other related work is for a
strict languages. In particular, we give a crashing expression
a contract Any while a contract is only given to non-crashing
expressions in [11, 3, 10].

• We deal with dependent function contracts which [10] does not.
• We lay great emphasis on crashing and diverging contracts,

which are either not the focus of these other works, or are ex-
plicitly excluded. Our solution appears less restrictive than [3],
by allowing crashing functions to be called within contracts
(“non-total contracts” in their terminology), while still support-
ing Theorem 1 in both directions, rather than the less-useful
(⇐) direction only.

• The telescoping property (Figure 6) is first discovered in [3],
but it does not seem to be used in any of their proofs, while we
use it intensively to make many proofs much simpler.

• Findler and Blume discovered that contracts are pairs of projec-
tions in [9, 10]. That means given a contract t, λe.Wt(e) is a
projection where Wt is a wrapper function. To be a projection
w.r.t. v, a function p must satisfy these two properties:

1. p ◦ p = p (idempotence)



2. p v 1 (result of projection contains no more information
than its input)

Our (• . t) and (• / t) (i.e. λx.(x . t) and λx.(x / t)) satisfy
the idempotence property as shown in Figure 6, but does not
satisfy (2). They only satisfy (2) under the condition that the
input of the projection satisfies its contract t as shown in Fig-
ure 6. Moreover, we discover the projection pair property (in
Figure 6), which plays a crucial role in our proof.

• Blume & McAllester dealt with recursive contracts, which we
do not.

Inspired by [11, 3], Hinze et al. [18] implement contracts as a li-
brary in Haskell and contracts are checked at run-time. The frame-
work also support contract constructors such as pairs, lists, etc. An-
other dynamic contract checking work is the Camila project [34]
which use monads to encapsulate the pre/post-conditions checking
behaviour.

The hybrid contract checking framework [12, 21, 20, 16], in the-
ory, can be as powerful as our system. (Hybrid checking means a
combination of static and dynamic contract checking.) But in prac-
tice, our symbolic execution strategy adopted from [38] gives more
flexibility to the verification as illustrated in §2.1. In [35], Wadler
and Findler show how contracts fit with hybrid types and gradual
types by requiring casts in the source code. The casts are similar to
the job of our . and /.

9.4 Other work

In [19], a compositional assertion checking framework has been
proposed with a set of logical rules for handling higher-order
functions. Given arguments satisfying their precondition, they
check whether function definition satisfies its postcondition and
the checking is currently a manual proof based on the logical rules.
Apart from our focus on automatic verification, we can give precise
blame when a contract violation is detected. The work in [19] has
the strength in verification, but not in assigning blames.

Amongst the Haskell community, there have been several works
that are aimed at providing high assurance software through valida-
tion (testing) [5], program verification (Programatica project [17])
or a combination of the two [8]. In the Programatica project, P-
Logic has been introduced to specify properties for Haskell pro-
grams. P-Logic allows programmers to express relations among
multiple functions and it is more comprehensive then contracts,
which only allow programmers to specify pre/postcondition of one
function. The design of P-Logic focuses on proof construction
while our focus is to find the right function to blame based on
contract violation. Certainly, the more properties we can prove, the
more precise the contract violation checking will be. Some design
of P-Logic could be adopted in future.

Our approach eliminates the effort of inventing and learning a new
logic together with its theorem prover. Furthermore, our verifica-
tion approach does not conflict with the validation assisted ap-
proach used by [5, 8] and can play complementary roles.

Mitchells’s Catch system statically infers the possibility of pattern
matching failure, without any help from the programmer [26, 25].
The domain of a function is described by a language of regular
expressions, which is incomparable with our contract language, and
the technical details are very different. Moreover, Catch applies to
first-order programs, so can be used only after a whole-program
firstification transformation has removed (most of) the higher-order
functions. In contrast, we analyse higher-order functions directly, in
a modular (not whole-program) way.

10. Conclusion and Future Work
We have presented a sound and automatic static verification tool
for a functional language, Haskell. Based on contracts and sym-
bolic execution, our approach gives precise blame assignments at
compile-time in the presence of higher-order functions and lazi-
ness. We lay particular emphasis on allowing the programmer to
use all of Haskell in contracts, including functions that may crash
or diverge.

We have developed a prototype implementation in the context of
the Glasgow Haskell Compiler. It can prove some simple contract
satisfaction checks, but is still incomplete for more sophisticated
examples involving the use of recursive functions in predicates,
such as sorting or AVL trees. Such predicates are also outside the
reach of other static checkers, but they are important in Haskell pro-
grams. The shortcoming lies in the optimiser (§5) and, in particular,
the choice of precisely when to inline a function. We have manual
proofs of many of our motivating examples (including sorting and
AVL trees), and are working on heuristics to enable the optimiser
to prove them too.

In future, we may introduce conjunctive/disjunctive contracts, re-
cursive contracts, and contracts with quantifiers. Another impor-
tant direction is to offer ways in which the programmer can help
the system by suggesting suitable lemmas.
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