Information Hiding in the Join Calculus

Qin Ma' and Luc Maranget?

1 OFFIS, Escherweg 2, 26121 Oldenburg, Germany
Qin.Ma@offis.de
2 INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

Luc.Maranget@Qinria.fr

Abstract. We aim to provide information hiding support in concurrent
object-oriented programming languages. We study this issue both at the
object level and the class level, in the context of an object-oriented ex-
tension of Join— a process calculus in the tradition of the 7-calculus.
In this extended abstract, we focus on the class level and design a new
hiding operation on classes. The purpose of this operation is to prevent
part of parent classes from being visible in client (inheriting) classes. We
define its formal semantics in terms of a-converting hidden names to
fresh names, and its typing in terms of eliminating hidden names from
class types.

1 Introduction

Object-oriented concepts are often claimed to handle concurrent systems better.
On one hand, objects, exchanging messages while managing their internal states
in a private fashion, model a practical view of concurrent systems. On the other
hand, classes, supporting modular and incremental development, provide an ef-
fective way of controlling concurrent system complexity. Numerous fundamental
studies such as [6,11] proposed calculi that combine objects and concurrency.
By contrast, combining classes and concurrency faces the well-known obstacle
of inheritance anomalies [9,10], i.e., traditional overriding mechanism from se-
quential settings falls short in handling synchronization behavior reuse during
inheritance. Recently, Fournet et al. have proposed a promising solution to this
problem [5]. The main idea is to extend the Join calculus [3] with objects and
classes, and more importantly to design a novel class operation for both behav-
ioral and synchronization inheritance, called selective refinement.

However, Fournet et al.’s model still suffers from several limitations, mainly
in typing. Briefly, their type system is counter-intuitive and significantly restricts
the power of selective refinement. In prior work [7], we tackled this problem by
designing a new type system. We mainly enriched class types with complete syn-
chronization behavior to exploit the full expressiveness of selective refinement.
However, doing so inevitably impaired the other dual role of class types, i.e.
abstraction. More specifically, it was unlikely for two different classes to possess
the same type. How we can regain abstraction becomes a subsequent interest-
ing question. We manage to achieve this goal by enabling programmers with
information hiding capability in this paper.

Information hiding by itself is already a key issue in large-scale programming,.
Generally, information hiding allows programmers to decide what to export in
the interface (which we assimilate to types) of an implementation. This princi-
ple brings advantages, such as removing irrelevant details from interfaces and
protecting critical details of the implementation. As regards objects, one can
easily hide some components by declaring them to be private, as Fournet et al.
and many others do. These private components do not appear in object inter-
faces. By contrast, information hiding in classes is more involved, especially in
the presence of synchronization inheritance. The difficulty resides in that syn-
chronization introduces certain type dependency among names, while carelessly
hiding some of them would result in unsafe typing. We are aware of no work on
this issue. Specifically, if we classify users of a class into two categories: object
users who create objects from the class; and inheritance users who derive new
class definitions by inheriting the class, the simple privacy policy applies solely
to object users while always leaving full access to inheritance users.

We address the issue of information hiding towards inheritance users in this
paper. We do so by introducing a new explicit hiding operation in the class lan-
guage. This amounts to significant changes in both the semantics and the typing
of class operations. Theoretically, hiding a name in a class can be expressed
as quantifying it existentially. In practice, we a-convert hidden names to fresh
names in the operational semantics and remove hidden names from class types in
typing. We believe that our proposal achieves a reasonable balance of semantical
simplicity and expressiveness, and that it yields a practical level of abstraction
in class types, while preserving safety. Moreover, our surprisingly simple idea of
hiding by a-conversion should apply equally well to other class-based systems,
provided they rely on structural typing as we do.

In this short paper, we focus on intuition, while making available a comple-
mentary technical report [8] for complete formalism.

2 Classes, objects, and hiding

Basic class definition consists of a join definition and an (optional) init process,
called initializer (analog to constructors or makers in other languages). As an
example, we define the following class for one-place buffers:
class c_buffer =
put(n,r) & Empty() > r.reply() & this.Some(n)
or get(r) & Some(n) > r.reply(n) & this.Empty()
init this.Empty()

and instantiate an object from it:
obj buffer = c_buffer

Similar to Join, four channels are collectively defined in this example and
arranged in two reaction rules disjunctively connected by or. We use the two
channels put and get for the two possible operations, and the two channels
Empty or Some for the two possible states of a one-place buffer, namely, being

empty or full. We here follow Fournet et al.’s convention to express privacy:
channels with capitalized names are private; they can be accessed only through
recursive self references; and the privacy policy is enforced statically.

Each reaction rule consists of a join pattern and a guarded process, separated
by . Join patterns specify the synchronization among channels. Namely, only
if there are messages pending on all the channels in a given pattern, the object
can react by consuming the messages and triggering the guarded process. As
a result, this one-place buffer behaves as expected: the (optional) init process
initializes the buffer as empty; we then can put a value when it is empty, or
alternatively retrieve the stored value when it is full.

By contrast with Join whose values are channels, objects now become the
values of the calculus. As an important consequence, channel names are no longer
governed by the usual rules of lexical scoping (objects names are). Channel names
can be seen as global, as method names are in any simple object calculi. From
now on, channel names are called labels.

The basic operation of our calculus is asynchronous message sending, but
expressed in object-oriented dot notation, such as in process r.reply(n), which
stands for “send message n to the channel reply of object r”. Also note that we
use the keyword this for recursive self references, while other references are han-
dled through object names. Compared with the design in [5], this modification
significantly simplifies the privacy control in object semantics.

2.1 Inheritance and hiding

Inheritance is basically performed by using, i.e. computing with, parent classes
in derived classes. At the moment, all labels defined in a class are visible during
inheritance. However, this complete knowledge of class behavior may not be
necessary for building a new class by inheritance. Moreover, exposing full details
during inheritance sometimes puts program safety at risk, and designers of parent
classes may legitimately wish to restrict the view of inheritance users.

As an example, an inheritance user may attempt to extend the class c_buffer
with a new channel put2 for putting two elements:

class c_put2_buffer = c_buffer
or put2(nm,r) & Empty() > r.reply() & this.(Some(n) & Some(m))

Unfortunately, this naive implementation breaks the invariant of a one-place
buffer. More specifically, the put2 attempt, once it succeeds, sends two messages
on channel Some in parallel. Semantically, this means turning a one-place buffer
into an invalid state where two values are stored simultaneously.

In order to protect classes from (deliberate or accidental) integrity-violating
inheritance, we introduce a new operation on classes to hide critical channels.
We reach a more robust definition using hiding:

class c_hidden_buffer = c_buffer hide {Empty, Some}

The hiding clause hide {Empty, Some} hides the critical channels Empty and
Some. They are now absent from the class type and become inaccessible during

inheritance. As a result, the previous invariant-violating definition of channel
put2 will be rejected by a “name unbound” static error. Nevertheless, program-
mers can still supplement one-place buffers with a put2 operation as follows:
class c_put2_buffer_bis = c_hidden_buffer
or put2(n,mr) > class c_join =
reply() & Next() > r.reply()
or reply() & Start() > this.Next()
init this.Start() in
obj k = c_join in this. (put(n,k) & put(mk))

In the code above, the (inner) class c_join serves the purpose of consuming two
acknowledgments from the previous one-place buffer and of acknowledging the
success of the put2 operation to the appropriate object r. One may remark that
the order in which values n and m are stored remains unspecified.

2.2 Hiding only private channels

We here restrict our hiding mechanism only to private channels. Such a decision
originates in the problems between hiding public channels and supporting ad-
vanced features, such as selftype (also known as mytype) and binary methods [1].
As observed in [13, 2], these two aspects do not trivially get along without en-
dangering type soundness. More specifically, a problem manifests itself when
selftype is assumed outside the class and we hide a public channel afterwards.
As an example, consider the following class definitions.

class cop = f(x) > x.b(1)

class c; = a() > obj x = ¢q in x.f (this)

or b(n) > out.print_int(n)

Channel £ of class cg expects an object with a channel b of type integer. This
condition is satisfied when typing the guarded process of channel a in class cq,
because the self object this does have a channel b of type integer. However, later
inheritance may hide the channel b (in class cz), and then define a new channel
also named b but with a different type string (in class c3).

class co = c; hide {b}

class c3 = cy or b(s) > out.print_string(s)

Apparently, although the above code is typed correctly, the following process
will cause a runtime type error: providing an integer when a string is expected.

obj o =c3ino.a()

A simple solution adopted in the community is not to support both. Fol-
lowing OCaml, we choose to support the notion of selftype and limit hiding to
private channels. By contrast, Fisher and Reppy in their work for MOBY [2]
choose the reverse: not to provide selftype and instead provide complete control
over class-member visibility. Nevertheless, a more comprehensive solution is still
possible [13], however, more complicated as well.

3 The semantics of hiding

Class semantics is expressed as the rewriting of class-terms, while object se-
mantics by the means of reflexive chemical machines [3]. Class reductions always
terminate and produce class normal forms, which are basically object definitions,
plus an (optional) initializer, plus a a list of abstract labels. In cases where the
latter is empty (which can be statically controlled by our type systems), objects
can be created from such class definitions in normal form. Hence, our evaluation
mode is a stratified one: first rewrite classes to object definitions; then feed the
resulting term and an initial input into a chemical abstract machine.

How to hide labels? The semantics of hiding in classes is governed by two con-
cerns. On one hand, hidden labels disappear. For instance, redefining a new label
homonymous to a previously hidden label yields a totally new label. On the other
hand, hidden labels still exist. For instance, objects created by instantiating the
class c_hidden_buffer from Sect. 2.1 must somehow possess labels to encode
the state of a one-place buffer.

The formal evaluation rule for hiding appears as follows:

I'eC lc C, (fi defined in C,,, h; fresh) ‘¢!
I'+ (c— Cy{hi/f;€}5) EP Up P,

Eval-Hide =T
I'Eclass ¢ = C hide {f;"'}in P |p P,

The above inference rule is part of the class reduction semantics (see [8]). Judg-
ments express the reduction of classes to class normal forms, under an environ-
ment I" that binds class names to class normal forms (call-by-value semantics).
Hiding applies only to class normal forms (C,), and only at class binding
time. The hiding procedure {hi/f; i€} is implemented by a-converting the
hidden channels {f; €’} to fresh labels {h; '}, whose definition is without
surprise. Such a semantics makes sense because labels are not scoped. The a-
conversion should apply to both definition occurrences (in join patterns) and
reference occurrences (in guarded processes and in the init process) of the hidden
labels in the normal form. Thanks to the restriction to only hide private labels,
the recursive self references in the normal form already include all the reference
occurrences of hidden labels. Moreover, we do not rename under nested object
definitions because they re-bind this. To give some intuition, the normal form
of class c_hidden_buffer from Sect. 2.1 looks as follows:
class c_hidden_buffer =
get(r) & Some’(n) > r.reply(n) & this.Empty ()
or put(n,r) & Empty’ () > r.reply() & this.Some’(n)
init this.Empty’ ()

Here, we assume Empty’ and Some’ to be the two fresh labels that replace Empty
and Some respectively.

This design meets the two concerns described at the beginning of this sec-
tion: on one hand, freshness guarantees hidden names not to be visible during

inheritance; on the other hand, hidden names are still present in class normal
forms but under fresh identities.

4 The typing of hiding

4.1 Class types and object types, catching up

Types are automatically inferred. Following our prior work [7], a class type con-
sists of three parts, written ((p)B", where B lists the set of channels, defined
or declared in the class, paired with the types of the messages they accept, and
W reflects how defined channels are synchronized, i.e. the structure of the join
patterns in the corresponding class normal form. The row type p collects the
public label-type pairs from B for the type of objects created from this class.
To avoid repetition, in concrete syntax, p is usually incorporated in B that is
enclosed between object and end, as in the type of class c_buffer from Sect. 2:

class c_buffer: object
label get: ([reply: (0); 0]); label put: (6,[reply: O; 0'1);
label Some: (0); label Empty: ();
end W = {{get, Some}, {put, Empty}}

We see that messages conveyed by channels are polyadic. The type of a channel
carrying k objects of types 71,..., 7 is written (71,...,7%). Object types are
always enclosed in square brackets. The type of objects of this class is:

[get: ([reply:(0); 0]); put: (0, [reply:(); o'])]

Channels Some and Empty do not show up because they are private. Finally, W
is organized as a set of sets of labels. Two labels appear in the same member set
of W if and only if they are synchronized in one join pattern.

Following ML type systems, polymorphism is parametric polymorphism, ob-
tained essentially by generalizing free type variables. However, such generaliza-
tion is controlled for object types. More specifically, any type variables that are
shared by synchronized channels should not be generalized. Detailed rationale
for doing so is discussed in all kinds of Join typing papers, such as [7,4]. The
basic reason is for type safety. As an example, type variable # should not be
polymorphic in the object type above, because following the class type it is
shared by two synchronized channels get and Some (i.e. appearing in the same
member set of W). Otherwise, its two occurrence in get and put could then be
instantiated independently as, for instance, integer and string. This then would
result in a runtime type error: attempting to retrieve a string when an integer is
present. By contrast, 6 is safely generalized in the class type, which allows us to
create two objects from it, one dealing with integers, and the other with strings.
The two trailing row variables g, ¢’ are both generalizable. They can be instan-
tiated as more label-type pairs, thus introducing a useful degree of subtyping
polymorphism by structure.

4.2 How to type hiding: ideas

The most straightforward idea is to remove hidden names from class types. As
a consequence, class c_hidden_buffer from Sect. 2.1 has type:

class c_hidden_buffer: object
label get: ([reply: (0); 0]); label put: (6,[reply: O; 0'1);
end W = {{get}, {put}}

The two hidden channels Some and Empty are eliminated from both the B list
and W. Unfortunately, such a naive elimination has a side-effect, which may
endanger safe polymorphism in the corresponding object type. Plainly, the non-
generalizable type variable # has now falsely become generalizable, because ac-
cording to this class type, the only two channels that share # are not synchronized
(i.e. get and put coming from two different member sets of W).

To tackle the problem, we then decide to keep track of such dangerous type
variables caused by hiding in class types, called V. More precisely, before elimi-
nating, we first record all the non-generalizable type variables of hidden names
in V. For this example, the type of class c_hidden_buffer then evolves to:

class c_hidden_buffer: object
label get: ([reply: (0); o1); label put: (0,[reply: O); ¢'1);
end W = {{get), {pus}} V = {0}

Right before hiding, the type variables in a hidden channel are of two kinds:
non-generalizable or generalizable. The modification above solves perfectly the
problem of losing information about non-generalizable ones. If type variables
that are generalizable before hiding would always be kept so, we here already
reach a working way of typing hiding. Unfortunately, it is not the case. Some gen-
eralizable type variables of hidden channels may later become non-generalizable
during inheritance, even though the channels are already hidden. Consider the
following class definition in which channel Ch’ is hidden:

class c; = a(x) > 0 or b(y) & Ch’'(n1, ny) > this.(a(n;) & b(ng))

The corresponding class type is:
class c;: object label a: (0); label b: (8') end W = {{a},{b}} V = {0’}

The hidden channel Ch’ is of type (6,6"). According to the definition, €’ is non-
generalizable (because shared by the synchronized channel b) thus is put in V.
By contrast, 0 is generalizable. However, the following inheritance of class cq
easily convert @ into non-generalizable:

class co = match c; with b(y) = b(y) & d(z) > this.a(z) end

This selective refinement operation mainly replaces “b(y)” by “b(y) & d(z)” in
join patterns and composes the corresponding guarded processes with “this.a(z)”
in parallel. As a consequence, class cy has the following normal form:
class cy9 = a(x) >0
or b(y) & d(z) & Ch'(n1, n) > this.(a(n;) & b(ny) & a(z))

The new channel d is of type (). It synchronizes and shares 6 with Ch’. However
it is already too late to update the non-generalizable information to reflect this,

because hidden names are already eliminated from class types thus out of control
of the type system. A simple solution we adopt is to treat already all the free
type variable of hidden names as dangerous, non-generalizable and generalizable,
in case the non-generalizable ones increase. To sum up, the final type of class c;
is:

class c;: object label a: (0); label b: (6') end W = {{a},{b}} V = {0,6'}

Formal discussion of the type system appears in the complementary technical
report [8], including statement and proof of a “soundness” theorem.

5 Conclusion

We have achieved significant improvements over the original design of Fournet
et al. [5]: in [7] as regards the class system expressiveness, and in this paper as
regards visibility control, type abstraction, and simplification of runtime seman-
tics. We claim that these improvements yield a calculus mature enough to act
as the model of a full-scale implementation.

References

1. K. Bruce, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pierce. On binary
methods. Theory and Practice of Object Systems, 1(3):221-242, 1995.

2. K. Fisher and J. Reppy. The design of a class mechanism for MOBY. In Proceedings
of PLDI’99, pp.37 49, 1999.

3. C. Fournet and G. Gonthier. The reflexive chemical abstract machine and the
join-calculus. In Proceedings of POPL’96, pp.372 385, 1996.

4. C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Implicit typing & la ML for
the join-calculus. In Proceedings of CONCUR’97, pp-196—212, 1997.

5. C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Inheritance in the join calculus.
Journal of Logic and Algebraic Programming, 57(1-2):23 69, 2003.

6. A. D. Gordon and P. D. Hankin. A concurrent object calculus: reduction and
typing. In Proceedings of HLCL’98, pp.248 264, 1998.

7. Q. Ma and L. Maranget. Expressive synchronization types for inheritance in the
join calculus. In Proceedings of APLAS’03, pp.20-36, 2003.

8. Q. Ma and L. Maranget. Information hiding, inheritance and concurrency. Inria
Rocquencourt Research Report RR-5631, 2005.

9. S. Matsuoka and A. Yonezawa. Analysis of inheritance anomaly in object-oriented
concurrent programming languages. Research Directions in Concurrent Object-
Oriented Programming, pp.107 150. MIT Press, 1993.

10. G. Milicia and V. Sassone. The inheritance anomaly: ten years after. In Proceedings
of SAC’96, pp.1267 1274, 2004.

11. M. Odersky. Functional nets. In Proceedings of ESOP’00, pp.1 25, 2000.

12. J. G. Riecke and C. A. Stone. Privacy via subsumption. Information and Compu-
tation, 172(1):2 28, 2002.

13. J. Vouillon. Combining subsumption and binary methods: an object calculus with
views. In Proceedings of POPL’01, pp.290-303, 2001.

