
Information Hiding in the Join Cal
ulusQin Ma1 and Lu
 Maranget2
1 OFFIS, Es
herweg 2, 26121 Oldenburg, GermanyQin.Ma�offis.de

2 INRIA-Ro
quen
ourt, BP 105, 78153 Le Chesnay Cedex, Fran
eLu
.Maranget�inria.frAbstra
t. We aim to provide information hiding support in 
on
urrentobje
t-oriented programming languages. We study this issue both at theobje
t level and the 
lass level, in the 
ontext of an obje
t-oriented ex-tension of Join� a pro
ess 
al
ulus in the tradition of the π-
al
ulus.In this extended abstra
t, we fo
us on the 
lass level and design a newhiding operation on 
lasses. The purpose of this operation is to preventpart of parent 
lasses from being visible in 
lient (inheriting) 
lasses. Wede�ne its formal semanti
s in terms of α-
onverting hidden names tofresh names, and its typing in terms of eliminating hidden names from
lass types.1 Introdu
tionObje
t-oriented 
on
epts are often 
laimed to handle 
on
urrent systems better.On one hand, obje
ts, ex
hanging messages while managing their internal statesin a private fashion, model a pra
ti
al view of 
on
urrent systems. On the otherhand, 
lasses, supporting modular and in
remental development, provide an ef-fe
tive way of 
ontrolling 
on
urrent system 
omplexity. Numerous fundamentalstudies su
h as [6, 11℄ proposed 
al
uli that 
ombine obje
ts and 
on
urren
y.By 
ontrast, 
ombining 
lasses and 
on
urren
y fa
es the well-known obsta
leof inheritan
e anomalies [9, 10℄, i.e., traditional overriding me
hanism from se-quential settings falls short in handling syn
hronization behavior reuse duringinheritan
e. Re
ently, Fournet et al. have proposed a promising solution to thisproblem [5℄. The main idea is to extend the Join 
al
ulus [3℄ with obje
ts and
lasses, and more importantly to design a novel 
lass operation for both behav-ioral and syn
hronization inheritan
e, 
alled sele
tive re�nement.However, Fournet et al.'s model still su�ers from several limitations, mainlyin typing. Brie�y, their type system is 
ounter-intuitive and signi�
antly restri
tsthe power of sele
tive re�nement. In prior work [7℄, we ta
kled this problem bydesigning a new type system. We mainly enri
hed 
lass types with 
omplete syn-
hronization behavior to exploit the full expressiveness of sele
tive re�nement.However, doing so inevitably impaired the other dual role of 
lass types, i.e.abstra
tion. More spe
i�
ally, it was unlikely for two di�erent 
lasses to possessthe same type. How we 
an regain abstra
tion be
omes a subsequent interest-ing question. We manage to a
hieve this goal by enabling programmers withinformation hiding 
apability in this paper.



Information hiding by itself is already a key issue in large-s
ale programming.Generally, information hiding allows programmers to de
ide what to export inthe interfa
e (whi
h we assimilate to types) of an implementation. This prin
i-ple brings advantages, su
h as removing irrelevant details from interfa
es andprote
ting 
riti
al details of the implementation. As regards obje
ts, one 
aneasily hide some 
omponents by de
laring them to be private, as Fournet et al.and many others do. These private 
omponents do not appear in obje
t inter-fa
es. By 
ontrast, information hiding in 
lasses is more involved, espe
ially inthe presen
e of syn
hronization inheritan
e. The di�
ulty resides in that syn-
hronization introdu
es 
ertain type dependen
y among names, while 
arelesslyhiding some of them would result in unsafe typing. We are aware of no work onthis issue. Spe
i�
ally, if we 
lassify users of a 
lass into two 
ategories: obje
tusers who 
reate obje
ts from the 
lass; and inheritan
e users who derive new
lass de�nitions by inheriting the 
lass, the simple priva
y poli
y applies solelyto obje
t users while always leaving full a

ess to inheritan
e users.We address the issue of information hiding towards inheritan
e users in thispaper. We do so by introdu
ing a new expli
it hiding operation in the 
lass lan-guage. This amounts to signi�
ant 
hanges in both the semanti
s and the typingof 
lass operations. Theoreti
ally, hiding a name in a 
lass 
an be expressedas quantifying it existentially. In pra
ti
e, we α-
onvert hidden names to freshnames in the operational semanti
s and remove hidden names from 
lass types intyping. We believe that our proposal a
hieves a reasonable balan
e of semanti
alsimpli
ity and expressiveness, and that it yields a pra
ti
al level of abstra
tionin 
lass types, while preserving safety. Moreover, our surprisingly simple idea ofhiding by α-
onversion should apply equally well to other 
lass-based systems,provided they rely on stru
tural typing as we do.In this short paper, we fo
us on intuition, while making available a 
omple-mentary te
hni
al report [8℄ for 
omplete formalism.2 Classes, obje
ts, and hidingBasi
 
lass de�nition 
onsists of a join de�nition and an (optional) init pro
ess,
alled initializer (analog to 
onstru
tors or makers in other languages). As anexample, we de�ne the following 
lass for one-pla
e bu�ers:
class 
_buffer =put(n,r) & Empty() ⊲ r.reply() & this.Some(n)

or get(r) & Some(n) ⊲ r.reply(n) & this.Empty()
init this.Empty()and instantiate an obje
t from it:

obj buffer = 
_bufferSimilar to Join, four 
hannels are 
olle
tively de�ned in this example andarranged in two rea
tion rules disjun
tively 
onne
ted by or. We use the two
hannels put and get for the two possible operations, and the two 
hannelsEmpty or Some for the two possible states of a one-pla
e bu�er, namely, being2



empty or full. We here follow Fournet et al.'s 
onvention to express priva
y:
hannels with 
apitalized names are private; they 
an be a

essed only throughre
ursive self referen
es; and the priva
y poli
y is enfor
ed stati
ally.Ea
h rea
tion rule 
onsists of a join pattern and a guarded pro
ess, separatedby ⊲. Join patterns spe
ify the syn
hronization among 
hannels. Namely, onlyif there are messages pending on all the 
hannels in a given pattern, the obje
t
an rea
t by 
onsuming the messages and triggering the guarded pro
ess. Asa result, this one-pla
e bu�er behaves as expe
ted: the (optional) init pro
essinitializes the bu�er as empty; we then 
an put a value when it is empty, oralternatively retrieve the stored value when it is full.By 
ontrast with Join� whose values are 
hannels, obje
ts now be
ome thevalues of the 
al
ulus. As an important 
onsequen
e, 
hannel names are no longergoverned by the usual rules of lexi
al s
oping (obje
ts names are). Channel names
an be seen as global, as method names are in any simple obje
t 
al
uli. Fromnow on, 
hannel names are 
alled labels.The basi
 operation of our 
al
ulus is asyn
hronous message sending, butexpressed in obje
t-oriented dot notation, su
h as in pro
ess r.reply(n), whi
hstands for �send message n to the 
hannel reply of obje
t r�. Also note that weuse the keyword this for re
ursive self referen
es, while other referen
es are han-dled through obje
t names. Compared with the design in [5℄, this modi�
ationsigni�
antly simpli�es the priva
y 
ontrol in obje
t semanti
s.2.1 Inheritan
e and hidingInheritan
e is basi
ally performed by using, i.e. 
omputing with, parent 
lassesin derived 
lasses. At the moment, all labels de�ned in a 
lass are visible duringinheritan
e. However, this 
omplete knowledge of 
lass behavior may not bene
essary for building a new 
lass by inheritan
e. Moreover, exposing full detailsduring inheritan
e sometimes puts program safety at risk, and designers of parent
lasses may legitimately wish to restri
t the view of inheritan
e users.As an example, an inheritan
e user may attempt to extend the 
lass 
_bufferwith a new 
hannel put2 for putting two elements:
class 
_put2_buffer = 
_buffer

or put2(n,m,r) & Empty() ⊲ r.reply() & this.(Some(n) & Some(m))Unfortunately, this naïve implementation breaks the invariant of a one-pla
ebu�er. More spe
i�
ally, the put2 attempt, on
e it su

eeds, sends two messageson 
hannel Some in parallel. Semanti
ally, this means turning a one-pla
e bu�erinto an invalid state where two values are stored simultaneously.In order to prote
t 
lasses from (deliberate or a

idental) integrity-violatinginheritan
e, we introdu
e a new operation on 
lasses to hide 
riti
al 
hannels.We rea
h a more robust de�nition using hiding:
class 
_hidden_buffer = 
_buffer hide {Empty, Some}The hiding 
lause hide {Empty, Some} hides the 
riti
al 
hannels Empty andSome. They are now absent from the 
lass type and be
ome ina

essible during3



inheritan
e. As a result, the previous invariant-violating de�nition of 
hannelput2 will be reje
ted by a �name unbound� stati
 error. Nevertheless, program-mers 
an still supplement one-pla
e bu�ers with a put2 operation as follows:
class 
_put2_buffer_bis = 
_hidden_buffer

or put2(n,m,r) ⊲ class 
_join =reply() & Next() ⊲ r.reply()
or reply() & Start() ⊲ this.Next()
init this.Start() in

obj k = 
_join in this.(put(n,k) & put(m,k))In the 
ode above, the (inner) 
lass 
_join serves the purpose of 
onsuming twoa
knowledgments from the previous one-pla
e bu�er and of a
knowledging thesu

ess of the put2 operation to the appropriate obje
t r. One may remark thatthe order in whi
h values n and m are stored remains unspe
i�ed.2.2 Hiding only private 
hannelsWe here restri
t our hiding me
hanism only to private 
hannels. Su
h a de
isionoriginates in the problems between hiding publi
 
hannels and supporting ad-van
ed features, su
h as selftype (also known as mytype) and binary methods [1℄.As observed in [13, 2℄, these two aspe
ts do not trivially get along without en-dangering type soundness. More spe
i�
ally, a problem manifests itself whenselftype is assumed outside the 
lass and we hide a publi
 
hannel afterwards.As an example, 
onsider the following 
lass de�nitions.
class 
0 = f(x) ⊲ x.b(1)
class 
1 = a() ⊲ obj x = 
0 in x.f(this)

or b(n) ⊲ out.print_int(n)Channel f of 
lass 
0 expe
ts an obje
t with a 
hannel b of type integer. This
ondition is satis�ed when typing the guarded pro
ess of 
hannel a in 
lass 
1,be
ause the self obje
t this does have a 
hannel b of type integer. However, laterinheritan
e may hide the 
hannel b (in 
lass 
2), and then de�ne a new 
hannelalso named b but with a di�erent type string (in 
lass 
3).
class 
2 = 
1 hide {b}
class 
3 = 
2 or b(s) ⊲ out.print_string(s)Apparently, although the above 
ode is typed 
orre
tly, the following pro
esswill 
ause a runtime type error: providing an integer when a string is expe
ted.
obj o = 
3 in o.a()A simple solution adopted in the 
ommunity is not to support both. Fol-lowing OCaml, we 
hoose to support the notion of selftype and limit hiding toprivate 
hannels. By 
ontrast, Fisher and Reppy in their work for MOBY [2℄
hoose the reverse: not to provide selftype and instead provide 
omplete 
ontrolover 
lass-member visibility. Nevertheless, a more 
omprehensive solution is stillpossible [13℄, however, more 
ompli
ated as well.4



3 The semanti
s of hidingClass semanti
s is expressed as the rewriting of 
lass-terms, while obje
t se-manti
s by the means of re�exive 
hemi
al ma
hines [3℄. Class redu
tions alwaysterminate and produ
e 
lass normal forms, whi
h are basi
ally obje
t de�nitions,plus an (optional) initializer, plus a a list of abstra
t labels. In 
ases where thelatter is empty (whi
h 
an be stati
ally 
ontrolled by our type systems), obje
ts
an be 
reated from su
h 
lass de�nitions in normal form. Hen
e, our evaluationmode is a strati�ed one: �rst rewrite 
lasses to obje
t de�nitions; then feed theresulting term and an initial input into a 
hemi
al abstra
t ma
hine.How to hide labels? The semanti
s of hiding in 
lasses is governed by two 
on-
erns. On one hand, hidden labels disappear. For instan
e, rede�ning a new labelhomonymous to a previously hidden label yields a totally new label. On the otherhand, hidden labels still exist. For instan
e, obje
ts 
reated by instantiating the
lass 
_hidden_buffer from Se
t. 2.1 must somehow possess labels to en
odethe state of a one-pla
e bu�er.The formal evaluation rule for hiding appears as follows:Eval-Hide Γ � C ⇓C Cv (fi de�ned in Cv, hi fresh) i∈I

Γ + (c 7→ Cv{hi/fi
i∈I}H) � P ⇓P Pv

Γ � class c = C hide {fi
i∈I} in P ⇓P PvThe above inferen
e rule is part of the 
lass redu
tion semanti
s (see [8℄). Judg-ments express the redu
tion of 
lasses to 
lass normal forms, under an environ-ment Γ that binds 
lass names to 
lass normal forms (
all-by-value semanti
s).Hiding applies only to 
lass normal forms (Cv), and only at 
lass bindingtime. The hiding pro
edure {hi/fi

i∈I}H is implemented by α-
onverting thehidden 
hannels {fi
i∈I} to fresh labels {hi

i∈I}, whose de�nition is withoutsurprise. Su
h a semanti
s makes sense be
ause labels are not s
oped. The α-
onversion should apply to both de�nition o

urren
es (in join patterns) andreferen
e o

urren
es (in guarded pro
esses and in the init pro
ess) of the hiddenlabels in the normal form. Thanks to the restri
tion to only hide private labels,the re
ursive self referen
es in the normal form already in
lude all the referen
eo

urren
es of hidden labels. Moreover, we do not rename under nested obje
tde�nitions be
ause they re-bind this. To give some intuition, the normal formof 
lass 
_hidden_buffer from Se
t. 2.1 looks as follows:
class 
_hidden_buffer =get(r) & Some′(n) ⊲ r.reply(n) & this.Empty′()

or put(n,r) & Empty′() ⊲ r.reply() & this.Some′(n)
init this.Empty′()Here, we assume Empty′ and Some′ to be the two fresh labels that repla
e Emptyand Some respe
tively.This design meets the two 
on
erns des
ribed at the beginning of this se
-tion: on one hand, freshness guarantees hidden names not to be visible during5



inheritan
e; on the other hand, hidden names are still present in 
lass normalforms but under fresh identities.4 The typing of hiding4.1 Class types and obje
t types, 
at
hing upTypes are automati
ally inferred. Following our prior work [7℄, a 
lass type 
on-sists of three parts, written ζ(ρ)BW , where B lists the set of 
hannels, de�nedor de
lared in the 
lass, paired with the types of the messages they a

ept, and
W re�e
ts how de�ned 
hannels are syn
hronized, i.e. the stru
ture of the joinpatterns in the 
orresponding 
lass normal form. The row type ρ 
olle
ts thepubli
 label-type pairs from B for the type of obje
ts 
reated from this 
lass.To avoid repetition, in 
on
rete syntax, ρ is usually in
orporated in B that isen
losed between object and end, as in the type of 
lass 
_buffer from Se
t. 2:

class 
_buffer: object

label get: ([reply: (θ); ̺℄); label put: (θ,[reply: (); ̺′℄);
label Some: (θ); label Empty: ();

end W = {{get, Some}, {put, Empty}}We see that messages 
onveyed by 
hannels are polyadi
. The type of a 
hannel
arrying k obje
ts of types τ1, . . . , τk is written (τ1, . . . , τk). Obje
t types arealways en
losed in square bra
kets. The type of obje
ts of this 
lass is:
[get:([reply:(θ); ̺]); put:(θ, [reply:(); ̺′])]Channels Some and Empty do not show up be
ause they are private. Finally, Wis organized as a set of sets of labels. Two labels appear in the same member setof W if and only if they are syn
hronized in one join pattern.Following ML type systems, polymorphism is parametri
 polymorphism, ob-tained essentially by generalizing free type variables. However, su
h generaliza-tion is 
ontrolled for obje
t types. More spe
i�
ally, any type variables that areshared by syn
hronized 
hannels should not be generalized. Detailed rationalefor doing so is dis
ussed in all kinds of Join typing papers, su
h as [7, 4℄. Thebasi
 reason is for type safety. As an example, type variable θ should not bepolymorphi
 in the obje
t type above, be
ause following the 
lass type it isshared by two syn
hronized 
hannels get and Some (i.e. appearing in the samemember set of W ). Otherwise, its two o

urren
e in get and put 
ould then beinstantiated independently as, for instan
e, integer and string. This then wouldresult in a runtime type error: attempting to retrieve a string when an integer ispresent. By 
ontrast, θ is safely generalized in the 
lass type, whi
h allows us to
reate two obje
ts from it, one dealing with integers, and the other with strings.The two trailing row variables ̺, ̺′ are both generalizable. They 
an be instan-tiated as more label-type pairs, thus introdu
ing a useful degree of subtypingpolymorphism by stru
ture. 6



4.2 How to type hiding: ideasThe most straightforward idea is to remove hidden names from 
lass types. Asa 
onsequen
e, 
lass 
_hidden_buffer from Se
t. 2.1 has type:
class 
_hidden_buffer: object

label get: ([reply: (θ); ̺℄); label put: (θ,[reply: (); ̺′℄);
end W = {{get}, {put}}The two hidden 
hannels Some and Empty are eliminated from both the B listand W . Unfortunately, su
h a naïve elimination has a side-e�e
t, whi
h mayendanger safe polymorphism in the 
orresponding obje
t type. Plainly, the non-generalizable type variable θ has now falsely be
ome generalizable, be
ause a
-
ording to this 
lass type, the only two 
hannels that share θ are not syn
hronized(i.e. get and put 
oming from two di�erent member sets of W ).To ta
kle the problem, we then de
ide to keep tra
k of su
h dangerous typevariables 
aused by hiding in 
lass types, 
alled V . More pre
isely, before elimi-nating, we �rst re
ord all the non-generalizable type variables of hidden namesin V . For this example, the type of 
lass 
_hidden_buffer then evolves to:

class 
_hidden_buffer: object

label get: ([reply: (θ); ̺℄); label put: (θ,[reply: (); ̺′℄);
end W = {{get}, {put}} V = {θ}Right before hiding, the type variables in a hidden 
hannel are of two kinds:non-generalizable or generalizable. The modi�
ation above solves perfe
tly theproblem of losing information about non-generalizable ones. If type variablesthat are generalizable before hiding would always be kept so, we here alreadyrea
h a working way of typing hiding. Unfortunately, it is not the 
ase. Some gen-eralizable type variables of hidden 
hannels may later be
ome non-generalizableduring inheritan
e, even though the 
hannels are already hidden. Consider thefollowing 
lass de�nition in whi
h 
hannel Ch′ is hidden:

class 
1 = a(x) ⊲ 0 or b(y) & Ch′(n1, n2) ⊲ this.(a(n1) & b(n2))The 
orresponding 
lass type is:
class 
1: object label a: (θ); label b: (θ′) end W = {{a},{b}} V = {θ′}The hidden 
hannel Ch′ is of type (θ, θ′). A

ording to the de�nition, θ′ is non-generalizable (be
ause shared by the syn
hronized 
hannel b) thus is put in V .By 
ontrast, θ is generalizable. However, the following inheritan
e of 
lass 
1easily 
onvert θ into non-generalizable:
class 
2 = match 
1 with b(y) ⇒ b(y) & d(z) ⊲ this.a(z) endThis sele
tive re�nement operation mainly repla
es �b(y)� by �b(y) & d(z)� injoin patterns and 
omposes the 
orresponding guarded pro
esses with �this.a(z)�in parallel. As a 
onsequen
e, 
lass 
2 has the following normal form:
class 
v2 = a(x) ⊲ 0

or b(y) & d(z) & Ch′(n1, n2) ⊲ this.(a(n1) & b(n2) & a(z))The new 
hannel d is of type (θ). It syn
hronizes and shares θ with Ch′. Howeverit is already too late to update the non-generalizable information to re�e
t this,7



be
ause hidden names are already eliminated from 
lass types thus out of 
ontrolof the type system. A simple solution we adopt is to treat already all the freetype variable of hidden names as dangerous, non-generalizable and generalizable,in 
ase the non-generalizable ones in
rease. To sum up, the �nal type of 
lass 
1is:
class 
1: object label a: (θ); label b: (θ′) end W = {{a},{b}} V = {θ, θ′}Formal dis
ussion of the type system appears in the 
omplementary te
hni
alreport [8℄, in
luding statement and proof of a �soundness� theorem.5 Con
lusionWe have a
hieved signi�
ant improvements over the original design of Fournetet al. [5℄: in [7℄ as regards the 
lass system expressiveness, and in this paper asregards visibility 
ontrol, type abstra
tion, and simpli�
ation of runtime seman-ti
s. We 
laim that these improvements yield a 
al
ulus mature enough to a
tas the model of a full-s
ale implementation.Referen
es1. K. Bru
e, L. Cardelli, G. Castagna, G. T. Leavens, and B. Pier
e. On binarymethods. Theory and Pra
ti
e of Obje
t Systems, 1(3):221�242, 1995.2. K. Fisher and J. Reppy. The design of a 
lass me
hanism for moby. In Pro
eedingsof PLDI'99, pp.37�49, 1999.3. C. Fournet and G. Gonthier. The re�exive 
hemi
al abstra
t ma
hine and thejoin-
al
ulus. In Pro
eedings of POPL'96, pp.372�385, 1996.4. C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Impli
it typing à la ML forthe join-
al
ulus. In Pro
eedings of CONCUR'97, pp.196�212, 1997.5. C. Fournet, L. Maranget, C. Laneve, and D. Rémy. Inheritan
e in the join 
al
ulus.Journal of Logi
 and Algebrai
 Programming, 57(1-2):23�69, 2003.6. A. D. Gordon and P. D. Hankin. A 
on
urrent obje
t 
al
ulus: redu
tion andtyping. In Pro
eedings of HLCL'98, pp.248�264, 1998.7. Q. Ma and L. Maranget. Expressive syn
hronization types for inheritan
e in thejoin 
al
ulus. In Pro
eedings of APLAS'03, pp.20�36, 2003.8. Q. Ma and L. Maranget. Information hiding, inheritan
e and 
on
urren
y. InriaRo
quen
ourt Resear
h Report RR-5631, 2005.9. S. Matsuoka and A. Yonezawa. Analysis of inheritan
e anomaly in obje
t-oriented
on
urrent programming languages. Resear
h Dire
tions in Con
urrent Obje
t-Oriented Programming, pp.107�150. MIT Press, 1993.10. G. Mili
ia and V. Sassone. The inheritan
e anomaly: ten years after. In Pro
eedingsof SAC'96, pp.1267�1274, 2004.11. M. Odersky. Fun
tional nets. In Pro
eedings of ESOP'00, pp.1�25, 2000.12. J. G. Rie
ke and C. A. Stone. Priva
y via subsumption. Information and Compu-tation, 172(1):2�28, 2002.13. J. Vouillon. Combining subsumption and binary methods: an obje
t 
al
ulus withviews. In Pro
eedings of POPL'01, pp.290�303, 2001.8


