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Standard reverse mathematics of the axiom of choice in set theory

Three well-known equivalent presentations in set theory:

e axiom of choice (AC): any family of non-empty sets has a choice function

e Zorn's lemma (ZL): if all chains of a non-empty partially ordered set are bounded
upwards, the set has a maximal belement

e the well-ordering principle: every set can be well-ordered
and many others:

e c.g. Teichmiiller-Tukey lemma
sometimes strictly weaker:

e axiom of dependent choice (DC), axiom of countable choice (AC,), Boolean
prime ideal theorem (BPI), ultrafilter lemma (UF)

as well as variants in constructive mathematics, classically equivalent to choice or maxi-
mality principles:

e bar induction, its finite-branch version fan theorem, update induction, ...
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Some standard results about the axiom of choice

Reverse Math in Set Theory ACABR
(e.g. Jech, Rubin & Rubin, Herrlich)
BPI Dcseria/ [Bernays] LEM
UF Dcspread [Lévy] — Bl

Compl 7Ly [Wolk] /

WET [Coquand]

WKL LEM q
Combl < > WETsteged [Ishihara]
omPly Fruniform [Broywer]

Reverse Math in subsystems of 2nd order Arithmetic
(e.g. Simpson) Reverse Math in Constructive Arithmetic

(e.g. Kleene, Kreisel, Troelstra, Ishihara, Berger)

BPI = Boolefan Prime Ideal Theorem 7L, — Countable Zorm's Lemma
UF = Ultrafilter Theorem |
AC = Axiom of Choice Bl = Bar Induction
. . (W)FT = (Weak) Fan Theorem
DC = Axiom of Dependent Choice c | — Codel's C et Th
WKL = Weak Kénig's Lemma ompl = Godel's Completeness Theorem




Long-term objective: Look at the axiom of choice and its variants from a
logical and computational perspective

The logical perspective:
e The axiom of choice and their variants assert the existence of ideal objects from
intensional properties of these objects

e See e.g. Coquand’s program of reformulating standard mathematical statements using
equivalent inductive properties to avoid the axiom of choice

— some variants can indeed be seen as extensionality principles

— other variants as well-foundedness of processes producing arbitrarily precise ap-
proximations of ideal objects



Long-term objective: Look at the axiom of choice and its variants from a
logical and computational perspective

The computational perspective:
e Following Brouwer, we know from Kolmogorov, Kleene, Curry, Howard, and many
other that intuitionistic proofs are programs

e We know from Griffin 1990 that also classical proofs are programs, though they
use "goto -like side effects

e \We know from works in Paris that proofs by forcing are programs, using a memory

e Other effects such as Lisp's quote are also useful to compute with some axioms (see
Krivine, Pédrot, ...)

e More generally, it can be shown (by abstract reasoning) that any consistent mathe-
matical axiom has an underlying computational content

e What is the computational content of the axiom of choice and its variants (Kriv-
ine's research programme)?



Contribution |

e A classification of choice and bar induction principles by means of two dual forms, seen
as extensionality principles, for T a predicate filtering the finite approximations
of functions from A to B:

eneralised Bar Induction (GBlapr)
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T A-B- — T A-B-

observational effective

Generalised Dependent Choice (GDCpr)

T has an A-B-choice function

\ -
~~

T’ coinductively A-B-approximable =

effective observational
e such that:
NBT denotes BT
NBoolT denotes 7
GDCypooir denotes BPl 4t

GDCnpr  has the strength of DCpp
GDCNBoolr has the strength of WKL
GDCypr  has the strength of ACypp for T “split”
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Contribution |l

e A pair of dual maximality and well-foundedness principles, for T" a predicate filtering
the finite approximations of functions from A to B:

eneralised Update Induction (GUI 4p7)

(generalising Berger's update induction to arbitrary cardinals)

if the upwards monotone closure of T' is <-inductive, it contains all functions from A to B

- Maximal Partial Choice Function (AMPCEF 4p7)

(a functional variant of Teichmiiller-Tukey's lemma)

if the downwards closure by restriction of T' is non empty, it has a <-maximal partial choice function from A to B

where o < 3 is the approximation order on partial functions from A to B.

e such that: when Ais N, or B is Bool, or T is split, coinductive approximability implies
the totality of the choice function, recovering the previous statements, and dually for
barredness.

e and such that: Zorn's Lemma, Teichmiiller-Tukey's lemma, and other maximality
principles are particular instances of IMPCF.
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Outline
Part A is organised around the following oppositions

e ill-founded (choice axioms) / well-founded (bar induction axioms)
e extensional (ideal object) / intensional (processus)
e closed by sequential restriction (= tree) / closed by sequential extension (= monotony)

e binary branching (B is Bool) / finite branching (B is finite) / arbitrary branching (B
is arbitrary)

Part B moves to arbitrary cardinals, so as to capture BPI and full AC

e sequential (A countable) / unordered (A arbitrary)

e closed by unordered restriction (= ideal) / closed by unordered extension (= filter)

Part C moves to maximality and well-foundedness principles



Part A

The sequential case: Kénig's lemma, fan theorem, dependent choice, bar induction



What is bar induction?

Let's consider first different ways to define well-foundedness
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Trees (and their negative) as predicates

Let B be a domain and w ranges over the set B* of finite sequences of elements of B.
We write () for the empty sequence and u x b for the extension with one element. For T
a predicate on B*, we define:

T is a tree T is monotone

(closure under restriction) (closure under extension)

VuVa(uxa €T =ueT) | YuVa(ueT =uxa€eT)
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Inductive characterisation of a well-founded tree-as-predicate

T inductively well-founded is short for inductively well-founded at () € A*

T inductively well-founded at u holds when:
eu¢T

e or, recursively, for all a, T is inductively well-founded at ux a

Cotb1oD
e o1b12b20 >

Coo1bid
C S ¢ Bo1bigba1 >

S S
bo2 D Co1b12b2z >

Cootbiz D
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Observational characterisation of a well-founded tree-as-predicate

T observationally well-founded

V8 eN—= B.3In e N. -T(8),)

(o110
>

D
IS C Do1biabay

() > b1 bio S
oz D Co1bizbaz

(o113
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Two characterisations of a well-founded tree-as-predicate

e From the “effective” representation of a tree we can always construct
a predicate that is an “observational’’ representation of the tree

e To conversely obtain an effective representation of a tree 1" from its observational
representation requires an axiom:

T — T
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Bar Induction

If instead we build the negative of a tree-as-predicate and restate well-foundedness on
the negative tree, one obtains bar induction:

o is the same as =T’
o is the same =T’
) says that for a type B and a tree T,
L barreg = I d

observational ey
effective
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Dually: ill-foundedness

Dually, ill-foundedness of a tree T' can be defined in different ways.

Let us concentrate on the finite-branching case. We have:

Effective view

T is staged infinite 2 Vn3ulu|=nAuecT

Observational view

T has an infinite branch 2 JaVu < aT(u)

Kénig's Lemma is a lemma that connects the two views when B is finite:

KLy £ T isstaged infinite = T has an infinite branch
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lll-foundedness, coinductively

Alternatively, by dualising the notion of we get another coinductive
definition of ill-foundedness, which we call productive. In full:

T productive is short for productive from () € B*
T productive from u € B* holds when:
o uisinT

e and, recursively, there is b € B such that 1" is productive from u x b
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Relying on the notion of inductively barred and its dual, we obtain the
following dual pair of choice and bar induction principles

Bar induction (Blgr)
T barred = T inductively barred

. rod
Tree-Based Dependent Choice (DCqr

T productive = T has an infinite branch
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Recovering standard principles
WKLy <= DCL” . up to classical (actually co-intuitionistic) reasoning
T <= DBlpoolT UP to Intuitionistic reasoning

serial prod
DChpy = DCBRD(bO)

where

() — T
u € R°(by) £ case u of | b — R(by, )
uw *bxb — R(b,V)

DCE%% 2 VoI R(b,b') = Ja (a(0) = by AVn R(a(n), a(n + 1))

(one of the most standard statement of dependent choice)
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Part B

Relaxing the sequentiality
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Relaxing the sequentiality

Let A and B be domains. Let now use v to range over the set (A x B)* of finite sequences
of pairs of elements in A and B.

We say (a,b) € v if (a,b) is one of the components of v.
We write v < 0" is v is included in v/ when seen as sets.

For v € (A x B)*, we write dom(v) for the set of a such that there is some b such that
(a,b) € v.

f o € A — B, we write v C « and say that v is a finite approximation of « if a(a) = b
for all (a,b) € v.

Let T" be a predicate on (A x B)*. We write | T and 17T to mean the following inner
and outer closures with respect to <:

velT =V <v(@eTl)

veETT = I <o eT)
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Relaxing the sequentiality (effective view)

T inductively A-B-barred from v € (A x B)* holds when:

e U is in the outer closure of T

e or, recursively, there exists a ¢ dom(v) such that for all b € B, T is inductively
A-B-barred from v % (a, b)

T coinductively A-B-approximable from v € (A x B)* holds when:

e v is in the inner closure of T

e and, recursively, for all a ¢ dom(v), there is b € B such that T is coinductively
A-B-approximable from v % (a, b)
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Relaxing the sequentiality (observational view)

T A-B-barredifVae A= B Ca(weT)

T has an A-B-choice functionif Ja € A > BYv Ca (veT)
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This leads to the following generalisation

Generalised Bar Induction (GBlapr)

T A-B-barred = T A-B-inductively barred
—_—

observational effective

Generalised Dependent Choice (GDCpr)

T coinductively A-B-approximable = T has an A-B-choice function

Vv
effective observational
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Results justifying the generalisation

GBINBT < BIBT

GDCnpr <— DC%T%d
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The Boolean Prime ldeal Theorem

The specialisation to Bool of the generalisation also captures the Boolean Prime |deal
Theorem.

Let (B,V,A, L, T,—,F) be a Boolean algebra and I an ideal on B. We extend I on
(B x Bool)* by setting u € I if (\/(;,0c,, 70) V (V(5,1)¢, 0) € 1. We have:

GDCBBOO|I+ < BP'B,[
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The full axiom of choice

Let AC4pR be Vat 3P R(a,b) = a7 P Ve’ R(a, a(a))

Define the positive alignment Rt of R by

Rt = \u.V(a,b) € uR(a,b)

Then, AC4pr arrives as the instance GDCypp.
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Strength of the generalisation

Without further restrictions, GDC and are inconsistent:

e Take A 2 N — Bool
e Take B2 N

e Define T' so that it constrains a choice function to be injective:
veT2Vff'n ((fin)€v)A((f\n)€v)=f=[

Then, in the case of GDC, a coinductive A-B-approximation can always be found but

an A-B-choice function would be an injective function from N — Bool to N, what is
Inconsistent.
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A consistent restriction

A naive restriction is to require that:

e cither A is countable
e or B is finite
e or T is split (or atomic, or unary), meaning for all u and v:

—in the ill-founded case u e TAv ET = uwUv €T
—inthe barred caseuUv el = uw e T Vo eT

The restriction preserves the previous instantiations and makes GDC equivalent to AC

since it implies AC, and, conversely, each of its three restrictions is implied by a conse-
quence of AC.

Dually for
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Summary of main results regarding choice and bar induction

ACapR = GDCypR,

||>

DCS £ GDCrpre

BPlo; = GDCypoolT; rod A

A DCP = GDCypr
ComPlag . P ABooTC ZLI\?}? = GBINp(-R)
ComplAT = GB'AIB%ooITC Blgr £ GBIy 1

WKL £ GDCnpoolr
WFT¢, 2 GBINBoolT

AC = Axiom of Choice T :

DC _ Axiom of Dependent Choice Compl™ = Com,pleteness (valid = provable)
_ ZL = /orn's Lemma

BPI = Boolean Prime Ideal Theorem :

Compl™ = Completeness (consistent = model) o = ar Induction

WKL = Weak Kénig's Lemms WET = Weak Fan Theorem
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Part C

Maximality and well-foundedness principles
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A first solution to the inconsistency of the general form of GDC: requiring
only a partial function

Generalised Partial Dependent Choice

T coinductively A-B-approximable = T has a partial A-B-choice function

TV
effective observational

However, approximability happens to become a useless hypothesis, so such approach is
not worth.

32



Teichmiiller-Tukey Lemma

Let T be a predicate over A*. We define its powerset closure by downwards restriction
(T') as:
Ty 2 X"Wvut'uca—-uel)

Then, we say that a predicate P over predicates over A is of finite character if there
is T such that P = (T).

Then, we can conversely rebuild T" from (T') by setting

AN

U
P
so that T'= [ (T')| and so that P is of finite character iff P = (| P]).

et xecu
. aeP

ey
ey
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Teichmiiller-Tukey Lemma

Teichmiiller-Tukey is the statement that any non-empty predicate P of finite character
has a maximal element with respect to inclusion.
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1 Maximal Partial Choice Function (IMPCF 457)

To make a connection with choice axioms, we introduce of variant of Teichmiiller-Tukey
lemma on functions: we consider now predicates over partial functions seen as predicates
of finite character over the graph G(«a) of the function «, that is, as predicates over
predicates over A X B. Such predicates of finite character are generated by predicates T’
over (A x B)*. We can now state:

4 Maximal Partial Choice Function (GMPCF 4p7)

if (T') is non empty, it has a <-maximal partial choice function from A to B

Or, fully formally:

(3a(G(a) € (T)) = 3a"F(G(a) € (T) AV < a(G(B) ¢ (T)))

where

§1a s JaMal@)=LAB@)#L)
A Va(afa) # L = (a) = afa))
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dAMPCFnp7 is the contrapositive of Berger's update induction, and
conversely, update induction can be generalised to arbitrary domains

P is of finite character over partial functions from N to B is the same as =P open
predicate in Berger's sense. This leads to the following:

eneralised Update Induction (GUI 4p7)

if the upwards monotone closure of T' is <-inductive, it contains all partial functions from A to B
Or, fully formally:
(VA Pa(Ve < a(G(8) € (T)°) = (Gla) € (T)°)) = Va(G(a) € (T)°)
where (T)°, an upwards monotone closure, is:

(T)° 2 XaPWB) By canueT)

We left implicit the definition of A — B. It might typically be defined as A — B or as
predicates over A X B that are functional. But both definitions are equivalent only up to
classical reasoning...
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