
The hidden exception handler of Parigot's λµ-calculus and its
completeness properties

Observationally (Böhm) complete
↑

Saurin's extension of λµ-calculus = call-by-name Danvy-Filinski shift-reset �calculus�
↓

call-by-value version complete for representing syntactic monads
(exceptions, references, ...)

1

Contents

A tour of computational classical logic

- callcc vs try-with
- Operational semantics: the need for tp
- Felleisen λC-calculus and Parigot λµ-calculus
- Curry-Howard and classical logic
- Danvy-Filinski shift/reset calculus vs extending λµ with (pure) try

Böhm completeness

- David-Py incompleteness of λµ-calculus vs Saurin's observational completeness
- Saurin's calculus = call-by-name λµ + pure try = call-by-name shift/reset calculus

2

Part I

Computing with classical logic

(a tour of callcc, A, C, try-with/raise, shift/reset, µ, µ̂, ...)

3

Computing with callcc and ptry

exception Result of int

let product l =
try
let rec aux = function
| [] -> 1
| 0 :: l -> raise (Result 0)
| n :: l -> n * aux l
in aux l

with
Result n -> n

ptry sets a marker and an associated handler
in the evaluation stack and raise jumps to
the nearest enclosed marker.

'

let product l =
callcc (fun k =>

let rec aux = function
| [] -> 1
| 0 :: l -> throw k 0
| n :: l -> n * aux l
in aux l)

callcc memorises the evaluation stack and
throw restores the memorised evaluation
stack

4

ptry binds raise dynamically

exception Result of int

let product l =
try
let rec aux = function
| [] -> 1
| 0 :: l -> raise (Result 0)
| n :: l -> n * aux l
in aux l

with
Result n -> n

=

exception Result of int

let product l =
let rec aux = function
| [] -> 1
| 0 :: l -> raise (Result 0)
| n :: l -> n * aux l
in
try

aux l
with

Result n -> n

5

callcc binds its corresponding throw statically

let product l =
callcc (fun k =>
let rec aux = function
| [] -> 1
| 0 :: l -> throw k 0
| n :: l -> n * aux l
in aux l)

6=

let product l =
let rec aux = function
| [] -> 1
| 0 :: l -> throw k 0
| n :: l -> n * aux l
in
callcc (fun k => aux l)

which is syntactically ill-formed!

6

A primitive form of try-with: ptry

Syntax

t ::= V | t t | raise t | ptry t (terms)
V ::= x | λx.t (values)

F ::= � | F [V �] | F [� t] | F [raise �] (local evaluation contexts)
E ::= � | E[ptryF] (global evaluation contexts)

Operational Semantics (aka weak-head reduction)

E[(λx.t) u] → E[t[u/x]]
E[ptry F [raise V]] → E[V]
E[ptry V] → E[V]

Simulation of ptry/raise from Ocaml's try-with/raise

raise t , raise (Exc t)

ptry t , try t with Exc x → x

Simulation of OCaml's try-with/raise from ptry/raise

raise t , raise t

try t with E x → u , match (ptry (Val t)) with Val x → x | E x → u | e → raise e

7

Typing callcc/throw and ptry/raise
(standard presentation)

Γ, k : cont A ` t : A

Γ ` callcc (fun k → t) : A

Γ, k : cont A ` t : A

Γ, k : cont A ` throw k t : B

Γ ` t : exn

Γ ` ptry t : exn

Γ ` t : exn

Γ ` raise t : B

8

Typing callcc/throw and ptry/raise
(generalising the type of exceptions)

Γ, k : cont A ` t : A

Γ ` callcc (fun k → t) : A

Γ, k : cont A ` t : A

Γ, k : cont A ` throw k t : B

Γ ` t : A

Γ ` ptry t : A

Γ ` t : A

Γ ` raise t : B

9

Typing callcc/throw and ptry/raise
(naming the dynamic ptry continuation)

Γ, k : cont A ` t : A

Γ ` callcc (fun k → t) : A

Γ, k : cont A ` t : A

Γ, k : cont A ` throw k t : B

Γ, tp : cont A ` t : A

Γ, tp : cont T ` ptrytp t : A

Γ, tp : cont A ` t : A

Γ, tp : cont A ` raisetp t : B

10

Typing callcc/throw and ptry/raise
(naming the dynamic ptry continuation)

Γ, k : cont A ` t : A

Γ ` callcc (fun k → t) : A

Γ, k : cont A ` t : A

Γ, k : cont A ` throw k t : B

Γ, tp : cont A ` t : A

Γ, tp : cont T ` ptrytp t : A

Γ, tp : cont A ` t : A

Γ, tp : cont A ` raisetp t : B

Generalisation of the type of ptry needs type e�ects on arrows to ensure the type correctness of dynamic
binding:

Γ, tp : cont T ` t : A →T B Γ, tp : cont T ` u : A

Γ, tp : cont T ` t u : B

Γ, x : B, tp : cont T ` t : C

Γ, tp : cont U ` λx.t : B →T C

Γ, x : A, tp : cont T ` x : A

11

Simple types: callcc is more expressive than ptry
(computing with in�nity)

E.g. proof of ∀f : (nat→ bool) ∃b : bool ∀m ∃n ≥ n f(m) = b

let pseudo_decide_infinity f =
callcc (fun k -> (true, fun m1 ->
callcc (fun k1 -> throw k (false (fun m2 ->
callcc (fun k2 ->
let n = max m1 m2 in
if f n then throw k1 n else throw k2 n))))))

This is executable in SML, Objective Caml (and Scheme).

Any program whose result is a non-functional value and that uses pseudo_decide_infinity will yield a (correct)
result.

Each call to throw will induce backtracking on the progress of the program that uses pseudo_decide_infinity.

12

Simple types: callcc is more expressive than ptry
(drinkers' paradox)

E.g. proof of ∀P : (human→ Prop) ∃x : human ∀y : human, P x → P y

(* drinkers : human * (human -> 'a -> 'a)
let drinkers =
callcc (fun k -> (adam, fun y px ->
callcc (fun k' -> throw k (y, fun y' py -> throw k' py))))

13

Simple types: ptry is more expressive than callcc

Derivation of a �xpoint using exceptions of functional type:

type dom = unit -> unit

(* lam : (dom -> dom) -> dom *)
let lam f = fun () -> raise f

(* app : dom -> dom -> dom *)
let app t u = (ptry (let () = t () in t)) u

(* delta : dom *)
let delta = lam (fun x -> app x x)

(* omega : dom *)
let omega = app delta delta

Typing ptry shows that it raises exceptions of type dom , unit →dom unit which is a recursive type.

14

Which possible Curry-Howard interpretation for ptry/raise?

How to interpret type e�ects in the logical framework?
Use a canonical type e�ect? Use ⊥?
Type ptry/raise with the rules

Γ, tp : cont ⊥ ` t : ⊥

Γ, tp : cont ⊥ ` ptrytp t : ⊥

Γ, tp : cont ⊥ ` t : ⊥

Γ, tp : cont ⊥ ` raisetp t : B

15

The Curry-Howard interpretation for callcc

We have λx.callcc(λk.x k) : ((A → B) → A) → A which corresponds to Peirce law

Minimal logic + Peirce law is called minimal classical logic

λ-calculus + callcc and its reduction semantics corresponds to minimal classical logic

16

The hidden toplevel of callcc operational semantics

let y = callcc (fun k -> fun x -> throw k (fun y -> x+y));;
val y : int -> int = <fun>
y 3;;
val y : int -> int = <fun> (* !!!! *)

The reason is that the continuation of the de�nition of y is �print the value of y�. Let's call it k0.
The value of y is fun x -> throw k0 (fun y -> x+y).
When y is applied, throw is called and it returns to k0.

Conventionally, this semantics is expressed using an abortion operator A which itself hides a call to the toplevel
continuation.

17

Intermezzo: Felleisen's C operator

Motivated by the possibility to reason on operators such as callcc in Scheme, Felleisen et al introduced the C
operator.

Syntax

t ::= x | λx.t | t t | C(λk.t)

C is equivalent to the combination of callcc and A.

C(λk.t) = callcc(λk.A t)

callcc(λk.t) = C(λk.k t)
A t = C(λ_.t)

Remark: in C(λk.t), �λk.� is part of the syntax. Alternative equivalent de�nitions of the language are

t ::= x | λx.t | t t | C t

or

t ::= x | λx.t | t t | C

18

Parigot's λµ-calculus
(minimal version)

Use special variables α, β for denoting continuations.

Syntax

t ::= V | t t | µα.c (terms)
c ::= [β]t (commands or states)
V ::= x | λx.t (values)

Use structural substitution for continuations:

E[µα.c] → µα.c[[α]E/[α]�]

More concisely:

E[µα.c] → µα.c[[α]E/α]

19

Parigot's λµ-calculus
(expressing callcc)

callcc is approximable:

callcc(λk.(. . . k t . . .)) ' µk.[k](. . . [k]t . . .)

In fact, the actual operational semantics of callcc is:

E[callcc(λk.t)] → t[λx.A(E[x])/k] (∗)

The previous approximation of callcc is �too e�cient� compared to the actual semantics (such as implemented
in Scheme). The correct simulation, in Scheme, is

callcc , λz.µα.[α](z λx.µ_.[α]x)

which corresponds to an operator of rei�cation of the evaluation context as a function.

Yet, the full semantics of callcc above requires A and λµ-calculus is not strong enough to express it. Especially,
it is not strong enough to simulate the capture of the toplevel continuation performed by the toplevel rule (∗)
above.

20

Parigot's λµ-calculus
(adding a denotation for the toplevel continuation)

Syntax

t ::= V | t t | µα.c (terms)
c ::= [β]t | [tp]t (commands or states)
V ::= x | λx.t (values)

The operator A can now be expressed: A , λx.µ_.[tp]x and the toplevel reduction rule of callcc gets simulable:

[tp] E[callcc(λk.t)] ≡ [tp]E[(λz.µα.[α](z λx.µ_.[α]x)) λk.t]
↓∗

[tp] E[t[λx.A(E[x])/k]] ≡ [tp] E[t[λx.µ_.[tp]E[x]/k]]

λµ-calculus extended with tp can faithfully simulate callcc or Felleisen's λC-calculus. Moreover, it
- is able to substitute continuations directly as evaluation contexts
- allows notations for continuation constants
- is able to express states of abstract machine (tp plays the rôle of the bottom of the stack)
- has nice reduction and operational properties (almost as nice as λµµ̃!) [Ariola-Herbelin 2007]
An example of �ine�ciency� in call-by-value:
let loop () = callcc(λk.k(loop ())) : loop () → (λx.Ax) (loop ()) → (λx.Ax) ((λx.Ax) (loop ())) → . . .

let loop () = µk.[k](loop ()) : [tp](loop ()) → [tp]loop ()) → [tp](loop ()) → . . .

21

Danvy and Filinski's shift and reset [1989]

The operator reset locally �resets� the toplevel and delimits the current continuation of a computation.
The operator shift captures the current delimited continuation and composes it with the continuation at the
places it is invoked.

Syntax

t ::= V | t t | S(λk.t) | 〈t〉 (terms)
V ::= x | λx.t (values)

F� ::= � | F [V �] | F [� t] (local ev. contexts)
E� ::= � | E[resetF�] (global ev. contexts)

Historically, the semantics of shift/reset was de�ned by continuation-passing-style translation (CPS). Its oper-
ational semantics is now well established.

Operational Semantics

E[(λx.t) u] → E[t[u/x]]
E[〈F [S(λk.t)]〉] → E[〈t[λx.〈F [x]〉/k]〉]
E[〈V 〉] → E[V]

22

Application: normalisation by evaluation with boolean type [Danvy 1996]

type term =
| Abs of string * term
| Var of string | App of term * term
| True | False | If of term * term * term

type types =
| Atom (* |Atom| = term *)
| Arrow of types * types (* |Arrow(T1,T2)| = |T1| -> |T2| *)
| Bool (* |Bool| = bool *)

(* up : (T:types)term(T)->|T| *)
let rec up tt t = match tt with
| Atom -> t
| Arrow (tt1,tt2) -> fun x -> up tt2 (App (t,down tt1 x))
| Bool -> shift (fun k -> If (t,k true,k false)

(* down : (T:types)|T|->term(T) *)
and down tt mt = match tt with
| Atom -> mt
| Arrow (tt1,tt2) -> let s = fresh () in

Abs (s,reset (down tt2 (mt (up tt1 (Var s)))))
| Bool -> if mt then True else False

23

Filinski [1994]: shift/reset can simulate all concrete monads in direct style
(the example of references)

The monad that simulates a reference of type S

T (A) = S → A× S

η = λx.λs.(x, s) : A → T (A)
∗ = λf.λx.λs.let (x, s) = x s in (f x s) : (A → T (B)) → T (A) → T (B)

The resulting encoding of read and write

read , λ().S(λk.λs.(k s s)) : unit→ S

write , λs.S(λk.λ_.(k () s)) : S → unit

The operators can be safely added to (call-by-value) classical logic preserving subject reduction. In general, if T is
atomic, normalisability is preserved. In the case of the state monad, T is functional and nothing prevents (a priori)
to derive a �xpoint.

24

Comparing shift and reset to the other operators

One can observe that reset behaves the same as ptry and that A behaves as raise. The correspondences are
as follows:

A t , S(λ_.t)

callcc (λk.t) , S(λk.k t[λx.A (k x)/k])

C (λk.t) , S(λk.t[λx.A (k x)/k])

ptry t , 〈t〉
raise t , A t

Conversely, shift can be macro-de�ned from callcc, A/raise and ptry/reset:

S(λk.t) , callcc (λk.A(t[λx.〈k x〉/k]))

The shift/reset calculus can hence be seen as the marriage between the ptry/raise calculus and the
callcc/throw calculus.
Warning: callcc, as it occurs in programming languages (that do have exceptions) captures the full continuation
and not just the delimited one. It is better to use the name K to denote the variant that captures the current
delimited continuation.

25

λµµ̂tp-calculus
(a �ne-grained shift/reset calculus)

The structural substitution, the presence of continuation variables and the distinction between commands and
terms make of λµ-calculus a good candidate for �nely analysing the shift/reset calculus.

Syntax

t ::= V | t t | µα.c | µ̂tp.c
c ::= [β]t | [tp]t
V ::= x | λx.t

Macro-de�nability

〈t〉 , µ̂tp.[tp]t
A t , µ_.[tp]t
S(λk.t) , µα.[tp](t[λx.µ̂tp.[α]x/k])

C(λk.t) , µα.[tp](t[λx.µ_.[α]x/k])

callcc(λk.t) , µα.[α](t[λx.µ_.[α]x/k])

The fourth combination µα.[α](t[λx.µ̂tp.[α]x/k]) has no name (to our knowledge), it is equivalent to S(λk.k t).

26

λµµ̂tp-calculus
(a �ne-grained shift/reset calculus)

Semantics

(βv) (λx.t) V → t[V/x]
(ηv) λx.(V x) → t if x not free in V

(µapp) (µα.c) u → µα.c[[α](� u))/α]
(µ′app) V (µα.c) → µα.c[[α](V �))/α]

(µvar) [β]µα.c → c[β/α] also if β is tp
(ηµ) µα.[α]t → t if α not free in t

(µ̂var) [tp]µ̂tp.c → c

(ηµ̂v) µ̂tp.[tp]V → V even if tp occurs in t

(let µ̂) µ̂tp.[β]((λx.t) µ̂tp.c) → (λx.µ̂tp.[β]t) µ̂tp.c
(letµ) (λx.µα.[β]t) u → µα.[β]((λx.t) u)
(letapp) (λx.t) u u′ → (λx.(t u′)) u

(let ′app) V ((λx.t) u) → (λx.(V t)) u

(ηlet) (λx.x) t → t

27

λµµ̂tp-calculus and types

There are several possible systems of simple types and they all depend on a toplevel type, say T . They assign the
following types to operators:

〈t〉 : T → T

A t : T → A

S(λk.t) : ((A → T) → T) → A

C(λk.t) : ((A → B) → T) → A

callcc(λk.t) : ((A → B) → A) → A

A Curry-Howard correspondence holds if the toplevel type T is taken to be⊥, in which case, we get types compatible
with Gri�n's seminal observations [1990] on Curry-Howard for classical logic.

〈t〉 : ⊥ → ⊥ (no logical content)
A t : ⊥ → A (ex falso quodlibet)
S(λk.t) : ((A → ⊥) → ⊥) → A (double negation elimination)
C(λk.t) : ((A → B) → ⊥) → A (an instance of it is double negation elimination)
callcc(λk.t) : ((A → B) → A) → A (Peirce law)

28

Part II

Observational (Böhm) completeness in (call-by-name) λµ-calculus

29

Failure of separability in call-by-name λµ-calculus

The original syntax of λµ-calculus:

t ::= x | λx.t | t t | µα.c

c ::= [α]t

Extending the call-by-name reduction semantics with η rules:

(β) (λx.t) u → t[u/x]
(η) λx.(t x) → t if x not free in t

(µapp) (µα.c) u → µα.c[[α](� u))/α]
(µvar) [β]µα.c → c[β/α]
(ηµ) µα.[α]t → t if α not free in t

David-Py [2001]: There exist two closed terms W0 and W1 in λµ-calculus that are not equal w.r.t. the equalities
β, η, µapp, µvar and ηµ but whose observational behaviour is not separable.

30

Success of separability in Saurin's λµ-calculus

A slightly di�erent syntax (originally from de Groote):

t ::= x | λx.t | t t | µα.t | [β]t

The same (apparent) reduction rules:

(β) (λx.t) u → t[u/x]
(η) λx.(t x) → t if x not free in t

(µapp) (µα.t) u → µα.t[[α](� u))/α]
(µvar) [β]µα.t → t[β/α]
(ηµ) µα.[α]t → t if α not free in t

But a major di�erence: t [β]µα.u → t (u[β/α]). We can get rid of µ what was not possible in the original
λµ-calculus (indeed the left-hand side is even not expressible).

Saurin [2005]: The modi�ed syntax of λµ-calculus with the equalities β, η, µapp, µvar and ηµ has the Böhm
separability property.

31

From Saurin's λµ-calculus to call-by-name λµµ̂tp-calculus

In Saurin's calculus, the syntactic distinction between terms and commands is lost, making di�cult to understand
it computationally (e.g. in an abstract machine, i.e. in λµµ̃-calculus).

The constructions µ̂tp and [tp] can be proved to be adequate coercions from Saurin's calculus to a calculus
well-suited for computation.

Macro-de�nition of Saurin's calculus on top of λµµ̂tp

µα.t , µα.[tp]t
[α]t , µ̂tp.[α]t

32

Call-by-name λµµ̂tp-calculus

(β) (λx.t) u → t[u/x]
(η) λx.(t x) → t if x not free in t

(µapp) (µα.c) u → µα.c[[α](� u))/α]
(µn

var) [β]µα.c → c[β/α] β 6= tp
(ηµ) µα.[α]t → t if α not free in t

(µ̂var) [tp]µ̂tp.c → c

(ηµ̂) µ̂tp.[tp]t → t even if tp occurs in t

Obviously, we have:

Proposition t = u in Saurin's λµ-calculus i� t = u in λµµ̂tp-calculus.

Corollary λµµ̂tp-calculus is observationally complete on �nite normal forms.

That the rules above are relevant for what can be considered as a call-by-name version of the shift/reset-calculus
can be seen from the operational semantics and from the continuation-passing-style semantics of call-by-name
λµµ̂tp-calculus.

33

Classi�cation of the reduction semantics of λµµ̂tp-calculus

the fundamental critical pair of computation
(λx.t) (µα.c)

↙ (CBV)
(βv) + (µ′app) + (ηµ̂v) + (ηv)

subsidiary choice
(λx.t) (µ̂tp.c)

(µ̂ not value) ↙ ↘ (µ̂ value)
shift/lazy reset shift/reset

(Sabry) (Danvy-Filinski)
cps-completion (Sabry) cps-completion (Kameyama-Hasegawa)

typed �domain�-completion (Sitaram-Felleisen)

(CBN) ↘
(β) + (ηµ̂) + (η)

subsidiary choice
[tp]µα.c

(tp co-value) ↙ ↘ (tp not co-value)
CBN shift/reset Λµ

(Danvy) (de Groote/Saurin)
Böhm-completion (Saurin)

34

Abstract machine for call-by-name λµµ̂tp-calculus

The language of the call-by-name abstract machine is an extension with explicit environments of the language
of λµµ̂tp. We need an extra constant of evaluation context that we write ε. It is de�ned by:

K ::= α[e] | t[e] ·K (linear ev. contexts)
[S] ::= [] | [tp = K; S] (dynamic environment)
[e] ::= [] | [x = t[e]; e] | [α = K; e] (environments)
s ::= c [e] [S] | t [e] K [S] (states)

35

Abstract machine for call-by-name λµµ̂tp-calculus (continued)
The evaluation rules can be split into two categories: the rules giving priority to the evaluation of context (commands of the form
[k]t [e] S) and the ones giving priority to the term (commands of the form t[e] K S). We write e(α) for the binding of α in e and
similarly for e(x).

Control given to the evaluation context

[tp]t [e] [tp = K; S] → t [e] K [S]
[α]t [e] [S] → t [e] α[e] [S]
[tp]t [e] [] → stop on [tp]t[e]

Control given to the term

x [e] K [S] → t [e′] K [S] if e(x) = t[e′]
x [e] K [S] → stop on S∗[K∗[x]] if x not bound in e
λx.t [e] K [S] → λx.t[e] K [S]
t u [e] K [S] → t [e] u[e] ·K [S]
µα.c [e] K [S] → c [α = K; e] [S]
µ̂tp.c [e] K [S] → c [e] [tp = K; S]

Control given to the �linear� evaluation context

λx.t[e] u ·K [S] → t [x = u; e] K [S]
λx.t[e] α[e′] [S] → λx.t [e] K [S] if e′(α) = K
λx.t[e] α[e′] [S] → stop on S∗[[α](λx.t[e])] if α not bound in e′

To evaluate t, we need a linear toplevel free variables distinct from tp (which is not linear). Let ε be this variables. Then, the machine
starts with the following initial state:

t [] ε[] []

Note: terminal states are de�ned by

[α]∗ = [α](�) []∗ = �
(t[e] ·K)∗ = K∗[� t[e]] [tp = K; S]∗ = [S]∗[µ̂tp.K∗]

36

Abstract machine for call-by-value λµµ̂tp-calculus

The language of the abstract machine is an extension with explicit environments of the language of λµµ̂tp. It is
de�ned by:

K ::= k[e] | t[e] ·K | µ̃x.(W x ·K) (ev. contexts)
[S] ::= [] | [tp = K; S] (dynamic environment)
W ::= V [e] (closure)
[e] ::= [] | [x = W ; e] | [α = K; e] (environments)
k ::= α | tp (ev. context variables)
s ::= W K [S] | t [e] K [S] (states)

37

Abstract machine for call-by-value λµµ̂tp-calculus (continued)
The evaluation rules can be split into two categories: the rules giving priority to the evaluation of context (commands of the form
W K S) and the ones giving priority to the term (commands of the form t[e] K S). We write e(α) for the binding of α in e and
similarly for e(x).

Control given to the evaluation context

W tp[e] [tp = K; S] → W K [S]
W tp[e] [] → stop on [tp]W
W α[e] [S] → W K [S] if e(α) = K
W α[e] [S] → stop on S∗[[α]W] if α not bound in e
W t[e] ·K [S] → t [e] µ̃x.(W x ·K) [S]
W µ̃x.(V [e] x ·K) [S] → V [e] W · K [S]

Control given to the term

V [e] K [S] → V [e] K [S]
t u [e] K [S] → t [e] u[e] ·K [S]
µα.[k]t [e] K [S] → t [α = K; e] k[α = K; e] [S]
µ̂tp.[k]t [e] K [S] → t [e] k[e] [tp = K; S]

Control given to the functional value

λx.t [e] W · K [S] → t [x = W ; e] K [S]
x [e] W · K [S] → V [e′] W · K [S] if e(x) = V [e′]
x [e] W · K [S] → stop on S∗[K∗[x W]] otherwise

To evaluate t, the machine starts with the following initial state:

t [] tp[] []

38

References

[1] Zena M. Ariola and Hugo Herbelin. Control Reduction Theories: The Bene�t of Structural Substitution.
Journal of Functional Programming, 2007. To appear.

[2] Zena M. Ariola, Hugo Herbelin and Amr Sabry. A type-theoretic foundation of delimited continuations. In
Higher-Order and Symbolic Computation, 2007. To appear.

[3] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Technical Report 89/12,
DIKU, University of Copenhagen, Copenhagen, Denmark, August 1989.

[4] Olivier Danvy and Andrzej Filinski. Abstracting Control. Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, Nice, pages 151�160, 1990.

[5] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker and Bruce F. Duba. Reasoning with continua-
tions. First symposium on logic and computer science, pages 131�141, 1986.

[6] Andrzej Filinski. Representing monads. In Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages (POPL '94), Portland, OR, USA, pages 446�457. January 1994.

[7] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In Logic
Programming and Automated Reasoning: International Conf. LPAR '92 Proceedings, pages 190�201, 1992.

[8] Amr Sabry. Note on axiomatizing the semantics of control operators. Technical Report CIS-TR-96-03,
Dept of Information Science, Univ. of Oregon, 1996.

[9] Alexis Saurin. Separation with streams in the λµ-calculus. In Proceedings, 20th Annual IEEE Symposium
on Logic in Computer Science (LICS '05), pages 356�365. IEEE Computer Society Press, 2005.

39

