The hidden exception handler of Parigot's Apu-calculus and its
completeness properties

Observationally (Bohm) complete

1

Saurin’s extension of Ap-calculus = call-by-name Danvy-Filinski shift-reset “calculus”

!

call-by-value version complete for representing syntactic monads
(exceptions, references, ...)



Contents

A tour of computational classical logic

- callcc vs try-with

- Operational semantics: the need for tp

- Felleisen A¢-calculus and Parigot Ap-calculus
- Curry-Howard and classical logic

- Danvy-Filinski shift/reset calculus vs extending Ay with (pure) try

Bohm completeness

- David-Py incompleteness of Au-calculus vs Saurin’s observational completeness

- Saurin’s calculus = call-by-name Ay + pure try = call-by-name shift/reset calculus



Part |

Computing with classical logic

(a tour of callcc, A, C, try-with/raise, shift/reset, u, 4, ...)



Computing with callcc and ptry

exception Result of int

let product 1 =

try
let rec aux = function
| T[] > 1
| 0 :: 1 -> raise (Result 0)

| n :: 1

in aux 1
with

Result n -> n

->n * aux 1

ptry sets a marker and an associated handler
in the evaluation stack and raise jumps to
the nearest enclosed marker.

12

let product 1 =
callcc (fun k =>
let rec aux = function

| [] > 1

| 0 :: 1 -> throw k O
| n :: 1 ->n % aux 1
in aux 1)

callcc memorises the evaluation stack and
throw restores the memorised evaluation
stack



ptry binds raise dynamically

exception Result of int

let product 1 =
try

let rec aux = function
| T[] > 1
| 0 :: 1 -> raise (Result 0)
| n :: 1 ->n * aux 1
in aux 1
with

Result n ->

exception Result of int

let product 1
let rec aux
| [] ->
| 0 :: 1 >
|l n:: 1 >
in
try

aux 1
with

Result n -

function

1

raise (Result 0)
n * aux 1

> n



callcc binds its corresponding throw statically

let product 1 = let product 1

callcc (fun k => let rec aux = function
->
let rec aux = function | [ 1
| [] > 1 | 0 :: 1 -> throw k 0
| 0 :: 1 -> throw k O # ! n :: 1 ->1n % aux 1
| n:: 1 ->n % aux 1 in
in aux 1) callcc (fun k => aux 1)

which is syntactically ill-formed!



A primitive form of try-with: ptry

Syntax
t u= V |tt|raiset|ptryt (terms)
V o= x| At (values)
F == 0O|FVO|FOt| Flraise [ (local evaluation contexts)
E == O] Elptry F] (global evaluation contexts)
Operational Semantics (aka weak-head reduction)
E[(Ax.t) u] —  Eltlu/z]]
Elptry Flraise V]| — E[V]
Elptry V] ElV]
Simulation of ptry/raise from Ocaml’s try-with/raise
raiset 2 raise (Exc t)
ptryt 2 trytwithExcor — x
Simulation of OCaml’s try-with/raise from ptry/raise
raiset £ raiset
A

trytwith Ez — u match (ptry (Val ¢t)) withValax — x | Fx — ul|e — raisee



Typing callcc/throw and ptry/raise

(standard presentation)

['k:cont AFt: A ['k:cont AFt: A

['Fcallcc (funk — t): A T'k:cont A throwkt: B

I'Ft:exn ['Ft:exn
['Fptryt:exn ['Fraiset: B




Typing callcc/throw and ptry/raise

(generalising the type of exceptions)

['k:cont AFt: A ['k:cont AFt: A

['Fcallcc (funk — t): A T'k:cont A throwkt: B

'Ft: A 'Ft: A
Fptryt: A I'Fraiset: B




Typing callcc/throw and ptry/raise

(naming the dynamic ptry continuation)

['k:cont AFt: A ['k:cont AFt: A

['Fcallcc (funk — t): A T'k:cont A throwkt: B

['tp:cont AFt: A ['tp:cont AFt: A
I Fptrygpt: A [',tp:cont At raisetp?: B

10



Typing callcc/throw and ptry/raise

(naming the dynamic ptry continuation)

['k:cont AFt: A ['k:cont AFt: A
['F callcc (funk — t): A ['k:cont AF throw kt: B

['tp:cont AFt: A ['tp:cont AFt: A
I',tp : cont T'F ptrygp ¢ A [',tp:cont At raisetp?: B

Generalisation of the type of ptry needs type effects on arrows to ensure the type correctness of dynamic
binding:

Itp:cont THt: A—r B [tp:cont THu: A I'z:B,tp:cont THt:C
['tp:cont THtu:B I'tp:cont UF Azt : B —p C

Nz:Atp:contTHx: A

11



Simple types: callcc is more expressive than ptry
(computing with infinity)

E.g. proof of Vf : (nat — bool) 3b: bool Vm dn >n f(m)=1>0

let pseudo_decide_infinity f =
callcc (fun k -> (true, fun ml ->
callcc (fun k1 -> throw k (false (fun m2 ->
callcc (fun k2 ->
let n = max ml m2 in
if £ n then throw k1 n else throw k2 n))))))

This is executable in SML, Objective Caml (and Scheme).

Any program whose result is a non-functional value and that uses pseudo_decide_infinity will yield a (correct)
result.

Each call to throw will induce backtracking on the progress of the program that uses pseudo_decide_infinity.

12



Simple types: callcc is more expressive than ptry
(drinkers’ paradox)

E.g. proof of VP : (human — Prop) Jx : human Vy : human, P x — Py

(* drinkers : human * (human -> ’a -> ’a)
let drinkers =
callcc (fun k -> (adam, fun y px ->
callcc (fun k’> -> throw k (y, fun y’ py -> throw k’ py))))

13



Simple types: ptry is more expressive than callcc

Derivation of a fixpoint using exceptions of functional type:

type dom = unit -> unit

(* lam : (dom -> dom) -> dom *)
let lam f = fun () -> raise f

(* app : dom -> dom -> dom *)
let app t u = (ptry (et ) =t ) in t)) u

(x delta : dom *)
let delta = lam (fun x -> app X x)

(* omega : dom *)

let omega = app delta delta

Typing ptry shows that it raises exceptions of type dom = unit —gon unit which is a recursive type.

14



Which possible Curry-Howard interpretation for ptry/raise”

How to interpret type effects in the logical framework?
Use a canonical type effect? Use L7
Type ptry/raise with the rules

['tp:cont L FH1t:_L I'tp:cont L FHt¢:_L

['tp: cont 1 F ptrytp ¢ L I',tp:cont LI raisetpt: B

15



The Curry-Howard interpretation for callcc

We have Az.callcc(Ak.z k) : (A — B) — A) — A which corresponds to Peirce law

Minimal logic + Peirce law is called minimal classical logic

A-calculus 4+ callcc and its reduction semantics corresponds to minimal classical logic

16



The hidden toplevel of callcc operational semantics

# let y = callcc (fun k -> fun x -> throw k (fun y -> x+y));;
val y : int -> int = <fun>

#y 3;;

val y : int -> int = <fun> (x !!!I! %)

The reason is that the continuation of the definition of 3 is “print the value of y". Let’s call it k.
The value of y is fun x -> throw ky (fun y -> x+y).
When vy is applied, throw is called and it returns to k.

Conventionally, this semantics is expressed using an abortion operator A which itself hides a call to the toplevel

continuation.

17



Intermezzo: Felleisen’s C operator

Motivated by the possibility to reason on operators such as callcc in Scheme, Felleisen et al introduced the C
operator.

Syntax

t = x| Axt|tt|C(Ak.T)

C is equivalent to the combination of callcc and A.

C(Ak.t) = callcc(Ak.At)

callcc(Ak.t) = C(\k.kt)
At =C(A_.t)

Remark: in C(A\k.t), “Ak." is part of the syntax. Alternative equivalent definitions of the language are

t = x| xt|tt|Ct
or
t = x| Axt|tt|C

18



Parigot's Ap-calculus
(minimal version)

Use special variables «, 8 for denoting continuations.

Syntax
t == V|tt] pac (terms)
c == [0t (commands or states)
Vo= o et (values)

Use structural substitution for continuations:

Elpo.c] — pa.cllo] E/[a]0]

More concisely:

Elpa.c] — pa.clla]E/af

19



Parigot's Ap-calculus
(expressing callcc)

callcc is approximable:

callcc(Ak.(... kt ...)) >~ pk.[k](... [k]t ...)

In fact, the actual operational semantics of callcc is:
FElcallcc(Ak.t)] — t] x. A(E[x])/kK] (%)

The previous approximation of callcc is “too efficient” compared to the actual semantics (such as implemented
in Scheme). The correct simulation, in Scheme, is

callcc = \z.ua.[a](z Av.p_.[a]x)
which corresponds to an operator of reification of the evaluation context as a function.

Yet, the full semantics of callcc above requires A and Ap-calculus is not strong enough to express it. Especially,
it is not strong enough to simulate the capture of the toplevel continuation performed by the toplevel rule (x)
above.

20



Parigot's Ap-calculus
(adding a denotation for the toplevel continuation)

Syntax
t == V|tt|pa.c (terms)
c == [f]t]|[tp]t  (commands or states)
Vo= x|t (values)

The operator A can now be expressed: A £ \z.u_.[tp]x and the toplevel reduction rule of callcc gets simulable:

[tp] Flcallcc(Ak.t)] = [tp]E[(Az.pa.a](z Az.pu_.[a]x)) Ak.t]
s
[tp] Eft[Az. A(E[z])/K]] = [tp] Elt[Az.u_ [tp] Elx]/k]

Ap-calculus extended with tp can faithfully simulate callcc or Felleisen's A¢-calculus. Moreover, it

- is able to substitute continuations directly as evaluation contexts

- allows notations for continuation constants

- is able to express states of abstract machine (tp plays the role of the bottom of the stack)

- has nice reduction and operational properties (almost as nice as Auji!) [Ariola-Herbelin 2007]

An example of “inefficiency” in call-by-value:

let loop() = callcc(Mk.k(loop())) : loop () — (M. Az) (loop()) — (Az.Az) (Azx.Ax) (loop())) — ...
let loop() = pk.[k](loop()) : [tp](foop ()) — [tp]loop () — [tp](loop () — ..

21



Danvy and Filinski’'s shift and reset [1989]

The operator reset locally “resets’ the toplevel and delimits the current continuation of a computation.
The operator shift captures the current delimited continuation and composes it with the continuation at the
places it is invoked.

Syntax
t = Vtt | S(Ak.t) | (t) (terms)
Vo= x| At (values)
FO == 0O| F[V O] | F|O ¢ (local ev. contexts)
EO == O] FE[resetF] (global ev. contexts)

Historically, the semantics of shift/reset was defined by continuation-passing-style translation (CPS). Its oper-
ational semantics is now well established.

Operational Semantics

E[(Az.t) u] — Elt[u/z]]
BRSOk — Elt[Az(Flz]) /)]
El(V)] — ElV]

22



Application: normalisation by evaluation with boolean type [Danvy 1996]

type term =

| Abs of string * term

| Var of string | App of term * term

| True | False | If of term * term * term

type types =

| Atom (* |Atom]| = term *)
| Arrow of types * types (* |Arrow(T1,T2)| = [T1| -> [T2| *)
| Bool (* |Bool] = bool *)
(x up : (T:types)term(T)->|T| *)

let rec up tt t = match tt with

| Atom >t

| Arrow (ttl,tt2) -> fun x -> up tt2 (App (t,down ttl x))

| Bool -> shift (fun k -> If (t,k true,k false)

(* down : (T:types)|T|->term(T) *)
and down tt mt = match tt with
| Atom -> mt
| Arrow (ttl,tt2) -> let s = fresh () in
Abs (s,reset (down tt2 (mt (up ttl (Var s)))))
| Bool -> if mt then True else False

23



Filinski [1994]: shift/reset can simulate all concrete monads in direct style
(the example of references)

The monad that simulates a reference of type S

T(A) = S—AxS
AT As.(z, 5) A —T(A)
* = AfAr.As.let (z,s) =z sin(fxs) : (A—T(B)) —T(A) — T(B)

3
I

The resulting encoding of read and write

read

A).S(AkAs.(k s s)) : unit — S
As.S(AkA_(k()s)) : S— unit

A
. A
write =

The operators can be safely added to (call-by-value) classical logic preserving subject reduction. In general, if T"is
atomic, normalisability is preserved. In the case of the state monad, 7" is functional and nothing prevents (a priori)
to derive a fixpoint.

24



Comparing shift and reset to the other operators

One can observe that reset behaves the same as ptry and that A behaves as raise. The correspondences are
as follows:

At 2 S(A_.t)

callcc (Mk.t) & S(Ak.k thx.A(k z)/k])
C (Mk.t) 2 SOkt Ak 2)/k])
ptry ¢ 2 (t)

raise t = At

Conversely, shift can be macro-defined from callcc, A/raise and ptry/reset:

S(Ak.t) callcc (Ak.A(t[Ax.(k z)/k]))

The shift/reset calculus can hence be seen as the marriage between the ptry/raise calculus and the
callcc/throw calculus.

Warning: callcc, as it occurs in programming languages (that do have exceptions) captures the full continuation
and not just the delimited one. It is better to use the name X to denote the variant that captures the current
delimited continuation.

25



Appitp-calculus

(a fine-grained shift/reset calculus)

The structural substitution, the presence of continuation variables and the distinction between commands and
terms make of A\u-calculus a good candidate for finely analysing the shift/reset calculus.

Syntax

t == V|tt|pa.c|ptp.c

¢ = [t ] [tp]t

V o= x| et

Macro-definability

(t) = Jitp.[tp]t
At = u_[tp]t
S(\k.t) 2 potp](t[ A Litp. [a]z /K])
C(\k.t) % poctp](tHAz.p_ o]z /k])

callcc(Ak.t) pofal(tAe. o]z /k])
The fourth combination pa. [a](t[Az.1itp.[a]x /k]) has no name (to our knowledge), it is equivalent to S(Ak.k t).

26



Appitp-calculus

(a fine-grained shift/reset calculus)

Semantics
(Ax.t)V — t[V/x]
Ax.(V x) — if  not free in V
(nev.c) u — pecl[a)(0 u)) /o]
V (ua-c) — paccla)(V D))/o]
[Blpc.c — c[B/a] also if 3 is tp
pa|alt — t if o not free in ¢
tplfitp.c S
utp.[tp]V — V even if tp occurs in ¢
o (8O fitp.c) — (- tp[B1) fitp.c
(A []t) u — pe[F]((Az.t) u)
(Ax.t)uu — (Az.(tu))u
V ((Az.t) u) — (M. (Vi) u
(Ax.x)t — t

27



Appitp-calculus and types

There are several possible systems of simple types and they all depend on a toplevel type, say T'. They assign the
following types to operators:

(t) . T —T
At T — A
S(\k.1)  (A—=T)—T)— A
C()\k.t) : ((A — B)—=T)— A

callcc(Akt) : (A—B)—A) — A

A Curry-Howard correspondence holds if the toplevel type T is taken to be _L, in which case, we get types compatible
with Griffin's seminal observations [1990] on Curry-Howard for classical logic.

(t) 1l -1 (no logical content)

At 1A (ex falso quodlibet)

S(Ak.t) : ((A— 1) — 1) — A (double negation elimination)

C(\k.t) : ((A— B) — 1) — A (an instance of it is double negation elimination)
callcc(Mk.t) @ ((A— B)— A) — A (Peirce law)

28



Part |l

Observational (Bohm) completeness in (call-by-name) Ap-calculus

29



Failure of separability in call-by-name Ap-calculus

The original syntax of Au-calculus:
= x| Azt | tt | pa.c

c == |at

Extending the call-by-name reduction semantics with 7 rules:

(B Mxt)u — tu/z]
(1) Ar.(tw) — t if  not free int

(Happ) (pec)u — pocl[a](00u))/af
(Hoar)  [Blpar.c c[f/a]

_
(ny)  pojaft — t if o not free in ¢

David-Py [2001]: There exist two closed terms Wy and Wy in Ap-calculus that are not equal w.r.t. the equalities
B, M, Wapp, Moar and 1, but whose observational behaviour is not separable.

30



Success of separability in Saurin’s Ap-calculus

A slightly different syntax (originally from de Groote):

t o= x| dxt|tt|pat| Bt

The same (apparent) reduction rules:

(6) Ar.t)u — tu/x]
(1) Ax.(tx) — t if x not free in t

(o) (pat)u — potl[a](0 u))/al
(oar) ot — t[3/a]

N
(W) M@-[Oé]t — 1 if & not free int

But a major difference: ¢ [Blua.u — t(u[G/a]). We can get rid of p what was not possible in the original
Ap-calculus (indeed the left-hand side is even not expressible).

Saurin [2005]: The modified syntax of Au-calculus with the equalities 3, 1, fapp, ftvar and 7, has the Bohm
separability property.

31



From Saurin’s Ap-calculus to call-by-name Apujitp-calculus

In Saurin’s calculus, the syntactic distinction between terms and commands is lost, making difficult to understand
it computationally (e.g. in an abstract machine, i.e. in Auji-calculus).

The constructions jitp and [tp] can be proved to be adequate coercions from Saurin's calculus to a calculus
well-suited for computation.

Macro-definition of Saurin’s calculus on top of Aujitp

puov.[tplt
utp.[a]t

paot
o]t

>l

32



Call-by-name Apptp-calculus

(08) Axt)u — tu/x]

(n) Ae.(tx) — ¢ if 2 not free in t
(app) (pa.c)u —  poclla](0 uw))/af

(Hyar)  [Blpa.c — c[B/a] B # tp

(ny) pajaft — t if o not free int
(o) [tolfitpc — c

(na)  mtpftplt — ¢ even if tp occurs in t

Obviously, we have:
Proposition ¢ = wu in Saurin’s Au-calculus iff ¢ = u in Aupitp-calculus.
Corollary Apjpitp-calculus is observationally complete on finite normal forms.

That the rules above are relevant for what can be considered as a call-by-name version of the shift/reset-calculus
can be seen from the operational semantics and from the continuation-passing-style semantics of call-by-name
Apjitp-calculus.

33



Classification of the reduction semantics of Aptp-calculus

the fundamental critical pair of computation
(Az.t) (pnacc)

/" (CBV)
(6@) + (:u/app) + (nﬁv) + (777))

subsidiary choice
(Ax.t) (utp.c)
\, (fi value)
shift/reset
(Danvy-Filinski)

cps-completion (Kameyama-Hasegawa)

(7 not value)
shift/lazy reset

(Sabry)

cps-completion (Sabry)

typed “domain”-completion (Sitaram-Felleisen)

34

(CBN) \
(B) + (mp) + ()

subsidiary choice

[tp]par.c

(tp co-value) \, (tp not co-value)
CBN shift/reset Ap

(Danvy) (de Groote/Saurin)

BShm-completion (Saurin)



Abstract machine for call-by-name Apjitp-calculus

The language of the call-by-name abstract machine is an extension with explicit environments of the language
of Aupitp. We need an extra constant of evaluation context that we write €. It is defined by:

K == aole]|tle]- K (linear ev. contexts)
[S] == []][tp = K; 5] (dynamic environment)
le] == []|[x=tle];e] | [a= K;e] (environments)

s = clel [S]]|t]e] K[9] (states)

35



Abstract machine for call-by-name Apjitp-calculus (continued)

The evaluation rules can be split into two categories: the rules giving priority to the evaluation of context (commands of the form
[k]t [e] S) and the ones giving priority to the term (commands of the form t[e] K S). We write e(«) for the binding of « in e and
similarly for e(z).

Control given to the evaluation context

tplt [e] [tp=K;S] — t [ K [5]
[a]t [e] [9] — t le] ale] [9]
tplt [e] [] — stop on [tp]t[e]

Control given to the term

x e] K [S] — t €] K [S] if e(z) = t[e]

x le] K [S] — stopon S*[K*[z]] if z not bound in e
Ax.t [e] K [S] — Aa.tle] K [S]

tu e] K [S] — t le] ule] - K [S]

pa.c el K [S] — ¢ [a=K;e] [9]

patp.c le] K [S] — ¢ le] [tp = K; 5]

Control given to the “linear” evaluation context

Ar.tle]  u-K [S] — t [z = u;e] [S]

Axtle]  ale] [S] — Azt [ [S] if€(a) =K

Ax.tle]  ale/] [S] — stop on S*[[a](Az.tle])] if a not bound in €
To evaluate ¢, we need a linear toplevel free variables distinct from tp (which is not linear). Let € be this variables. Then, the machine
starts with the following initial state:

K
K

t[]el]]]

Note: terminal states are defined by

(tle] - K)* = K*[0 te]] [tp = K51 = [S]"[utp. K~]

36



Abstract machine for call-by-value Appitp-calculus

The language of the abstract machine is an extension with explicit environments of the language of Auputp. It is
defined by:

K == kle] |tle]- K| px.(W x - K) (ev. contexts)

(S] == []][tp=K; 9] (dynamic environment)
W = Ve (closure)

le] == []|[x=W;e]||a= K;e] (environments)
k== altp (ev. context variables)
s == WKI[S]|t]e] K9] (states)

37



Abstract machine for call-by-value Apitp-calculus (continued)

The evaluation rules can be split into two categories: the rules giving priority to the evaluation of context (commands of the form
W K S) and the ones giving priority to the term (commands of the form tle] K S). We write e(«) for the binding of « in e and
similarly for e(z).

Control given to the evaluation context

W tple] tp=K;S] — W K [S]
W tple] [ — stop on [tp]W
W ale] [S] — W K [S] if e(a) =K
W ale [S] — stop on S*[[a|W] if & not bound in e
W tle] - K [S] — t e px. (W x-K) [9]
W gz (Vle] - K) [S5] — V e W . K [S]
Control given to the term
vV le] K [S] — V] K [S]
tu le] K [S] — ¢ €] ule] - K [S]
poclklt le] K [S] — ¢t la=K;e] kla=K;e] [9]
ptp-[k]E fe] K [S] — &[] kle] [tp = K 5]
Control given to the functional value
Axt [e] W - K [S] — t [x=W;e] K [9]
x le] W - K [S] — V [¢] w . K [S] if e(z) = Ve
x le] W - K [S] — stopon S*[K*[z W]] otherwise

To evaluate ¢, the machine starts with the following initial state:

t[]te[][]

38



References

[1] Zena M. Ariola and Hugo Herbelin. Control Reduction Theories: The Benefit of Structural Substitution.
Journal of Functional Programming, 2007. To appear.

[2] Zena M. Ariola, Hugo Herbelin and Amr Sabry. A type-theoretic foundation of delimited continuations. In
Higher-Order and Symbolic Computation, 2007. To appear.

[3] Olivier Danvy and Andrzej Filinski. A functional abstraction of typed contexts. Technical Report 89/12,
DIKU, University of Copenhagen, Copenhagen, Denmark, August 1989.

[4] Olivier Danvy and Andrzej Filinski. Abstracting Control. Proceedings of the 1990 ACM Conference on
LISP and Functional Programming, Nice, pages 151-160, 1990.

[5] Matthias Felleisen, Daniel P. Friedman, Eugene Kohlbecker and Bruce F. Duba. Reasoning with continua-
tions. First symposium on logic and computer science, pages 131-141, 1986.

[6] Andrzej Filinski. Representing monads. In Conf. Record 21st ACM SIGPLAN-SIGACT Symp. on Principles
of Programming Languages (POPL '94), Portland, OR, USA, pages 446-457. January 1994.

[7] Michel Parigot. Lambda-mu-calculus: An algorithmic interpretation of classical natural deduction. In Logic
Programming and Automated Reasoning: International Conf. LPAR '92 Proceedings, pages 190-201, 1992.

[8] Amr Sabry. Note on axiomatizing the semantics of control operators. Technical Report CIS-TR-96-03,
Dept of Information Science, Univ. of Oregon, 1996.

[9] Alexis Saurin. Separation with streams in the Ap-calculus. In Proceedings, 20th Annual IEEE Symposium
on Logic in Computer Science (LICS '05), pages 356-365. IEEE Computer Society Press, 2005.

39



