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Talk based on the paper On the logical structure of choice and bar induction principles,
LICS’21, with a few refinements
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Standard results about the axiom of choice

Reverse Math in Set Theory
(e.g. Jech, Rubin & Rubin, Herrlich)

Reverse Math in Constructive Arithmetic
(e.g. Kleene, Kreisel, Troelstra, Ishihara, Berger)

Reverse Math in subsystems of 2nd order Arithmetic
(e.g. Simpson)

ACABR

BPI
UF

Compl

DCserial [Bernays]
DCspread [Lévy]
ZLω [Wolk]

WKL
Complω

BI

WFTind [Coquand]
WFTstaged [Ishihara]
FTuniform [Brouwer]

BPI = Boolean Prime Ideal Theorem
UF = Ultrafilter Theorem
AC = Axiom of Choice
DC = Axiom of Dependent Choice
WKL = Weak Kőnig’s Lemma

ZLω = Countable Zorn’s Lemma
BI = Bar Induction
(W)FT = (Weak) Fan Theorem
Compl = Gödel’s Completeness Theorem

LEM

LEM
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Use logical duality as guiding classification principle:

choice principles bar induction principles
ill-foundedness properties barredness properties

considered as extensionality schemes

effective ⇒ observational observational ⇒ effective
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Different definitions of well-founded tree

5



An intrinsically well-founded definition of tree

A simple “effective” definition: well-founded tree as an inductive type
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Inductive wftree :=
| leaf : wftree
| node : (B → wftree) → wftree
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Trees (and their negative) as predicates

Let B be a domain and u ranges over the set B∗ of finite sequences of elements of B.
We write ⟨⟩ for the empty sequence and u ⋆ b for the extension with one element. We
define:

T is a tree T is monotone

(closure under restriction) (closure under extension)

∀u∀a (u ⋆ a ∈ T ⇒ u ∈ T ) ∀u∀a (u ∈ T ⇒ u ⋆ a ∈ T )
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From trees as inductive types to trees as predicates

To any inductively-defined tree t, we can associate a tree-as-predicate t# by recursion on
t as follows:

u ∈ leaf# ≜ ⊥
u ∈ node(f )# ≜ u = ⟨⟩ ∨ ∃a∃u′ (u = a@u′ ∧ u′ ∈ f (a)#)
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Two characterisations of a well-founded tree-as-predicate
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Effective characterisation of a well-founded tree-as-predicate

T has an inductive skeleton

∃t : wftree (T = t#)

which can be bundled into

T inductively well-founded is short for inductively well-founded at ⟨⟩ ∈ A∗

T inductively well-founded at u holds when:

• u /∈ T

• or, recursively, for all a, T is inductively well-founded at u ⋆ a

10



Effective characterisation of a well-founded tree-as-predicate

T has an inductive skeleton

∃t : wftree (T = t#)

which can be equivalently bundled into

T inductively well-founded is short for inductively well-founded at ⟨⟩ ∈ A∗

T inductively well-founded at u holds when:

• u /∈ T

• or, recursively, for all a, T is inductively well-founded at u ⋆ a
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Observational characterisation of a well-founded tree-as-predicate

T observationally well-founded

∀β ∈ N → B. ∃n ∈ N. ¬T (β|n)
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Two characterisations of a well-founded tree-as-predicate

• From the “effective” representation of a well-founded tree we can always construct
a predicate that is an “observational” representation of the tree

• To conversely obtain an effective representation of a tree T from its observational
representation requires an axiom:

Tobservationally well-founded =⇒ T inductively well-founded
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Bar Induction

If instead we build the negative of a tree-as-predicate and restate well-foundedness on the
negative tree, one obtain bar induction:

• T inductively well-founded is the same as ¬T inductively barred

• T observationally well-founded is the same ¬T barred

• Bar Induction says that for a type B and a tree T ,

T barred︸ ︷︷ ︸
observational

=⇒ T inductively barred︸ ︷︷ ︸
effective
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Dually: ill-foundedness

Dually, ill-foundedness of a tree T can be defined in different ways.

Let us concentrate on the finite-branching case. We have:

Effective view

T is staged infinite ≜ ∀n∃u |u| = n ∧ u ∈ T

Observational view

T has an infinite branch ≜ ∃α ∀u ≤ αT (u)

Weak Kőnig’s Lemma connects the two views (when B is Bool):

WKLT ≜ T is staged infinite ⇒ T has an infinite branch
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Observation: a diversity of definitions for the “effective” versions of
“barred”/“well-founded” and “ill-founded”

Kőnig’s Lemma: T is staged infinite ⇒ T has an infinite branch (B finite)

CWKL: T is a spread ⇒ T has an infinite branch (J. Berger, B = Bool)

Fan Theorem: T barred ⇒ T uniformly barred (B finite, Brouwer)

Fan Theorem: T barred ⇒ T staged barred (B finite, Ishihara)

- having an infinite branch is the exact dual to barred

- the dual of inductively barred is equivalent to the existence of a spread subset

- being staged infinite is dual to uniformly barred up to asking for T to be a tree

- uniformly barred and having unbounded paths are respectively intuitionistically and
cointuitionistically equivalent to inductively barred and its dual productive for finitely-
branching trees
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Giving a name to these definitions

T is progressing1 at u T is hereditary at u

u ∈ T ⇒ (∃a u ⋆ a ∈ T ) (∀a u ⋆ a ∈ T ) ⇒ u ∈ T

T is progressing1 T is hereditary
∀u (T is progressing at u) ∀u (T is hereditary at u)

used in Kőnig’s Lemma

used in CWKL

Dual concepts on dual predicates
ill-foundedness barredness-style

Effective concepts (finite-branching only)
T has unbounded paths T is uniformly barred
∀n ∃u (|u| = n ∧ ∀v (v ≤ u ⇒ v ∈ T )) ∃n∀u (|u| = n ⇒ ∃v (v ≤ u ∧ v ∈ T ))

T is staged infinite1 T is staged barred1

∀n ∃u (|u| = n ∧ u ∈ T ) ∃n∀u (|u| = n ⇒ u ∈ T )

Effective concepts (arbitrary branching)
T is a spread T is barricaded1

⟨⟩ ∈ T ∧ T progressing T hereditary ⇒ ⟨⟩ ∈ T

T is productive T is inductively barred
⟨⟩ ∈ νX.λu.(u ∈ T ∧ ∃b u ⋆ b ∈ X) ⟨⟩ ∈ µX.λu.(u ∈ T ∨ ∀b u ⋆ b ∈ X)

Observational concepts
T has an infinite branch T is barred
∃α ∀u (u initial segment of α ⇒ u ∈
T )

∀α ∃u (u initial segment of α ∧ u ∈ T )

used in Fan Theorem

alt. used in Fan Theorem

used in Bar Induction

1Not being aware of an established terminology for this concept, we use here our own terminology.
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Giving the central rôle to inductively barred and its dual

We focus on the definition of the dual of inductively barred and on its dual productive.
In full:

T is productive (short for productive from ⟨⟩ ∈ B∗)

T productive from u ∈ B∗ holds when:

• u is in T

• and, recursively, there is b ∈ B such that T productive from u ⋆ b
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Giving the central rôle to inductively barred and its dual

Bar induction (BIBT )

T barred ⇒ T inductively barred

Tree-Based Dependent Choice (DCprod
BT )

T productive ⇒ T has an infinite branch
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Recovering standard principles

WKLT ⇐⇒ DCprod
BoolT up to classical (actually co-intuitionistic) reasoning

WFTT ⇐⇒ BIBoolT up to intuitionistic reasoning

DCserial
BRb0

⇐⇒ DCprod
BR▷(b0)

where

u ∈ R▷(b0) ≜ case u of


⟨⟩ 7→ ⊤
b 7→ R(b0, b)

u′ ⋆ b ⋆ b′ 7→ R(b, b′)


DCserial

BRb0
≜ ∀b∃b′R(b, b′) ⇒ ∃α (α(0) = b0 ∧ ∀n R(α(n), α(n + 1)))
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Relaxing the sequentiality

Let A and B be domains. Let now use v to range over the set (A×B)∗ of finite sequences
of pairs of elements in A and B.

We say (a, b) ∈ v if (a, b) is one of the components of v.

We write v ≤ v′ is v is included in v′ when seen as sets.

For v ∈ (A×B)∗, we write dom(v) for the set of a such that there is some b such that
(a, b) ∈ v.

If α ∈ A → B, we write v ≺ α and say that v is a finite approximation of α if α(a) = b
for all (a, b) ∈ v.

Let T be a predicate on (A × B)∗. We write ↓T and ↑T to mean the following inner
and outer closures with respect to ≤:

v ∈↓T ≜ ∀v′ ≤ v (v′ ∈ T )

v ∈↑T ≜ ∃v′ ≤ v (v′ ∈ T )
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Relaxing the sequentiality (effective view)

T inductively A-B-barred from v ∈ (A×B)∗ holds when:

• v is in the outer closure of T

• or, recursively, there exists a /∈ dom(v) such that for all b ∈ B, T is inductively
A-B-barred from v ⋆ (a, b)

T coinductively A-B-approximable from v ∈ (A×B)∗ holds when:

• v is in the inner closure of T

• and, recursively, for all a /∈ dom(v), there is b ∈ B such that T is coinductively
A-B-approximable from v ⋆ (a, b)
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Relaxing the sequentiality (observational view)

T A-B-barred if ∀α ∈ A → B ∃v ≺ α (v ∈ T )

T has an A-B-choice function if ∃α ∈ A → B ∀v ≺ α (v ∈ T )
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This leads to the following generalisation

Generalised Bar Induction (GBIABT )

T A-B-barred︸ ︷︷ ︸
observational

=⇒ T A-B-inductively barred︸ ︷︷ ︸
effective

Generalised Dependent Choice (GDCABT )

T coinductively A-B-approximable︸ ︷︷ ︸
effective

=⇒ T has an A-B-choice function︸ ︷︷ ︸
observational
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Results justifying the generalisation

GBINBT ⇐⇒ BIBT

GDCNBT ⇐⇒ DCprod
BT

Actually, GBIABT and GDCABT could be further generalised into schemes GBIABT≤ and
GDCABT≤ such that instantiating the order with the prefix order on approximations of
N → B gives BIBT and DCprod

BT while instantiating the order with the inclusion order gives
GBIABT and GDCABT .
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The Boolean Prime Ideal Theorem

The specialisation to Bool of the generalisation also captures the Boolean Prime Ideal
Theorem.

Let (B,∨,∧,⊥,⊤,¬,⊢) be a Boolean algebra and I an ideal on B. We extend I on
(B × Bool)∗ by setting u ∈ I+ if (

∨
(b,0)∈u¬b) ∨ (

∨
(b,1)∈u b) ∈ I . We have:

GDCBBoolI+ ⇐⇒ BPIB,I
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The full axiom of choice

Let ACABR be ∀aA ∃bB R(a, b) ⇒ ∃αA→B ∀aAR(a, α(a))

Define the positive alignment R⊤ of R by

R⊤ ≜ λu.∀(a, b) ∈ uR(a, b)

Then, ACABR arrives as the instance GDCABR⊤
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Strength of the generalisation

Without further restrictions, GDC and GBI are inconsistent:

• Take A ≜ N → Bool

• Take B ≜ N

• Define T so that it constrains a choice function to be injective:

v ∈ T ≜ ∀ff ′n, ((f, n) ∈ v) ∧ ((f ′, n) ∈ v) ⇒ f = f ′

Then, in the case of GDC, a coinductive A-B-approximation can always be found but
an A-B-choice function would be an injective function from N → Bool to N, what is
inconsistent.
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A consistent restriction

A naive restriction is to require that:

• either A is countable

• or B is finite

• or T is atomic (or unary), meaning for all u and v:

– in the ill-founded case u ∈ T ∧ v ∈ T ⇒ u ∪ v ∈ T

– in the barred case u ∪ v ∈ T ⇒ u ∈ T ∨ v ∈ T

The restriction preserves the previous instantiations and makes GDC equivalent to AC
since it implies AC, and, conversely, each of its three restrictions is implied by a conse-
quence of AC.

Dually for GBI.
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Summary of main results

ACABR ≜ GDCABR⊤

BPIAI ≜ GDCABoolTI
Compl−AT ≜ GDCABoolT C

Compl+AT ≜ GBIABoolT C

DCserial
BRb ≜ GDCNBR▷

⊤
DC

prod
BT ≜ GDCNBT

ZLNR ≜ GBINB(¬R)∗⊥
BIBT ≜ GBINBT

WKL
prod
BT ≜ GDCNBoolT

WFTind
BT ≜ GBINBoolT

AC = Axiom of Choice
DC = Axiom of Dependent Choice
BPI = Boolean Prime Ideal Theorem
Compl− = Completeness (consistent ⇒ model)
WKL = Weak Kőnig’s Lemma

Compl+ = Completeness (valid ⇒ provable)
ZL = Zorn’s Lemma
BI = Bar Induction
WFT = Weak Fan Theorem
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Remarks and perspectives

Studying the principles together with their dual allow to see where non-linear reasoning is
used. For instance, that the equivalence between WKLstagedT and GDCNBoolT is essentially
classical means that the equivalence between WFTuniform and GBINBoolT is essentially non-
linear. And conversely, that the latter is intuitionistic says that the former only requires
the co-intuitionistic reasoning part of classical logic.

Other variants of choice can probably be added to the picture:

• U. Berger’s update induction on functions in N → B for open predicates seems to
directly generalize to updates of functions on A → B for predicates of finite character
(i.e. of the form ∀v ≺ α (v ∈ T ) or ∃v ≺ α (v ∈ T )), giving a well-founded induction
principle, or dually, maximal approximations.

• generalisations of hybrid forms such as J. Berger’s CFan seem also to be rather canon-
ical:

T coinductively approximable ∧ U barred ⇒ ∃u (u ∈ T ∧ u ∈ U)
T has a choice function ∧ U inductively barred ⇒ ∃u (u ∈ T ∧ u ∈ U)
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