
A computational look at soundness, completeness and
reducibility

Hugo Herbelin

Journée de rentrée PPS

22 September 2014

1

Context

- The Curry-Howard correspondence suggests to think of proofs as pro-
grams

- With proof assistants, we tend to see models or semantics (functions,
predicates, ...) as syntax of the meta-language

- With this respect, what does a proof of normalisation or a proof of sound-
ness, or a proof of completeness say?

2

Outline

- Semantic normalisability via soundness and completeness

- Reflecting semantic normalisability: Normalisation-by-Evaluation

- A comparison with normalisation by reducibility

- The case of Tarskian semantics (Gödel’s completeness)

3

Simply-typed λ-calculus for minimal negative propositional logic

A ::= X | A→̇A
Γ ::= ∅ | Γ, A

Γ, A, A1, ..., An ` A
Varn

Γ, A ` B
Γ ` A→̇B

Lam Γ ` A→̇B Γ ` A
Γ ` B

App

Weakening is admissible:

Γ ⊂ Γ′ Γ ` A
Γ′ ` A

Weak

We write Γ `nf A for a normal derivation and Γ `neut A for a neutral derivation,
i.e. a normal derivation made of an iteration of App over Var.

4

Semantic normalisability

Assume we have a sound and strongly complete notion of validity in minimal
propositional logic w.r.t some kinds of model (Kripke model, Tarskian model,
phase/pretopology semantics, ...)

sound : T ` A⇒ T � A

compl : T � A⇒ T `nf A

Then, composing soundness and strong completeness gives normalisability
(C. Coquand 1993, Okada 2002, ...)

Applicable to intuitionistic logic, classical logic by taking for T all instances
of ex falso quodlibet and all instances of double-negation elimination re-
spectively.

5

An approach popular from the 90’s: Normalisation-by-Evaluation

Let π : T ` A, then compl(sound(π)) : T `nf A

If the meta-theory has cut-elimination, then, for any π, compl(sound(π)) can
be turned into some normal proof π′, which is determined by how cut-
elimination is implemented.

E.g., if the meta-theory is based on λ-calculus, the computational content
is easy to observe:

- Soundness maps π to its interpretation in the model

- Strong completeness depends on the model:

- E.g., for Tarskian semantics, the situation is delicate.

- However, for Kripke/Beth (C. Coquand 1993) or phase/pretopology se-
mantics (Okada 2002), completeness can be done quite syntactically so
that π′ is the β-normal η-long normal form of π.

6

An approach popular from the 90’s: Normalisation-by-Evaluation

Normalisation-by-Evaluation relies on that the latter can itself be proved:

- If the meta-theory is type-theoretic, statements about proofs can be ex-
pressed and the fact that π′ is related to π can be proved explicitly.

- Even the meta-theory is not type-theoretic but has enough higher-order
functions, a proof of validity can be lifted at the level of a functional object
which we can talk about.

7

Soundness in the case of Kripke semantics

Let (K ,≥,
X,monX) be a Kripke model.

We extend
X to all formulae:

w
K X , w
X

w
K A→̇B , ∀w′ ≥ w (w′
K A⇒ w′
K B)

We show that monX extends to to all formulae:

monA(h) : w
K A⇒ w′
K A

whenever h : w ≤ w′.

We also write reflw : w ≥ w.

8

Soundness in the case of Kripke semantics

For simplicity, we restrict ourselves to finite theories, written Γ.

We write Γ �K A , ∀w (w
K Γ⇒ w
K A)

We write Γ � A , ∀(K ,≥,
X,monX) Γ �K A

We map syntax to semantics by induction on the derivation:

[[]]K : Γ ` A ⇒ Γ �K A
[[Varn]]K , λw.λ~α.αn

[[Lam(π)]]K , λw.λ~α.λw′.λh.λα.[[π]]Kw′(monΓ(h)(~α), α′)
[[App(π, π′)]]K , λw.λ~α.[[π]]Kw~α w reflw ([[π′]]Kw~α)

sound : Γ ` A ⇒ Γ � A
sound π , λ(K ,≥,
X,monX). [[π]]K

9

Completeness in the case of Kripke semantics

We use the universal model of contextsU:
K , Contexts Γ ≤ Γ′ , Γ ⊂ Γ′

Γ
X , Γ `nf X monX , Weak

We write shiftΓ,A : Γ ⊂ (Γ, A).

We map semantics to syntax back and forth by induction on the type:

↑Γ
A Γ `neut A ⇒ Γ
U A
↑Γ

X π , π

↑Γ
A→̇B π , λΓ′.λh.λα. ↑Γ′

B (App(Weak(h, π), ↓Γ′

A α))

↓Γ
A Γ
U A ⇒ Γ `nf A
↓Γ

X α , α

↓Γ
A→̇B α , Lam(↓Γ,A

B (α (Γ, A) shiftΓ,A (↑Γ,A
A Var0)))

Hence: compl v ,↓Γ
A (vU Γ (↑Γ

Γ
Vari))

10

Normalisation-by-Evaluation with Kripke models (C. Coquand)

We shortcut the generalisation over all models and take instead

sound : Γ ` A⇒ Γ �U A
compl : Γ �U A⇒ Γ `nf A

We define α ∼Γ
A π by induction on A with iteration on Γ.

We prove: ∀ΓA∀π : Γ ` A (sound(π) ∼Γ
A π)

We prove: ∀ΓA∀π : Γ ` A∀α : Γ
 A (α ∼Γ
A π⇒ compl(α) =βη π)

Hence compl(sound(π)) =βη π

11

Normalisation by reducibility

Let us first annotate derivations with proof-terms.

p, q ::= a | p q | λ̇a.p

Γ ::= ∅ | Γ, a : A

Γ, a : A, a1 : A1, ..., an : An ` a : A
Vara

n

Γ, a : A ` p : B

Γ ` λ̇a.p : A→̇B
Lamλa.p Γ ` p : A→̇B Γ ` q : A

Γ ` p q : B
Apppq

12

Reduction is taken to be β-reduction and η-expansion

t →βη t′

t u→βη t′ u

u→βη u′

t u→βη t u′
t →βη t′

λx.t →βη λx.t′

(λx.t)u→βη t[x := u]
x fresh in t

t →βη λx.(t x)

13

Reducibility/realisability semantics

A set X is closed by anti-reduction if p[x := q]~r ∈ X ⇒ (λx.p)q~r ∈ X.

Let an untyped reducibility/realisability model be an assignment ρ of atoms
to sets closed by anti-reduction.

We define:
p r X , p ∈ ρ(X)
p r A→̇B , ∀q (q r A ⇒ p q r B)

−−−→
a : B ` p r A , ∀~q (

−−−−→
q r B⇒ p[−−−−→a := q] r A)

Anti-reduction scales to arbitrary type:

anti : p[x := q]~r r A⇒ (λx.p)q~r r A

14

Normalisation by reducibility: adequacy

Soundness/Adequacy: ∀ΓA ∀p (Γ ` p : A⇒ Γ ` p r A)

Proof by induction on the derivation:

[[]]p : Γ ` p : A ⇒ Γ ` p r A
[[Varn]]a , λ~q.λ~α.αn

[[Lam(π)]]λa.p , λ~q.λ~α.λq′.λα′.anti([[π]]p(~qq′)(~αα′))
[[App(π, π′)]]pp′ , λ~q.λ~α.[[π]]p~q~α ([[π′]]p′~q~α)

15

Normalisation by reducibility: escape lemma

We define p wn , ∃p′ (p′ nf ∧ p →βη p′) and take the normalisation model
defined by p r X , p wn and which satisfies stability by anti-reduction.

Let Appwn proves a~q wn ∧ q′ wn ⇒ a~qq′ wn, Varwn a proves a wn and Lama
wn

proves t wn⇒ λa.t wn.

Escape lemma: ∀A
{
∀~q (a~q wn ⇒ a~q r A)
∧∀p (p r A⇒ p wn)

Proof mutually by induction on the type:

↑A a~q wn ⇒ a~q r A
↑X π , π
↑A→̇B π , λq′.λα. ↑B (Appwn(π, ↓A α))

↓A p r A ⇒ p wn
↓X α , α
↓A→̇B α , Lama

wn(↓B (α a (↑A (Varwn a))))

16

Normalisation by typed reducibility

It becomes obvious that we can generalise realisability and Kripke seman-
tics into a typed notion of reducibility.

Notes:

- To emphasise the similarity of computational content, we produced η-long
normal form. We could also reason avoiding η.

- The proof scales to first-order universal quantification and to positive con-
nectives when interpreted negatively.

- Interpreting positive connectives positively raises problems (see Ilik 2010).

- This kind of normalisation proof is also related to Type-Directed Partial
Evaluation.

17

Tarskian semantics: soundness

Let M be a Tarskian model, i.e. an interpretation ρM of object-language
atoms X as meta-language atoms. Truth and validity are defined by:

�M X , ρM(X)
�M A→̇B , �M A ⇒ �M B

Γ �M A , �M Γ ⇒ �M A
Γ � A , ∀M Γ �M A

Soundness (for minimal logic) works as in the Kripke and reducibility cases:
[[]]M : Γ ` A ⇒ Γ �M A
[[Varn]]M , λ~α.αn

[[Lam(π)]]M , λ~α.λα.[[π]]M(~α, α′)
[[App(π, π′)]]M , λ~α.[[π]]M~α ([[π′]]M~α)

sound : Γ ` A ⇒ Γ � A
sound π , λM.[[π]]M

18

Tarskian semantics: completeness

There are several proofs of completeness (for classical logic):

- Henkin’s proof

- Beth-Hintikka-Kanger-Schütte’s proofs of strong completeness

- Rasiowa-Sikorski’s variant of Henkin’s proof

- ...

They are constructive as soon as:

- We interpret ⊥̇ by an arbitrary formula (stronger than all other formulae)

- We interpret positive formulae negatively

- We strictly consider Tarskian semantics rather than two-valued seman-
tics which would require a functional reification axiom: ∀x∃b (b = true ⇔
P(x))⇒ ∃ f ∀x (f (x) = true⇔ P(x)), which itself would require an instance
of unique choice and classical logic.

19

Henkin’s proof: Assumptions on the object language

We assume to have a distinguished atom ⊥̇ and we reason in the theory
Class , {¬̇¬̇A →̇ A | A formula}.

The following rules are then admissible:

Class,Γ, A→̇B ` ⊥̇
Class,Γ ` A

˙Proj1
Class,Γ, A→̇B ` ⊥̇

Class,Γ ` ¬̇B
˙Proj2

Class,Γ ` ¬̇¬̇A
Class,Γ ` A

Ḋn

20

Tarskian semantics: A computational presentation of Henkin’s proof

Let dAe and φ form a Gödel’s numbering of implicative formulae such that
dφ(n)e = n.

Let Fn be (informally) the countermodel built at step n. We write Fω ` A for
∃n∃Γ ⊂ Fn (Class,Γ ` A) (“A gets provable at some step of the construc-
tion of a context equiconsistent to ¬̇A0”) where Γ ⊂ Fn is formally defined
inductively:

¬̇A0 ⊂ F0
I0

Γ ⊂ Fn

Γ ⊂ Fn+1
IS

Γ ⊂ Fn ∀Γ′ ⊂ Fn (Class,Γ′, φ(n) ` ⊥̇ ⇒ Class, ¬̇A0 ` ⊥̇)
Γ, φ(n) ⊂ Fn+1

In

The syntactic modelM0 is defined by ρM(X) , Fω ` X.

21

The core of the proof

↑A : Fω ` A → �M A
↑X) (n,Γ, f , π) , (n,Γ, f , π)

↑A→̇B (n,Γ, f , π) , m 7→
dest ↓A m as (n′,Γ′, f ′, π′)
in ↑B (max(n, n′),Γ ∪ Γ′, joinΓΓ′

nn′ (f , f ′),App(π, π′))

↓A : �M A → Fω ` A
↓X m , m
↓A→̇B m , (n, (¬̇A0, A→̇B),

In(injn, (Γ, f , π) 7→
dest ↓B (m(↑A (n,Γ, f , ˙Proj1 π))) as (n′,Γ′, f ′, π′)
in flushΓ∪Γ′

max(n,n′)(join
ΓΓ′

nn′ (f , f ′),App(˙Proj2 π, π
′))

),

Var1) where n = dA→̇Be

22

Auxiliary lemmas

flushΓ
n : Γ ⊂ Fn ∧ Γ ` ⊥̇ −→ ¬̇A0 ` ⊥̇

flushΓ
0 (I0, π) , π

flushΓ
n+1 (IS f , π) , flushΓ

n(f , π)
flushΓA

n+1 (In(f ,H), π) , H Γ f π

joinΓ1Γ2
n1n2 : Γ1 ⊂ Fn1 ∧ Γ2 ⊂ Fn2 −→ Γ1 ∪ Γ2 ⊂ Fmax(n1,n2)

join
¬̇A0¬̇A0
00 I0 I0 , I0

join(Γ1A)(Γ2A)
(n+1)(n+1) In(f1,H1) In(f2,H2) , In(join

Γ′1Γ′2
nn f1 f2,H1)

join(Γ1A)Γ2
(n+1)(n+1) In(f1,H1) IS f2 , In(join

Γ′1Γ2
nn f1 f2,H1)

joinΓ1(Γ2A)
(n+1)(n+1) IS f1 In(f2,H2) , In(join

Γ1Γ′2
nn f1 f2,H2)

joinΓ1Γ2
(n+1)(n+1) IS f1 IS f2 , IS(join

Γ1Γ2
nn f1 f2)

joinΓ1Γ2
n1n2 IS f1 f2 , IS(join

Γ1Γ2
n′1n2

f1 f2) if n1 = n′1 + 1 > n2

join(Γ1A1)Γ2
n1n2 In′

1
(f1,H1) f2 , In′

1
(joinΓ1Γ2

n′1n2
f1 f2,H1) if n1 = n′1 + 1 > n2

joinΓ1Γ2
n1n2 f1 IS f2 , IS(join

Γ1Γ2
n1n′2

f1 f2) if n1 < n′2 + 1 = n2

joinΓ1(Γ2A2)
n1n2 f1 In′

2
(f2,H2) , In′

2
(joinΓ1Γ2

n1n′2
f1 f2,H2) if n1 < n′2 + 1 = n2

injn : ¬̇A0 ⊂ Fn

inj0 , I0
injn+1 , IS(injn)

Final completeness result

class0 : ∀A (Class �M0 ¬̇¬̇A→̇A)
class0 , λA.λm. ↑A (dest ↓¬̇¬̇A m as (n,Γ, f , π) in (n,Γ, f , Ḋnπ))

complA0 : ∀M Class �M A0 −→ Class ` A0

complA0 ψ , Ḋn(Lam(
dest ↓A0 (ψM0 class0) as (n,Γ, f , π)
in flushΓ

n(f ,App(Var|Γ|, π))
))

24

Henkin’s proof: comments

In Kripke semantics, knowledge can be extended whenever a new assump-
tion is known.

In Tarskian semantics instead, knowledge cannot be extended. However,
we can consider that an assumption holds whenever we know how to get
rid of it.

The model construction is computationally a type of continuation: any formula
can be added to the model as soon as its addition comes with a continuation
showing that it preserves consistency

No concrete “model” is built, even though the ordering matters on what the
resulting proof is.

25

Henkin’s proof: further comments

When composing Henkin’s completeness with soundness:

- the resulting proof is not necessary normal

- even if the structure of the initial proof is used, it is “damaged” in the re-
sulting proof

- can we twist Henkin’s proof so as to return normal proofs?

- use effects to mimic the semantic and get a normal form?

26

A few references

NbE for λ-calculus: Berger-Schwichtenberg 1991

Computational analysis of reducibility proofs: Berger 1993

NbE by Kripke semantics: C. Coquand 1993, 2002; NbE by phase seman-
tics: Okada 2002

NbE for disjunction: Altenkirch, Altenkirch-Dybjer-Hofmann-Scott 2001

Semantic normalisation for classical NbE: Herbelin-Gyesik-Lee 2010

Constructiveness of Tarskian semantics: Kreisel 1958, Kreisel 1962, Krivine
1996, Berardi 1999, Berardi-Valentini 2004, McCarty 2008,

Effects in completeness proofs: Ilik 2010.

...

27

