An approach to call-by-name delimited continuations

Hugo Herbelin, INRIA Futurs, France

Silvia Ghilezan, University of Novi Sad, Serbia

POPL 2008

Context of the talk

Languages with control operators
— have operators that capture and modify the flow of control

#1+5xAbort 2 — 2

Languages with delimited control

#1+ #5xAbort2 — 3

Fundamental property (Filinski 1994): delimited control is complete for implementing monads in
direct style (e.g. exceptions, references, ...)

Outline of the talk

I- Introduction and background

- Drawbacks of previous calculi of control
- A better foundation for control: Autp-calculus

- A foundation for call-by-value delimited control: call-by-value Aptp-calculus
II- Our main results
- A remarkable connection between two a priori unrelated calculi:

A call-by-name calculus of control known to satisfy observational (Béhm) completeness
(namely de Groote and Saurin’s Ap-calculus) is the exact canonical call-by-name variant
of A\utp-calculus.

- A uniform presentation of four calculi of delimited control

Introduction and background

Frameworks to reason about call-by-value (non delimited) control

A¢ [Felleisen-Friedman-Kohlbecker-Duba 1986]
- pioneering control calculus (aiming at modelling e.g. call-with-current-continuation)

- continuations (i.e. the rest of the computation) are regular functions

A [Parigot 1992]
- continuations are treated primitively (structural substitution)

- more fine-grained (has a primitive notion of terms and of machine states)

Aiji [Curien-Herbelin 2000]
- even more fine-grained (has a primitive notion of terms, stacks and machine states)

- but less natural... let's not focus on it in this talk

The operational semantics of call-with-current-continuation

definition of evaluation contexts

E:=0|VE|Et

expected semantics

Flcallcc(Ak.t)]
|
1 — reified occurrence
not reified

The operational semantics of call-with-current-continuation
(how to simulate it in \¢7)

abbreviations in A¢

callcc(Ak.t)
Al(t)

C(\k.k t)
C(A_1)

A
L

simulation

ElC(\e.k)]
|
. A(E[2]) tha. A(E[x]) /K]
!

should not be reified as a function!

Consequences of the reification of continuations in AC

- cannot faithfully express the operational semantics of call-with-current-continuation
- its reduction system cannot faithfully express its own operational semantics

- may introduce space leaks in computation

. more in Ariola and Herbelin (JFP, to appear)

The operational semantics of call-with-current-continuation
(how to simulate it in A\u?)

abbreviations in Ay

callcc(Ak.t)
Alt)

o o] v n_ [/K]
p 7]t

>l

A discards the current evaluation context and jumps to the toplevel:
we need a toplevel continuation constant to express it

The operational semantics of call-with-current-continuation
(how to simulate it in Ay extended with tp?)

abbreviations in A\, extended with tp

callcc(Ak.t) = pa.fo](tDo.p_.la]z/k])
A(t) 2 [tpl.t
simulation

FElcallcc(\k.t)]

A foundation for control: Autp-calculus

= x| An.t (values)
tbu == V| tu]| pa.c (terms)
c == [f]t] [tp]t (commands or states)

Aptp-calculus satisfies:

- Faithful simulation of call-with-current-continuation, A, C, ...

- Observationally equivalent to AC (but not operationally equivalent)
- Confluence, termination in simply-typed case, standardisation, ...

- Internal notion of state: evaluations are of the unique form tp V/

How to make Autp suitable for delimited control?

A foundation for delimited control: A\utp-calculus

Let's turn tp into a dynamically bound variable #p:

= x| A\n.t (values)
tiu o= V| tu|pa.c|ptp.c (terms)
c == [B]t] [tplt (commands or states)

The new operator ptp.c delimits a local toplevel.

The binding is dynamic in exactly the same way an exception is dynamically caught by the closest
surrounding handler.

. more in Ariola, Herbelin and Sabry (HOSC, to appear)

Expressiveness of A\utp-calculus

Danvy and Filinski's | resett 2 putp[tp|t
delimited control shift 2 \y.podtp] (y z.ptp.[a]x)
exception raise { = [t
handling t handle patterns = case utp.[tp| (Valt) of

| Valz = =«

| patterns

| x = p_ [t
monads in (t) = ug.[@ (Az.utp.lalz)* t)
direct style] 2 utpltpl (nt)
mutable read =)\().ua.@])\S.((,uli.[a]s) s)
reference write 2 As.uocftpl A ((utp.a]() s)

Outline of the talk

II- Our main results

- A remarkable connection between two a priori unrelated calculi:

A call-by-name calculus of control known to satisfy observational (Béhm) completeness
(namely de Groote and Saurin's Ap-calculus) is the exact canonical call-by-name variant
of A\utp-calculus.

- A uniform presentation of four calculi of delimited control

Towards our results

Call-by-name Aptp-calculus?

CBV
= x|\t (values)
tiu = V|tu]|pa.c|ptpc (terms)
c = [B]t| [tp]t (commands or states)

By Ax.t) V. — t[V/z]

fagp = (pac)t — pB.[Bl(Ot)/a] B fresh
oy + V(pac) — pBc[B(V O)/a] f fresh
pon s e~ e/

Wi = [tplpoc — cltp/al ~

ne utp.[tpl V.o — V even if tp occurs in V

Call-by-name Aptp-calculus?

CBV
not Vo ou= x|zt (values)
mod t,u = V |tu]| pa.c| ptp.c (terms)
c u= [Bt][to]t (commands or states)
mod [, : Ax.t) V. — t[V/z]
fagp = (pac)t — pB.[Bl(Ot)/a] B fresh
not pig,,: Vi(pa.c) — puB.c[B)(V O)/a] 3 fresh
o s [Guae — cl/al
not g, [tpluae — cftp/a]
mod 7y : ptp.[tp] V. — V even if tp occurs in V
CBN
tiu = x| Azt |tu|pa.c|ptp.c (terms)
c o= [p]t] [tp)t (commands or states)
g Ae.t)u — tlu/z]
fapp = (pa.c)t — pBc[Bl(0t)/a] B fresh
poar = [Blpcc — c[f/a] ~
Mo ptp.tp] t — t evenif tp occursin t

Ap-calculus

Parigot [1992] - computational interpretation of classical natural deduction

t o= x| Avt | tt | pa.c (terms)
c == [a]t (commands)

B (Art)u — tu/x]
fapp : (pevc)u — pB.c[Bl(0u)/al B fresh
foar = |Blpcne — clf/al

de Groote [1994] - alternative syntax of Au-calculus
t o= x| Ax.t | tt | pat||aft (terms)
David and Py [2001] - Parigot’s Au-calculus DOES NOT satisfy Béhm's separability

2 not equal normal forms with non-separable observational behaviour.

Saurin [2005] - de Groote's Ap-calculus SATISFIES Béhm's separability

Ap-calculus (Parigot)

Parigot [1992] - computational interpretation of classical natural deduction

t o= x| Avt | tt | pa.c (terms)
c == [a]t (commands)

B (Art)u — tu/x]
fapp : (pevc)u — pB.c[Bl(0u)/al B fresh
foar = |Blpcne — clf/al

de Groote [1994] - alternative syntax of Au-calculus
t o= x| Ax.t | tt | pat||aft (terms)

David and Py [2001] - Parigot’'s Au-calculus DOES NOT satisfy Béhm's separability
2 not equal normal forms with non-separable observational behaviour.

Saurin [2005] - de Groote's Ap-calculus SATISFIES Bohm's separability.

Api-calculus (de Groote - Saurin)

CBN A\utp vs A - equational correspondence

Ay is derived from Ap by relaxing the syntax and keeping the same theory.
Ap can be contrastingly restated as a strict extension of Apu.

This extension is precisely our call-by-name variant of Autp.

Equational correspondence Ay and CBN Autp

oIl : Ap — Autp
oY A\utp — Ap

N(oM) 2 pip.fallI(M)
L(pan[tplM) = po(S(M))
S(ufplolM) £ [a]Z(M)
S(utp.[tolM) £ E(M)

Observational completeness of call-by-name Auip.

Classification of the reduction semantics of A\utp-calculus

(two calculi)

the fundamental critical pair of computation
(Az.t) (pa.c)

./ (CBV) (CBN) ™\,
subsidiary choice subsidiary choice
(A\z.t) (utp.c) [tplpa.c
(fi value) N\, (7 not value) (tp co-value) N\, (tp not co-value)
shift/reset Ap
(Danvy-Filinski) (de Groote/Saurin)
cps-completion (Kameyama-Hasegawa) Bohm-completion (Saurin)

typed “domain”-completion (Sitaram-Felleisen)

Classification of the reduction semantics of A\utp-calculus

(two NEW calculi)

the fundamental critical pair of computation

(Az.t) (pa.c)

/ (CBV)
subsidiary choice
(A\z.t) (utp.c)
(fi value) N\, (7 not value)
shift/lazy reset shift/reset
(Sabry) (Danvy-Filinski)
cps-completion (Sabry) cps-completion (Kameyama-Hasegawa)

typed “domain”-completion (Sitaram-Felleisen)

(CBN) \,

subsidiary choice

(tp co-value)
CBN shift/reset
(Danvy, Kyseliov)

(see also: de Groote's ¢)

[tplpa.c

N\, (tp not co-value)
Ap
(de Groote/Saurin)

BShm-completion (Saurin)

Ongoing and future work

e A uniform approach to CBV and CBN delimited control (4 calculi)

— Syntax and reduction rules

— Equational theory

— Simple typing

— CPS semantics (SPS)

— Equational correspondence with known calculi
— Operational semantics

— Expressiveness

e Interpretation from the duality of computation point of view Aufitp

