
A Constructive Proof of Dependent Choice,
Compatible with Classical Logic

Hugo Herbelin

LICS 2012

27 June 2012

1

Computing with the axiom of dependent choice

Axiom of dependent choice (a key axiom of real analysis):

DC : ∀xA∃yA P (x, y) ⇒ ∀x0 ∃fA⇒A (f (0) = x0 ∧ ∀nP (f (n), f (n + 1)))

- Directly realisable in intuitionistic logic as an instance of full (intensional) axiom of choice

- Provable in intuitionistic logic thanks to Martin-Löf’s strong existential elimination

- “Dialectica” interpretation in classical logic using bar recursion by Spector [1962]

- Modified realisability interpretation in the negative translation of classical logic by Berardi-
Bezem-Coquand [1998] then Berger-Oliva [2005]

- Classical realisability interpretation by Krivine [2002]

- Our approach: the proof-as-program correspondence

- use Martin-Löf’s strong existential elimination but constrain it so as to be compatible
- with classical logic
- turn countable universal quantification into an infinite conjunction and evaluate its
- proofs lazily

2

Proving full (intensional) choice in intuitionistic logic

Using Martin-Löf’s strong elimination of existential (i.e. strong sums, or Σ-types)

Γ ` p : ∃xT A(x)

Γ ` prf p : A(wit p)

the (intensional) axiom of choice gets provable:

ACA,B , λH.(λx.wit (H x), λx.prf (H x))
: ∀xA∃yB P (x, y)⇒ ∃fA⇒B ∀xA P (x, f (x))

3

Unrestricted strong elimination of existential is computationally
incompatible with classical logic

Consider computational classical logic:

Γ, α : A⊥⊥ ` p : A

Γ ` catchα p : A

Γ ` p : A (α : A⊥⊥) ∈ Γ

Γ ` throwα p : C

Example, Drinker Paradox:

DP , catchα.(x0, λy.λHx.catchβthrowα(y, λy′.λHy.throwβHy))
: ∃x ∀y (P (x)⇒ P (y))

Such a proof backtracks on the choice of a witness... how to interpret witDP in such a
way that prfDP : ∀y (P (witDP)⇒ P (y))?

4

Unrestricted strong elimination of existential is computationally
incompatible with classical logic

In particular, in the proof of choice,

ACA,B , λH.(λx.wit (H x), λx.prf (H x))
: ∀xA∃yB P (x, y)⇒ ∃fA⇒B ∀xA P (x, f (x))

if Hx : ∃y P (x, y) is classically proved then what wit (H x) should be is unclear, and
how to keep it “synchronised” with prf (H x) is even more unclear.

5

A trick to recover countable choice

Turn ∀x∃y P (x, y) into a infinite conjunction ∃y P (0, y) ∧ ∃y P (1, y) ∧ . . . and prove
instead

AC ′N,B , λH.(λn.wit (nthnH), λn.prf (nthnH))

: (∃y P (0, y) ∧ ∃y P (1, y) ∧ . . .)⇒ ∃fA⇒B ∀xA P (x, f (x))

Now, the infinite conjunction is a “positive” object and we just have to evaluate it in (lazy)
call-by-value order to ensure that at the time wit and prf are called, the underlying stream
is evaluated at this position.

6

A dependent classical arithmetic in finite types: dPAω

We are now going to incrementally define a dependent classical arithmetic in finite types
by extending (a type-theoretic presentation) of HAω with

- native coinductive formulae

- classical logic

- a restriction of strong elimination of existential compatible with classical logic

7

The underlying intuitionistic arithmetic in finite types: HAω

(the language of expressions: system T)

T, U ::= N | T ⇒ U
t, u ::= x | 0 | S(t) | rec t of [t | (x, y).t] | λx.t | t t

(x : T) ∈ Γ

Γ ` x : T

Γ, x : U ` t : T

Γ ` λx.t : U ⇒ T

Γ ` t : U ⇒ T Γ ` u : U

Γ ` t u : T

Γ ` 0 : N
Γ ` t : N

Γ ` S(t) : N
Γ ` t : N Γ ` t0 : U Γ, x : N, y : U ` tS : U

Γ ` rec t of [t0 | (x, y).tS] : U

(λx.t)u ≡ t[x← u]
rec 0 of [t0 | (x, y).tS] ≡ t0
rec S(t) of [t0 | (x, y).tS] ≡ tS[x← t][y ← rec t of [t0 | (x, y).tS]]

8

The underlying intuitionistic arithmetic in finite types: HAω

(formulae and equational theory)

A,B ::= t = u | > | ⊥ | A⇒ B | A ∧B | A ∨B | ∀xT A | ∃xT A

0 = 0 ≡ >
0 = S(u) ≡ ⊥
S(t) = 0 ≡ ⊥
S(t) = S(u) ≡ t = u

9

The underlying intuitionistic arithmetic in finite types: HAω

(inference rules)

(a : A) ∈ Γ

Γ ` a : A

Γ ` p : A Γ, a : A ` q : B

Γ ` let a = p in q : B

Γ ` p : A A ≡ B

Γ ` p : B Γ ` () : >

Γ ` p : ⊥

Γ ` exfalso p : C

Γ ` p1 : A1 Γ ` p2 : A2

Γ ` (p1, p2) : A1 ∧ A2

Γ ` p : A1 ∧ A2 Γ, a1 : A1, a2 : A2 ` q : B

Γ ` split p as (a1, a2) in q : B

Γ ` p : Ai

Γ ` ιi(p) : A1 ∨ A2

Γ ` p : A1 ∨ A2 Γ, a1 : A1 ` p1 : B Γ, a2 : A2 ` p2 : B

Γ ` case p of [a1.p1 | a2.p2] : B

Γ, a : A ` p : B

Γ ` λa.p : A⇒ B

Γ ` p : A⇒ B Γ ` q : A

Γ ` p q : B

Γ, x : T ` p : A(x)

Γ ` λx.p : ∀xT A(x)

Γ ` p : ∀xT A(x) Γ ` t : T

Γ ` pt : A(t)

Γ ` p : A(t) Γ ` t : T

Γ ` (t, p) : ∃xT A(x)

Γ ` p : ∃xT A(x) Γ, x : T, a : A(x) ` q : B

Γ ` dest p as (x, a) in q : B

t ≡ u

Γ ` refl : t = u

Γ ` p : t = u Γ ` q : P (t)

Γ ` subst p q : P (u)

Γ ` t : N Γ ` p : P (0) Γ, x : T, a : P (x) ` q : P (S(x))

Γ ` ind t of [p | (x, a).q] : P (t)

10

The underlying intuitionistic arithmetic in finite types: HAω

(call-by-value evaluation semantics, minimal part)

(λa.q) p → let a = p in q
(λx.p) t → p[x← t]

case ιi(p) of [a1.p1 | a2.p2] → let ai = p in pi
dest (t, p) as (x, a) in q → let a = p in q[x← t]

split (p1, p2) as (a1, a2) in q → let a1 = p1 in let a2 = p2 in q
let a = b in q → q[a← b]

let a = λb.q in q → q[a← λb.q]

let a = λx.p in q → q[a← λx.t]

let a = () in q → q[a← ()]

let a = ιi(p) in q → let b = p in q[a← ιi(b)]

let a = (t, p) in q → let b = p in q[a← (t, b)]

let a = (p1, p2) in q → let a1 = p1 in let a2 = p2 in q[a← (a1, a2)]

subst refl p → p

ind 0 of [p | (x, a).q] → p

ind S(t) of [p | (x, a).q] → q[x← t][a← ind t of [p | (x, a).q]]

11

The underlying intuitionistic arithmetic in finite types: HAω

(call-by-value evaluation semantics, intuitionistic part)

F [exfalso p] → exfalso p
exfalso exfalso p → exfalso p

where elementary evaluation contexts are defined by

F [] ::= ιi([]) | ([], p) | (V, []) | (t, [])
| case [] of [a1.p1 | a2.p2] | split [] as (a1, a2) in q | subst [] p
| dest [] as (x, a) in p | [] q | [] t | let a = [] in q

12

HAω has coinductive formulae

For instance, the infinite conjunction P (0) ∧ P (1) ∧ ... can be represented by

∃fN⇒N (f (0) = 1 ∧ ∀n (f (n) = 1⇒ (P (n) ∧ f (S(n)) = 1))

(standard second order encoding, using quantification over functions rather than on pred-
icates)

13

For convenience, add primitive cofixpoints to HAω

Γ, f : T ⇒ N, x : T, b : f (x) = 1 ` p : A f (_) = 1 possibly occurs in positive A

Γ ` cofixtbxp : νtf xA

with equation

νtf xA ≡ A[x← t][f (y) = 1← νyf xA]

For instance, ν3
f x(P (x) ∧ f (S(x)) = 1) represents P (3) ∧ P (4) ∧ . . .

14

Extend evaluation semantics of HAω to cofixpoints
(unfolding of cofixpoints is by need)

case cofixtbxp of [a1.p1 | a2.p2] → let c = cofixtbxp in case c of [a1.p1 | a2.p2]

dest cofixtbxp as (x, a) in q → let c = cofixtbxp in dest c as (x, a) in q
split cofixtbxp as (a1, a2) in q → let c = cofixtbxp in split c as (a1, a2) in q
let a = cofixtbxp in exfalso q → exfalso let a = cofixtbxp in q
F [let a = cofixtbxp in q] → let a = cofixtbxp in F [q]

let a = cofixtbxp in D[case a of [a1.p1 | a2.p2]] →
let a = p[b← λy.cofixybxp][x← t] in D[case a of [a1.p1 | a2.p2]]

let a = cofixtbxp in D[split a as (a1, a2) in q] →
let a = p[b← λy.cofixybxp][x← t] in D[split a as (a1, a2) in q]

let a = cofixtbxp in D[dest a as (x, a′) in q] →
let a = p[b← λy.cofixybxp][x← t] in D[dest a as (x, a′) in q]

where
D[] ::= [] | D[F []] | let a = cofixtbxp in D[]

15

Extension to a classical arithmetic in finite types: PAω

Γ, α : A⊥⊥ ` p : A

Γ ` catchα p : A

Γ ` p : A (α : A⊥⊥) ∈ Γ

Γ ` throwα p : C

16

Classical arithmetic in finite types: PAω

(call-by-value evaluation semantics, classical part)

F [throwα p] → throwα p
F [catchα p] → catchαF [p[α← F]]
exfalso throwβ p → throwβ p
exfalso catchβ p → exfalso p[α← exfalso []]
throwβ exfalso p → exfalso p
throwβ throwα p → throwα p
throwβ catchα p → throwβ p[α← β]
catchα throwα p → catchα p
catchβ catchα p → catchβ p[α← β]
let a = cofixtbxp in throwα q → throwα let a = cofixtbxp in q
let a = cofixtbxp in catchα q → catchα let a = cofixtbxp in q

17

dPAω: Adding (restricted) strong elimination of existential to PAω

Replace weak elimination of existential by

Γ ` p : ∃xT A(x) p is N-elimination-free

Γ ` prf p : A(wit p)

where

• a value is N-elimination-free

• if p, q, p1 and p2 is N-elimination-free then prf p, ind t of [p1 | (x, a).p2],
case a of [a1.p1 | a2.p2], dest q as (x, a) in p and split q as (a1, a2) in p are
N-elimination-free.

18

Dependent choice is now provable!

DC ,λa.λx0.let b = s a x0 in
(λn.wit (nthD n (x0, b)),
(refl, λn.π1(prf (prf (nthD n (x0, b))))))

: ∀x∃y P (x, y)⇒
∀x0 ∃f (f (0) = x0 ∧ ∀nP (f (n), f (S(n))))

where
nthD n : ∃xRD(x)⇒ ∃xRD(x)

nthD n,λb.ind n of [b | (m, c).dest c as (x, d) in
(wit (prf d), π2(prf (prf d)))]

s a x : RD(x)

s a x ,cofixxbn(dest a n as (y, c) in (y, (c, by)))

(s is a stream of type RD(x0) , ∃x1 (P (x0, x1) ∧ ∃x2 (P (x1, x2) ∧ . . .)) obtained by
recursively applying the hypothesis)

Conjecture: dPAω exactly captures the strength of dependent choice.

19

A proof of countable choice

ACN , λa.let b = cofix0
bn(a n, b(Sn)) in

(λn.wit (nthC n b), λn.prf (nthC n b))
: ∀n∃y P (n, y)⇒ ∃f ∀nP (n, f (n))

where
nthC n : RC(0)⇒ RC(n)

nthC n , λb.π1(ind n of [b | (m, c).π2(c)])

(s is the stream of type RC(0) , ∃y P (0, y) ∧ ∃y P (1, y) ∧ . . . extracted from the
hypothesis)

Conjecture: one exactly captures the strength of countable choice if we remove the prf
case from the definition of N-elimination-free.

20

Properties of dPAω

Subject reduction: if Γ ` p : A and p→ q then Γ ` q : A

(Claimed) Normalisation: if Γ ` p : A then p normalises

Progress: if ` p : A and p not a value then p reduces

Evaluation: ` p : A then ` V : A for some V s.t. P ∗→ V

Conservativity over HAω for closed ∀-⇒-ν-wit-free and Σ0
1-formulae: if ` T

and T is ∀-⇒-ν-wit-free or Σ0
1 then `HAω T

Consistency: 6` ⊥

21

Comparison with realisability-based approaches

Krivine’s realiser only supports choice over predicates (i.e. A is of the form B ⇒ Prop).
It works by “quoting” the predicates so as to be able to well-order these and to select
the minimal one along this order. Existence of a minimal element crucially needs classical
logic.

As rephrased by Berger [2004], Coquand-Berardi-Bezem’s realiser of countable choice
[1998] builds a choice function by update induction. Initially, the choice function returns
a dummy value everywhere. Each time a proof of P (n, f (n)) is requested, the proof of
∃y P (n, y) together with a continuation that updates the choice function. If, later on,
the proof of some P (n, f (n)) has already been asked, the former value is retrieved.

As rephrased by Escardó and Oliva [2010], Spector’s realiser can be seen as the compu-
tation of a controlled product of selection functions, with default value assigned beyond
the point the construction stops being under control.

In our case, no choice function is actually constructed. Only approximations are computed
and there is no need to give default values.

22

Summary

By adding an appropriate intuitionistically-restricted rule for strong elimination of exis-
tential to PAω, we computationally capture the strength of either countable choice or
dependent choice.

This can be turned into a Martin-Löf-style type theory by allowing dependent products
with the restriction that they are instantiated only by N-elimination-free expressions (as
done in the paper).

Provides with an intuitionistic proof of (a weak form of) bar induction compatible with
classical logic:

∀f ∃nB(f|n)⇒ ∀g
(
∀l (B(l)⇒ g(l) = 0)∧
∀l (∀x g(l?x) = 0⇒ g(l) = 0)

)
⇒g(〈〉) = 0

Our proofs use a weak form of effect (lazy evaluation) and this suggests that a proof-
theoretic investigation of classical call-by-need λ-calculus is worth being conducted...

23

