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Markov’s principle in arithmetic

¬¬∃xA(x)→ ∃xA(x) for A(x) decidable

- classically trivial

- entails that classical logic is conservative over intuitionistic logic for ∃xA(x) statements (A(x)

decidable)

- useful for program extraction in constructive analysis (implies ¬x = y → x#y on real numbers)

- not provable in (standard) intuitionistic logic (no simply-typed realiser, Kreisel [1958])

- preserves the disjunction and existence properties (Smorynski [1973])

- admissible as a rule (Friedman’s A-translation [1978], see also Dragalin, generalised by Coquand-
Hofmann [1999])

- standard for Russian intuitionism but not considered to be intuitionistic in Brouwer and Bishop
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Computing with Markov’s principle

Kleene’s realisability

↪→ conventional realiser is unbounded search, testing A(0), A(1), ... until finding some A(n0)

that holds

Gödel’s functional interpretation (Dialectica)

↪→ realisable by identity

Curry-Howard proof-as-program correspondence

↪→ this work: Markov’s principle = exception mechanism

More precisely: Markov’s principle = statically-bound (as with callcc) or dynamically-bound
(as with try/with) exception mechanism with exceptions on datatypes only

We focus hereafter on a catch/throw mechanism for statically-bound exceptions
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Preliminary analysis of Friedman’s A-translation

Friedman’s A-translation: BA is B in which any atom X (including ⊥) is replaced by X ∨ A
`I B
↓ making exceptional calls to “ex falso quodlibet” explicit

`M BA

↓ moving exceptions up to the surface (?)
`M B ∨ A
↓ taking B for A at toplevel

`M B ∨B
↓ catching the possibility of an exception
`M B

Warning! step (?) only applies when B is intuitionistically equivalent to an →-∀-free formula

(B1 ∨ A) � (B2 ∨ A) iff (B1 �B2) ∨ A holds for ∨ and ∧ but not →
�x(B(x) ∨ A) iff (�xB(x)) ∨ A holds for ∃ but not for ∀

(observed, at least, by U. Berger [2004])

This suggests a formulation of Markov’s principle dedicated to predicate logic...
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Markov’s principle in predicate logic

We call Markov’s principle for (intuitionistic) predicate logic the principle:

¬¬T → T for T strictly positive (i.e. →-∀-free)

Example: ∃xX(x) ∨ ∃y Y (y) is strictly positive but ∃x (X(x)→ Y (x)) is not.

Remark: from the point of view of linear/differential logic, this boils down to ?T → T for T
strictly positive (an instance of codereliction)

... or more generally to T → |T | where T is strictly positive up to the presence of “?” and |T |
erases the “?”
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Main results

Intuitionistic logic + classical reasoning limited to strictly positive formulae

- provides with a proof-as-program interpretation of Markov’s principle based on exceptions

- using statically-bound exceptions, the proof is

λH. catchk.efq (H (λx.throw k x))

where H : ¬¬T and k : ¬T

- internally satisfies the characteristic disjunction and existence properties of intuitionistic logic

a proof of ` A ∨B comes from a proof either of ` A or of ` B
a proof of ` ∃xA(x) comes from a proof of ` A(t) for some t

Call-by-name exceptions implement Coquand-Hofmann’s generalisation of Friedman’s A-translation
in direct style.
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Extended Intuitionistic Predicate Logic: IQCMP

(a : A) ∈ Γ

Γ `∆ a : A Γ `∆ () : >
Γ `∆ p : ⊥

Γ `∆ efq p : C

Γ `∆ p1 : A1 Γ `∆ p2 : A2

Γ `∆ (p1, p2) : A1 ∧ A2

Γ `∆ p : A1 ∧ A2

Γ `∆ πi p : Ai

Γ `∆ p : Ai

Γ `∆ ιi(p) : A1 ∨ A2

Γ `∆ p : A1 ∨ A2 Γ, a1 : A1 `∆ p1 : B Γ, a2 : A2 `∆ p2 : B

Γ `∆ case p of [a1.p1 | a2.p2] : B

Γ, a : A `∆ p : B

Γ `∆ λa.p : A→ B

Γ `∆ p : A→ B Γ `∆ q : A

Γ `∆ p q : B

Γ `∆ p : A(x) x fresh

Γ `∆ λx.p : ∀xA(x)

Γ `∆ p : ∀xA(x)

Γ `∆ p t : A(t)

Γ `∆ p : A(t)

Γ `∆ (t, p) : ∃xA(x)

Γ `∆ p : ∃xA(x) Γ, a : A(x) `∆ q : B x fresh

Γ `∆ dest p as (x, a) in q : B

Γ `α:T ,∆ p : T

Γ `∆ catchα p : T

Γ `∆ p : T (α : T ) ∈ ∆

Γ `∆ throwα p : C

7



IQCMP characterises intuitionistic predicate logic + Markov’s principle

Γ ` A in IQCMP iff MP ,Γ ` A in IQC.
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Normalisation rules for IQCMP : at least four possible semantics

call-by-value or call-by-name

statically-bound exceptions
(based on catch/throw)

or
dynamically-bound exceptions

(based on try/raise)

9



The call-by-value normalisation semantics with static exceptions

V ::= a | ιi(V ) | (V, V ) | (t, V ) | λa.p | λx.p | ()
F [ ] ::= case [ ] of [a1.p1 | a2.p2] | πi([ ]) | dest [ ] as (x, a) in p

| [ ] q | (λx.q) [ ] | [ ] t | efq [ ] | throwα [ ] | ιi([ ]) | ([ ], p) | (V, [ ]) | (t, [ ])

(λa.p)V → p[V/a]

(λx.p) t → p[t/x]

case ιi(V ) of [a1.p1 | a2.p2] → pi[V/ai]

dest (t, V ) as (x, a) in p → p[t/x][V/a]

πi(V1, V2) → Vi
F [efq p] → efq p
F [throwαp] → throwαp

catchαthrowαp → catchαp
catchαthrowβV → throwβ V (α 6= β)

catchαV → V

∀ →-free formulae are datatypes... call-by-value ensures that any closed proof of such a formula
reduces to value and that any “throw” initially present in the proof has been raised

Note: No rule to capture the context, i.e. catch is used as a degenerated control operator
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Properties of the reduction system

The resulting reduction system is rich enough to ensure the normalisation of closed proofs

Subject reduction If Γ ` p : A; ∆ and p→ q then Γ ` q : A; ∆

Progress If ` p : A; ∆ and p is not a (closed) value then p is reducible

Normalisation If ` p : A; ∆ then p is normalisable (by either monadic-style interpretation or,
for static exceptions, embedding in classical logic)

Internal existence property ` p : ∃xA(x) implies ` q : A(t) with p ∗→ (t, q)

Internal disjunction property ` p : A1 ∨ A2 implies ` q : A1 with p ∗→ ι1(q) or ` q : A2

with p ∗→ ι2(q)
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How it works

The general form of a closed proof of ¬¬∃xB(x) is

λk.k (t1, . . . (k (t2, . . . (k (tn, V )) . . .)) . . .)

Applying Markov’s principle gives

catchα efq throwα (t1, . . . (throwα (t2, . . . (throwα (tn, V )) . . .)) . . .)

and the evaluation strategy forces the evaluation to

(tn, V )
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A connection with delimited control

Felleisen’s # operators [1988] and Danvy and Filinski’s 〈 〉 operator [1989] delimit the extent of
the evaluation context captured by control operators.

Delimiters also block the interaction between a control operator and its surrounding context.

This is what is implicitly used in IQCMP : the interaction of catch with its context is blocked
so to ensure that the “exception” types in ∆ remain “datatypes”.

In an extended work with Danko Ilik, the full continuation monad is considered and intuitionistic
logic with both Markov’s principle and double negation shift (∀x¬¬A(x) → ¬¬∀xA(x)) is
captured

More generally: not only classical logic but any other kind of side-effects could be supported in
logic and the logical role of delimiters is to purge the effects, something that is possible as soon
as the effects are used to ultimately prove a small →-∀-free formulae.
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Summary, ongoing works, remarks

Markov’s principle is undoubtedly constructive and it has a more clever computational content
than just unbounded search.

The intuitive observation that Friedman’s A-translation is a form of exception monad transfor-
mation becomes concrete.

Not only callcc-style (statically-bound) control but try-style (dynamically-bound) exception
handling are adequate to prove Markov’s principle (even though they do not have the same
computational content).

Extension to arithmetic under study.

Design of a notion of Σ-evasive modified realisability that validates Markov’s principle.

Alternative normalisation proof by embedding to intuitionistic logic using Coquand-Hofmann’s
generalisation of Friedman’s A-translation.

Connections exist with the codereliction rule of differential interaction nets.

Purely intuitionistic proofs of completeness of intuitionistic or classical logic made possible without
requiring Veldman-Friedman-Krivine “fallible” (“exploding”) models.

A possible alternative to Dialectica for extracting programs from proofs in constructive analysis.

14



Additional contents
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Σ-evasive realisability
(work in progress)

Based on the monadic transformation, we can adapt realisability so that it captures Markov’s
principle:

p 
∆ A reads as p Σ-evasively realises A over ∆

p 
 A reads as p Σ-evasively realises A

p 
∆ > , p is ?
p 
∆ A1 ∧ A2 , π1(p1) 
∆ A1 and π2(p2) 
∆ A2

p 
∆ A1 ∨ A2 , π2(p) 
 Aπ1(p)

p 
∆ A→ B , for all ∆′ ⊃ ∆, q 
∆′ A implies either p q 
∆′ B or p q 
 T for some T in ∆′

p 
∆ ∃xA(x) , π2(p) 
∆ A(π1(p))

p 
∆ ∀xA(x) , for all t ∈ D, either p t 
∆ A(t) or p t 
 T for some T in ∆

(∆ set of strictly positive formulae)

Remark: Independence of premises is validated by modified realisability but no longer validated
by Σ-evasive realisability
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Replacing catch/throw by try/raise

Rules are apparently the same...

(λa.p)V → p[V/a]

(λx.p) t → p[t/x]

case ιi(V ) of [a1.p1 | a2.p2] → pi[V/ai]

dest (t, V ) as (x, a) in p → p[t/x][V/a]

πi(V1, V2) → Vi
F [raiseE p] → raiseE p

tryE raiseE p → tryE p

tryE raiseE′ V → raiseE′ V (E 6= E ′)

tryE V → V

... except that substitution p[V/a] is no longer capture-free (no α-conversion on exception
names).

Subject reduction, progress, normalisation, disjunction property and existence property still hold.
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catch/throw vs try/raise

For the catch/throw mechanism, bindings are static (α-conversion is used to avoid capture)

For the try/raise mechanism, bindings are dynamic (no α-conversion)

Example:

H1 : ∃x> , (x1, p)

H2 : ∃x> , (x2, p)

H′2 : ∃x> → ∃x> , λa.H2

G : (((∃x> → ∃x>)→ ∃x>)→ ∃x>)→ ∃x> , λF.F (λa.H ′2(Fλa′.aH1))

F1 : ((∃x> → ∃x>)→ ∃x>)→ ∃x> , λf.catchαf (λc.throwαc)

F2 : ((∃x> → ∃x>)→ ∃x>)→ ∃x> , λf.tryEf (λc.raiseEc)

Then, letting Jα , λc.throwαc and JE , λc.raiseEc:

GF1 → catchα((λa.H ′2(catchα((λa′.aH1)Jα)))Jα)

= catchα((λa.H ′2(catchβ((λa′.aH1)Jβ)))Jα)

→ catchα(H ′2(catchβthrowαH1))

→ H1

while GF2 → tryE((λa.H ′2(tryE((λa′.aH1)JE)))JE)

→ tryE(H ′2(tryEthrowEH1))

→ H2
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Friedman’s A-translation as a generalised monad transformation for call-by-name
static exceptions

(work in progress)

>∆ , T∆(>)

⊥∆ , T∆(⊥)

P (~t)∆ , T∆(P (~t))

(B ∧ C)∆ , T∆(B∆) ∧ T∆(C∆)

(B ∨ C)∆ , T∆(B∆) ∨ T∆(C∆)

(∃xB(x))∆ , ∃xT∆(B(x)∆)

(∀xB(x))∆ , ∀x (T∆(B(x)∆))

(B → C)∆ , ∀∆′ ⊃ ∆. T∆′(B∆′)→ T∆′(C∆′)

for T∆(B) , B ∨∆

(based on Coquand-Hofmann A-translation [1999])

Theorem Γ ` A in IQCMP implies (Γ ` A)∅ in IQC2
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