A sequent calculus presentation of the Calculus
of Inductive Constructions

(work in progress)

Hugo Herbelin

(jointly with Jeffrey Sarnat and Vincent Siles)

10 July 2010

Dependently Typed Programming Workshop

Edinburgh

Motivation

- sequent calculus can be seen as a A-calculus

< two main variants: L.Jp/ LKy for call-by-name, LJg/ LK for
call-by-value

- sequent calculus is a typing system for abstract machine, hence a
priori for efficient reduction

— left introduction rules build “stack”, right introduction rules build
code, cut rule builds states and closures

- sequent calculus is the natural framework for proof search

— see e.g. Lengrand’s presentation of Pure Type Systems in sequent
calculus form

- sequent calculus is good at making some symmetries explicit

< a symmetry syntactic presentation of fixpoints and cofixpoints
and of the respective guard conditions

LJr aka Spine Calculus

LKp and LK (Danos, Joinet and Schellinx, 1995) are two dual
complete restrictions of LK respectively connected to call-by-name
and call-by-value A-calculus with control

LJr is the intuitionistic restriction of LK

LJp normal proofs (unless L.J proofs) are in bijective correspondence
with call-by-name normal A-terms

LJ7 has been independently designed by Cervesato and Pfenning un-
der the name of Spine Calculus

LJr aka Spine Calculus (the propositional case)

Two kinds of sequents: I' = A and I'; B = A (the place for B is called
“stoup”).

A= X|A—- A

I'VA;AFB
- AX CONT
[TAEF A I'VAFB
['HFA I"BFC I'AFB
—L —R
["A— BEFC I'FA— B

A T.AFB
'FB

cur

LJp aka Spine Calculus (the propositional case,
annotated)

M,N = zK | x AM| MK (terms)
K, L =¢|M:K (spines, orstacks)

Two kinds of sequents:

'+ M : A for terms
[AF K : B for spines (expecting a term of type A for building a term of type B)

(x:A)el” T;AFK:B

AX CONT
[TAFe: A I'FaxK: B
'M:A TI:BFK:C x:AEM: B
—L —R
I"A—BFM:K:C X4 M:A— B

I'-M:A I"AFK:B
I'-MK:B

cutT

LJp aka Spine Calculus (the propositional case,
annotated)

In LJp, the reduction rules are cut-elimination rules for an abstract
machine.

code stack next state or result
(M4 M) N:K — M{N/rx} K
(MK) L — M (KQL)
Az M) € — MM

(zK) L — z(KQL)

(we use here effective substitutions but it could be done with explicit
ones)

LJr (the Pure Type Systems case, Lengrand, 2006)

M,N,T,U == zK | \T.M | MK | s | Iz7.U

K = €| M K
: x:T)el "THK:U I'-M:T 'THK:U
LETis ax () CONT cur
["T'Fe: T I'FaK U I'FMK:U
P’EM:T T;U{M/z}FK:C TkHI2'U:s Do:THM:U THI2'U: s
— —
T UM K- C g DT M 27U g
[" wf (s,8") € Ax 'ET: s e :THU: sy (81, 82, 83) € Rel
SORT P1
Fs:d MF12".U s
r,Cy+-M:T TFHU:s T=U , LTHEK:C TRHU:s T=U
CONVp Co
M;CyYFM:U LUFK:C

and same reduction rules

Adding inductive types

First introducing contexts and substitutions

To deal with the arity of inductive types and constructors, it is con-
venient to consider a “calculus of context” (see Pientka et al) with
declarations asserting judgements:

[++= Ta: [FT]
together with rules for defining substitutions:

DMy :Uy TFM:[F T M/xo) [T

Dhe: [FT]— [T D MM : [wg: Up, TV F T e [F T
and rules for applying these substitutions:

DEN:[MFT] TFM:[FT]e[FT)

PeNM:T

Adding dependent pattern-matching

We can then consider inductive types as declarations of the following

[:[z:VFs).C: [UF IN]

and we interpret a case-analysis match N with ... | C.zl — M, |
. end of natural deduction as a cut between N and a continuation
... | Ci@} — M; | ...] that matches N. The extended syntax is:

form:

M,N,T,U ++= CM | IM
K t+=[..|CT = M]|..]

Regarding typing, the placeholder is now dependent in types and we
need to give it a namel!
o

Tz V,y IZFT: s F,xll/ZI—MZT{ﬁZ/7}{C’Zﬁ/y}

Gyt U F TN,

Doy IPF[..|CT — M|..]:T{P/Zy/y}

The reduction rule is

Co(P) [..|CT =M |..] — MJ{P/7)

Dependent cut

Because the typing rule for [... | C;z; — M, | ...] is dependent in
the type, the cut rule now needs to be dependent too:

I'EM:T vy . THK U
' MK :U{M/y}

Cut

Adding fixpoints and cofixpoints

Adding fixpoints and cofixpoints

We want to exhibit a duality between fixpoints and cofixpoints. Let
us first consider a tail-recursive fixpoint without dependencies at all:

f:=fixy; Anmatchnwith0 — 0| Sn — f(S(Sn)) end

Obviously, this function is cutting n with a continuation that does
a case analysis on it, then depending on the result, recursively does
the same case analysis. We want to interpret this recursive part as a
fixpoint definition over evaluation contexts.

This suggests to consider variables v, 3, ... for evaluation contexts as
In

M, N, T.U ++= cofix,.M
K ++= a| fix,. K

and to represent f above as the expression

An.nfix,. [0 = 0] Sn— (S(Sn))al

The reduction rules come naturally:

M fix, K — M K{fix,.K/a}
cofix,. M K — M{cofix, M/z} K

Adding fixpoints and cofixpoints: typing

To type evaluation context variables, we need to consider sequents
with several (non-dependent) conclusions, i.e. either of the form I' F

A:M T oz : UF A;K T and since evaluation context
variables denote terms with a hole, this suggests to have:

A= ¢€e|Aa:|[UFT)|

Then, we need an axiom rule for conclusions:
(a: [UFT])eA
NUFAo:T

We are then ready for giving the following dual rules:
Do IEM: 1 IFa:IFULK:U
'+ cofix, M : 1 VI Ffix,. KU

(note that the symmetry would be perfect if in LJE/1 instead of LJp)

Adding fixpoints and cofixpoints with parameters

Dependencies introduce a reading of the sequent from left to right.
Let us consider the extended syntax:

M,N, T.U ++= cofix,(y).M
K ++= a| fix,(y). K

For cofixpoints, the rule scales easily using declarations of contexts:
ooy 1 I—[ﬁ],y: ['+M:IN
Dk cofix,(§).M:|y:T - IN]

For fixpoints (and we are still restricting ourselves to the tail-recursive
case and no dependency in the conclusion), we need to type evaluation
context variables with contexts too:

A= €|Aa: [INURT]

Then, the new rule is:
[y i;lﬁl—a:[y: E;IT\}I—U];K:U

I [ﬁ, INF Ul fix,(y). K : U

Adding fixpoints and cofixpoints with parameters:
reduction rules

The reduction rules extend easily:

M (fixa(7).K)N — M K{N /M £ ix.(5).K /o)
(cotix, (7). M)N K = MI{N/Mcotix,(§).M/z} K

Adding fixpoints and cofixpoints: the general case

In the non-tail recursive case, ase.g. in f ;= fix; An.matchnwith(0 — 0 |
Sn — S(fn) end, we need to pass a continuation to the re-
cursive evaluation-context variable. But in L.Jr a continuation is it-
self represented by an evaluation-context variable. Hence, we have a
dependency of the recursive evaluation-context variable into another
evaluation-context variable. This leads to the following generalised
syntax:

M,N, T,U ++= cofix,(y)M

K ++= a| fix, (o) K

A = e | Ao U F AT

The axiom rule for conclusions does not change much:
(a: U AT € A
MU EATEA QT

Adding fixpoints and cofixpoints: the general case

Now, we need to build substitutions referring to evaluation contexts:

CMy: Uy TFME [V H{ Mo} [V' H]

Dhe:[VH o [VH DF MME :[zo: Uy, TV H e [V' F]
DVoFK:Ty TFE:[VEA]w [V H
IHEK [V Ea: ok Ty, A e [V H]

And we need to apply these substitutions:

DV EATIFK T TEME [V EA = [V H]

V' EK'ME T

We are now ready to give the general rule for fixpoints:
Iy i;x:]ﬁl—ﬁz[;P(y_’,x)l—U],a:[y: i;x:[ﬁl—ﬂz[;P(g’,x)l—U];U};K:U
iy : Tz INF B Py,z) F U] F fix,(yB). K - U

(this complexity is the price to pay for tail-recursive simulation of non
tail-recursive fixpoints)

Adding fixpoints and cofixpoints: the general case

The reduction rules does not change much:

M (fixa(§8).K)NK — M K{N/JH{K' /B HEixa (7). K/ a}

The non tail-recursive example is expressed like this:

An.nfix,(8).[0 = 0| Sn — n(a(gz.(Sz)))]

Note that for building non linear evaluation contexts, we a priori need
the following extra rule adapted from LJ/T,) to LJp:

Ie:AFM: B
AR pxeM : B

Symmetry of the guard conditions

We have the following symmetry:

Guard condition for fixpoint = recursion traverses at least one left
introduction rule

Guard condition for cofixpoint = recursion traverses at least one right
introduction rule

For inductive types and fixpoints, termination comes from the interac-
tion between a finite term and an infinite guarded evaluation context.

For coinductive types and cofixpoints, termination comes from the
interaction between a guarded infinite term and a finite evaluation
context.

Note that in this duality, the difference between inductive and coin-
ductive types is not a built-from-constructor vs built-from-destructors
duality but a finite-infinite vs infinite-finite duality.

