
A-translation and Looping Combinators in Pure Type

Systems

Thierry Coquand, coquand@cs.chalmers.se

Hugo Herbelin, herbelin@margaux.inria.fr

Abstract

We present here a generalization of A-translation to a class of Pure

Type Systems.

We apply this translation to give a direct proof of the existence of

a looping combinator in a large class of inconsistent type systems, class

which includes type systems with a type of all types. This is the �rst

non-automated solution to this problem.

Introduction

The term A-translation �rst appeared in a paper of Friedman [3]. It denotes

there a technical tool used in a proof of closure under Markov's rule of several

intuitionistic systems. Combined with G�odel's translation from classical arith-

metic into intuitionistic arithmetic, this was used to give a new proof of the

intuitionistic provability of classically provable �

0

1

formulas.

Leivant [8] is a good reference about A-translation. Recently, connections

between A-translation and Continuation Passing Style have been investigated.

See for instance Murthy's Ph. D. thesis[10].

We are going to generalise A-translation to a large class of Pure Type Sys-

tems, introduced recently by Barendregt [1, 4]. This generalisation is motivated

by the following problem: to extract constructive informations from paradoxes

in inconsistent type systems. More speci�cally, let us de�ne a \looping combina-

tor" as being a term having the same B�ohm tree as the �xed-point combinator

Y: It has been shown by Howe [6] that a type system with a type of all types

contain a looping combinator. We will get this result as an application of A-

translation for Pure Type Systems.

The basic idea motivating this use can be traced back to the earliest known

translation from classical logic to intuitionistic logic due to Kolmogorov [7].

This translation was actually a translation of classical logic into minimal logic:

the rule \ab falso quodlibet" is never used, and the absurd proposition ?

in Kolmogorov's paper can thus be replaced formally by any proposition A:

1



Kolmogorov saw the use of his translation as the development of \pseudo-

mathematics," where, intuitively speaking, all notions and all lemmas occurring

in a proof are de�ned and proved \relatively to a �xed proposition A".

This is this feature of A-translation that we use essentially here. In general,

it is hard to see how to transform a paradox into a looping combinator. Howe's

argument [6] is rather involved, done with computer assistance, and shows only

how to extract a looping combinator out of one speci�c paradox. Our approach

is more general. We show how to build a looping combinator from any given

paradox. Indeed, when we apply A-translation to a paradox, we get a proof of

A where all notions and lemmas are de�ned and proved \relatively to A". This

proof is then transformed without too much problems into a looping combinator.

The �rst section de�nes a class of \logical" Pure Type Systems in which

we will de�ne an A-translation. The second section describes the A-translation

for logical Pure Type Systems. We state then a signi�cant property of proofs

obtained from the A-translation in the third section. This property is exploited

to show the existence of a looping combinator in inconsistent Type Systems.

The last section gives some examples of Type Systems containing looping com-

binators. We end by raising some questions suggested by our work.

1 Logical Pure Type Systems

We use here the standard de�nition of Pure Type Systems from Barendregt and

Geuvers-Nederhof [1, 4]. In particular, we make fairly heavy implicit use of the

general properties of Pure Types Systems as presented in [4].

De�nitions : A Pure Type System L is logical i� it is functional (see [4]) and

contains two distinguished sorts Prop and Type such that

� Prop : Type is an axiom of L

� (Prop; Prop; Prop) is a rule of L

� There are no sorts of type Prop

In a logical Pure Type System, the terms of type Prop are called proposi-

tions, and the terms of type a proposition are called proofs.

De�nition : A logical Pure Type System is inconsistent i� there exists a

proof of A in the context A : Prop.

De�nition : A logical Pure Type System is said to be nondependent i� the

only rules concerning Prop are of the form (S; Prop; Prop) where S is some

sort.

2



Remark : simply-typed �-calculus, system F , F

!

(see [4]) are nondependent

logical Pure Type Systems. On the other hand, a type system with a type of

all types, with Prop = Type is not logical because Prop is then a sort of type

Prop: The calculus of constructions, see [4], is logical, but is not nondependent

because it has the rule (Prop; Type; T ype):

Lemma 1 In a nondependent logical Pure Type System, if X = (X

1

X

2

) and

X

1

or X

2

is a proof, then X is a proof.

Proof There exist Y

1

, Y

2

, S

1

, S

2

and S such that X

1

: (x

2

: Y

2

)Y , X

2

: Y

2

,

Y : S, Y

2

: S

2

and (S

2

; S; S

1

) is a rule. If X

1

is a proof, then S

1

= Prop and so

S = Prop: If X

2

is a proof, then S

2

= Prop; and so S

1

= S = Prop:

Lemma 2 In a nondependent logical Pure Type System, if Y is a subterm of

X and Y is a proof, then X is a proof.

Proof

By induction on the term X: We can as well assume that Y is a subterm of

X distinct from X:

In such a case, the term X cannot be a variable, a constant.

if X is �x : X

1

:X

2

then, by induction hypothesis, since X

1

is not a proof, Y

is a subterm of X

2

; and hence by induction hypothesis, X

2

is a proof. Hence X

is a proof.

if X is (X

1

X

2

) then by induction hypothesis, X

1

or X

2

is a proof. By

lemma 1, this implies that X is a proof.

The case where X is a product is impossible by induction hypothesis.

Remark : This lemma implies that if C : Prop in a context containing the

declaration of a proof variable h : B; then h is not a subterm of C: Thus, any

product �h : B:C built from the rule (Prop; Prop; Prop) is nondependent and

can be written B ! C.

Lemma 3 Let L be nondependent logical Pure Type System and p a proof in a

context �.

Then p is either a variable of the context, or a constant, or �x : Y:q where

q is a proof in �; x : Y , or (q X) where q is a proof in �.

Proof Direct by case analysis.

2 A-translation in nondependent logical Pure

Type Systems

In all the section, we assume to be in a �xed nondependent logical Pure Type

System, and inside the context A : Prop.

3



Notation: Let B be a proposition. We will write [B] for the proposition

(B ! A)! A.

We now de�ne a translation

+

on terms which are not proofs. This transla-

tion depends on the type of the subterms, and it is de�ned relatively to a context

in which the term is well-formed. Notice that it is not clear a priori that M

+

is

a well-formed term, so that a priori M

+

is de�ned only as a pseudo-term (see

[4].) Proposition 1 will later show that M

+

is actually a well-formed term.

De�nition : Let X be a well-formed term in the context �, di�erent from a

proof.

� X

+

is X if X is a variable, a constant or a sort

� (X

1

X

2

)

+

is (X

+

1

X

+

2

)

� (�x : X

1

:X

2

)

+

is �x : X

+

1

:X

+

2

where X

+

2

is de�ned in �; x : X

1

� the de�nition of (�x : X

1

:X

2

)

+

depends on the type of X

2

and X

1

:

if X

2

is a proposition B

2

in �

then if X

1

is a proposition B

1

in �

then (B

1

! B

2

)

+

is [B

+

1

]! [B

+

2

]

else (�x : X

1

:B

2

)

+

is �x : X

+

1

:[B

+

2

];

where B

+

2

is de�ned in �; x : X

1

else (�x : X

1

:X

2

)

+

is �x : X

+

1

:X

+

2

where X

+

2

is de�ned in �; x : X

1

Remark : lemma 3 justi�es the previous de�nition by cases.

Lemma 4 For any terms X well-formed in �; y : Y and Z well-formed in �

di�erent from proofs, then (X[y := Z])

+

is identical to X

+

[y := Z

+

].

Proof It is straightforward.

Lemma 5 For any terms X and Y well-formed in � di�erent from proofs,

X =

�

Y implies X

+

=

�

Y

+

.

Proof It su�ces to prove that (�z : Z:Z

0

Z

00

)

+

reduces to (Z

0

[z := Z

00

])

+

.

This follows from lemma 4.

We now de�ne a translation

�

on propositions and contexts

De�nitions : Let B be a proposition in a certain context, B

�

is de�ned as

[B

+

]. Let � be a well-formed context, �

�

is de�ned inductively like this :

4



� if � is the empty context then �

�

is the empty context

� if � is �

0

; x : X, where X is not a proposition then �

�

is �

0�

; x : X

+

� if � is �

0

; h : B, where B is a proposition then �

�

is �

0�

; h : B

�

Lemma 6 For any propositions B and C in �, B =

�

C implies B

�

=

�

C

�

.

Proof Straightforward by lemma 5.

Proposition 1 If � ` X : Y and X is not a proof then �

�

` X

+

: Y

+

. If

� ` B : Prop then �

�

` B

�

: Prop.

Proof We prove this simultaneously by induction on the structure of the

derivation of � ` X : Y (resp. � ` B : Prop.) The case of conversion is

done by lemma 5. Lemma 2 assures us that the derivation of � ` X : Y (resp

� ` B : Prop) encounters no proofs.

Lemma 7 For any propositions B and C in �, if �

�

` p : B

�

and B =

�

C then

�

�

` p : C

�

.

Proof By lemma6 and the conversion rule in Pure Type Systems. Proposition

1 assures that �

�

` C

�

: Prop.

We now de�ne translation

�

on proofs. As for the translation

+

, it is de�ned

relatively to a context in which the term is a well-formed proof p; and it is

not clear a priori that p

�

is a well-formed term, so that p

�

is de�ned only as

a pseudo-term. Theorem 1 will actually show that p

�

is indeed a well-formed

term which is a proof.

De�nition : Let p be a proof in the context �.

� p

�

is p if p is a variable or a constant

� if p is �h : B:q, with B a proposition, and q : C, then p

�

is

�k : ((B

�

! C

�

)! A):(k �h : B

�

:�k

0

: (C

+

! A):(q

�

k

0

))

where q

�

is de�ned in �; h : B

� if p is �x : Y:q, with Y not a proposition, and q : C, then p

�

is

�k : ((�x : Y:C

�

)! A):(k �x : Y:�k

0

: (C

+

! A):(q

�

k

0

))

where q

�

is de�ned in �; x : Y

� if p is (p

1

p

2

) and p

1

: B ! C then p

�

is

�k : (C

+

! A):(p

�

1

�h

1

: (B

�

! C

�

):(h

1

p

�

2

k))

5



� if p is (p

1

X), when X is not a proof, and p

1

: �x : Y:C, then p

�

is

�k : (C[x := X]

+

! A):(p

�

1

�h

1

: (�x : Y

+

:C

�

):(h

1

X

+

k))

Remark : lemma 3 justi�es the previous de�nition by cases.

Theorem 1 Let B be a proposition in �. If � ` p : B then �

�

` p

�

: B

�

Proof By induction on the structure of the derivation of � ` p : B. The case

of proposition conversion is done by lemma 7. Proposition 1 treats the case of

judgements � ` X : Y with X not a proof.

Remark 1:

�

is a Kolmogorov-likeA-translation. It generalizes an A-translation

of Paulin-Mohring [11] for the Calculus of Constructions with data types dis-

tinguished from propositions, and is inspired by a classical/intuitionistic trans-

lation of Girard [5] for higher order �-calculi.

Remark 2: if we assume Church-Rosser property for the Pure Type System we

are considering, lemma 5 holds also for ��-conversion and therefore proposition

1 and theorem 1 still hold in presence of ��-conversion. However, Church-

Rosser property for general Pure Type Systems (not necessarilly normalisable)

with ��-conversion seems still to be an open problem.

3 Long A-applicativity

As we said in the introduction, the original motivation in using A-translation

was the fact that, intuitively, proofs that we get by A-translation \proves only

A:" Trying to make precise this remark leads to the following notion.

De�nition : The notion of long A-applicative proof in a context � is de�ned

by the following cases:

� the variable h of type B with B : Prop is a long A-applicative proof if

h : B is in �

� �x

1

: Y

1

: : :�x

n

: Y

n

:p is a long A-applicative proof in � if p is a long

A-applicative proof in �; x

1

: Y

1

; : : : ; x

n

: Y

n

and if p is of type A

� (p q) is a long A-applicative proof in � if p and q are long A-applicative

proofs in �.

� (p X) where X is not a proof is a long A-applicative proof in � if p is a

long A-applicative proof in �.

Proposition 2 If p is a proof in � then p

�

is long A-applicative in �

�

.

Proof Direct from the de�nition of p

�

:

6



Lemma 8 If p is a long A-applicative proof in a context �; h : B and q is long

A-applicative in � then p[h := q] is long A-applicative in �.

If p is a long A-applicative proof in a context �; x : Y and X is not a proof

in � then p[x := X] is long A-applicative in �.

Proof By induction on the structure of p:

4 Looping combinators

The idea of Meyer and Reinhold [9] to obtain a recursion combinator in the

inconsistent system Type : Type was to exploit the non normalisability of the

proof of the inconsistency by inserting some \f" in it in order to obtain a term

p

0

such that p

0

reduces to (f p

1

) and then p

1

to (f p

2

), and so on... From such

a sequence, it is direct to build a family of terms Y

n

: �A : Type:(A ! A)! A

such that (Y

n

A f) = f (Y

n+1

A f):

De�nition : Let T be a Pure Type System and S a sort of T . A looping

combinator of sort S in T is a term Y : �A : S:(A! A)! A such that there

exists a sequence of terms Y

0

� Y , Y

1

, : : :Y

n

: : : , of type �A : S:(A! A)! A

such that for any A : S; f : A! A

(Y

n

A f) =

�

f(Y

n+1

A f)

Howe [6] applied the same idea to transform the paradox of Girard [5] into a

looping combinator by a direct mechanichal analysis of the term corresponding

to this paradox.

We are now going to show how to build a looping combinator in any in-

consistent nondependent logical Pure Type System. The last section will show

that this implies in particular the existence of a looping combinator also for

Type : Type:

From now on, we assume to be in a �xed inconsistent nondependent logical

Pure Type System, and inside the context A : Prop:

Proposition 3 There exists a long A-applicative proof of A:

Proof Since the type system is inconsistent, there exists a proof q

A

of A in the

context A : Prop: By theorem 1, (q

A

)

�

is a proof of A

�

in the context A : Prop

and by proposition 2, this proof is long A-applicative. But A

�

is (A! A)! A;

and p

A

= ((q

A

)

�

�x : A:x) is a long A-applicative proof of A.

We now precise what kind of term is a long A-applicative proof of A :

Lemma 9 A long A-applicative proof of A is of the following form:

((�x

1

: Y

1

: : : �x

m

: Y

m

:q) X

1

: : :X

m

)

7



with m � 1, q : A and each X

i

is either long A-applicative or not a proof.

Proof Let p be a long A-applicative proof of A in the context A : Prop. Since

A is atomic, A cannot be convertible to a product by Church-Rosser. Hence,

by uniqueness of type, p does not begin with an abstraction.

Therefore it is of the following form:

(p

0

X

1

: : :X

m

) with m � 0 and p

0

either a variable or an abstraction

Since we are in the context A : Prop p

0

cannot be a variable, m � 1 and

p

0

begins with an abstraction. And since p is long A-applicative, p

0

is of the

following form:

�x

1

: Y

1

: : : �x

m

0

: Y

m

0

:q with m

0

� 1 and q : A.

The type of q remains A by instantiation, hence m cannot be greater than

m

0

. And since p proves A, m

0

cannot be greater than m: Hence we havem = m

0

,

i.e. p has the desired form.

We now de�ne a strategy of reduction applicable to longA-applicative proofs

of type A:

De�nition : Let p be a long A-applicative proofs of type A. By lemma 9, p is

((�x

1

: Y

1

: : : �x

n

: Y

n

:q) X

1

: : :X

n

), with n � 1 and q : A,

red(p) is then the following term of type A

q[x

1

:= X

1

] : : : [x

n

:= X

n

].

Lemma 10 For any long A-applicative proof p of A in A : Prop, red(p) is a

long A-applicative proof of A in A : Prop.

Proof By lemma 8.

We now de�ne the transformation p

f

which inserts \marks" inside long A-

applicative proofs p in such a way that for any long A-applicative proofs p of A

red(p

f

) is (f (red(p))

f

).

De�nition : Let p be a long A-applicative proof in a context �

p

f

is de�ned inductively in the context �; f : A! A as follows:

� if p is a variable h in � then p

f

is h in �;

� if p is �x

1

: Y

1

: : :�x

n

: Y

n

:q in � then p

f

is �x

1

: Y

1

: : : �x

n

: Y

n

:(f q

f

)

in � where q

f

is de�ned in �; f : A! A; x

1

: Y

1

; : : : ; x

n

: Y

n

;

� if p is (p

1

p

2

) then p

f

is (p

f

1

p

f

2

);

8



� if p is (p

1

M ) with M not a proof, then p

f

is (p

f

1

M ):

Remark : p

f

is of same type as p and is long A-applicative also.

Lemma 11 If p is an A-applicative proof in the context �; h : B and q an

A-applicative proof of B in � then p

f

[h

0

:= q

f

] is (p[h := q])

f

.

If p is an A-applicative proof in the context �; R : T and M : T not a proof

then p

f

[R :=M ] is (p[R :=M ])

f

.

Proof By structural induction on p and by lemma 8

Lemma 12 For any long A-applicative proof p of A; red(p

f

) is (f (red(p))

f

).

Proof p is of the form

((�x

1

: Y

1

: : : �x

m

: Y

m

:q) X

1

: : :X

m

),

and then p

f

is

((�x

1

: Y

1

: : : �x

m

: Y

m

:(f q

f

)) (X

1

)

f

: : : (X

m

)

f

),

which reduces by lemma 11 to (f (red(p))

f

).

Lemma 13 There exists a sequence of termsM

0

;M

1

; : : : ;M

n

; : : : de�ned in the

context A : Prop; f : A! A such that M

n

=

�

(f M

n+1

).

Proof We de�ne a sequence of terms p

n

as follows. First we de�ne p

0

to be

any long A-applicative proof of A in the context A : Prop, using proposition 3.

We then de�ne p

n+1

to be red(p

n

). Each proof term p

n

is long A-applicative

proof of A in A : Prop by lemma 10.

Let M

n

be p

f

n

. The sequence M

0

; : : : ;M

n

; : : : satis�es lemma 13 by lemma

12.

Theorem 2 In any inconsistent nondependent logical Pure Type System, there

exists a looping combinator of type Prop.

Proof Direct from lemma 13

Remark : The proof given here is constructive. We can e�ectively transform

any proof of A in the context A : Prop into a looping combinator.

9



5 Applications

We describe here the systems U

�

, U and Type : Type as Pure Type Systems.

The system U

�

is the Pure Type System de�ned by the following sorts:

Prop, Type and Class,

the axioms:

Prop : Type and Type : Class

and the rules:

(Prop; Prop; Prop)

(Type; Prop; Prop)

(Type; Type; T ype)

(Class; T ype; T ype).

System U is the same as system U

�

plus the following rule:

(Class; Prop; Prop)

The system Type : Type is the Pure Type System with the only sort:

Type

the only axiom:

Type : Type

and the only rule:

(Type; Type; T ype)

Both systems U and U

�

are nondependent logical Pure Type System. They

are both inconsistent, as shown in [2, 5]. Hence, by theorem 2, they contain

a looping combinator of sort Prop. It is clear that a looping combinator for

one of this system translates directly in a looping combinator of sort Type for

Type : Type:

Here is a direct application. Call a nondependent logical type system im-

predicative i� it contains the rule (Type; Prop; Prop):

10



Theorem 3 Convertibility is undecidable for inconsistent impredicative logical

Pure Type System. Furthermore, convertibility and type-checking is undecidable

for Type : Type:

Proof The arguments of [9], which assumed the existence of a �xed-point

combinator, apply directly using a looping combinator instead.

For sake of completeness, we include a sketch of these arguments. First, it

is standard [5] how to represent primitive recursive functions as terms of type

N ! N; where N is the proposition �X:X ! (X ! X)! X; and the number

n is represented by the term �X:�x:�f:(f

n

x): A looping combinator family

allows the numeralwise representation of any partial recursive function � by

a term � : namely �t

n

=

�

t

k

i� �(n) = k: This entails the undecidablity of

convertibility in any inconsistent impredicative logical Pure Types System.

The same reasoning will apply to Type : Type by taking N to be the type

�X:X ! (X ! X) ! X: Furthermore, in this case the problem whether

�(n) = 0 reduces to the question whether (f x) is typable in the context P :

N ! Type; f : P (t

0

) ! N; x : P (�(t

n

)): Likewise, checking speci�c type

judgements is undecidable, since �(n) = 0 reduces to the question whether x

has type P (�(t

n

)) in the context P : N ! Type; x : P (t

0

):

Notice however that the normalisation theorem for system F [5] implies

directly the decidability of type-checking for the system U

�

and the system U:

Conclusion

We would like to raise some problems:

� The problem of the existence of a �xed-point combinator for the system

Type : Type is still open.

� Is it possible to derive the existence of a looping combinator from the

existence of a paradox in a more direct way than by using A-translation?

� For the system U

�

it is possible to de�ne a \stripping" operation that

associates to any proof term the untyped �-term we get by forgetting

the type information. We conjecture that the usual direct proof of non

typability of the term (�x (x x) �x (x x)) in system F extends to show

that this term is not typable in system U

�

:

Acknowledgements

The authors want to thank Herman Geuvers, Chet Murthy, Erik Palmgren and

Benjamin Werner both for their remarks about the paper and for enjoyable

discussions about A-translation and Pure Type Systems. Thanks also to Henk

Barendregt for his de�nition of looping combinators.

11



References

[1] H. Barendregt. Introduction to Generalized Type System. In the Journal of

Functional Programming, Volume 1, Part 2, April 1991, pages 125 - 154.

[2] T. Coquand. A New Paradox in Type Theory. To appear in the Proceedings

of the 9th International Congress of Logic, Methodology and Philosophy of

Science, Uppsala, August 1991.

[3] H. Friedman. Classically and Intuitionistically Provably Recursive Func-

tions. In Higher Set Theory, ed. G.H. M�uller and D.S. Scott. Springer

Verlag Lecture Notes 669, 1978, pages 21 - 27.

[4] H. Geuvers and M.-J. Nederhof. Modular proof of strong normalisation for

the calculus of constructions. In the Journal of Functional Programming,

Volume 1, Part 2, April 1991, pages 155 - 189.

[5] J.Y. Girard. Interpr�etation fonctionnelle et �elimination des coupures dans

l'arithm�etique d'ordre sup�erieur. Th�ese de doctorat d'�etat de l'universit�e

Paris 7, 1972.

[6] D. J. Howe. The computational behaviour of Girard's paradox. In Proceed-

ings of the Second Symposium of Logic in Computer Science (Ithaca, N.y.),

IEEE, 1987, pages 205 - 214.

[7] A.N. Kolmogorov.On the principle of excluded middle. 1925. in From Frege

to G�odel : a source book in mathematical logic, 1879-1931. J. Van Hei-

jenoort. Harvard University Press, 1967.

[8] D. Leivant. Syntactic translations and provable recursive functions. Journal

of Symbolic Logic 50, 1985, pages 682 - 688.

[9] A. R. Meyer, M. B. Reinhold. \type" is not a type. In Conference record of

the thirteenth annual ACM symposium on principles of programming lan-

guages, Association for Computing Machinery, SIGACT, SIGPLAN, 1986,

pages 287 - 295.

[10] C. Murthy Extracting Constructive Content From Classical Proofs. Ph.D.

Thesis, Cornell University, 1990.

[11] C. Paulin Extraction de programmes dans le Calcul des Constructions.

Th�ese de doctorat de l'universit�e Paris 7, 1989.

12


